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Abstract
Motivated by DNA copy number variation (CNV) analysis based on high-density single
nucleotide polymorphism (SNP) data, we consider the problem of detecting and identifying sparse
short segments in a long one-dimensional sequence of data with additive Gaussian white noise,
where the number, length and location of the segments are unknown. We present a statistical
characterization of the identifiable region of a segment where it is possible to reliably separate the
segment from noise. An efficient likelihood ratio selection (LRS) procedure for identifying the
segments is developed, and the asymptotic optimality of this method is presented in the sense that
the LRS can separate the signal segments from the noise as long as the signal segments are in the
identifiable regions. The proposed method is demonstrated with simulations and analysis of a real
data set on identification of copy number variants based on high-density SNP data. The results
show that the LRS procedure can yield greater gain in power for detecting the true segments than
some standard signal identification methods.
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1 INTRODUCTION
In genetics, the study of DNA copy number variation (CNV) provides important insights on
human inheritance and disease association (McCarroll and Altshuler 2007). CNV refers to
duplication or deletion of a segment of DNA sequences compared to a reference genome
assembly. Current high-throughput genotyping technology is able to generate genome-wide
observations in kilobase resolution. In this type of ultrahigh-dimensional data, the number of
CNV segments can be very small and the CNV segments can be very short, which impose
major difficulties for detecting and identifying these segments. Note that changes in DNA
copy number have also been highly implicated in tumor genomes, most are due to somatic
mutations that occur during the clonal development of the tumor. The copy number changes
in tumor genomes are often referred to as copy number aberrations (CNAs). In this paper,
we focus on the CNVs from the germline constitutional genome. An important application is
the detection and identification of CNVs based on data generated by genome-wide single
nucleotide polymorphism (SNP) genotyping arrays for the germline DNA samples from
normal tissues. There are about 500,000 to 1,000,000 numerical observations along the
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human genome of an individual; the number of CNV segments, however, is usually smaller
than 100, and the CNV segments mostly range less than 20 SNPs (Zhang et al. 2009). In
order to identify these CNVs for a given individual, it is important to first understand how
the number of CNVs, the segment length and signal intensity affect the statistical power of
CNV detection and identification. More discussion and background on CNV detection are
given in Section 4.3. Similar problems arise in other fields including, for example, detecting
moving objects (NRC 1995), detecting fissures in materials (Mahadevan and Casasent
2001), and identifying streams and roadbeds (Agouris et al. 2001). A common feature of
these applications is that very sparse signals are hidden in a large amount of noise.

Motivated by the problem of CNV detection and other applications mentioned above, we
consider in this paper the general problem of detecting sparse and short segments from a
long sequence of noisy data. In particular, we assume that these signals are composed of
several short linear segments, and our goals are to detect whether signal segments exist and
identify the locations of these segments when they do exist. More specifically, we consider
the following model where we observe {Xi, i = 1, …, n} with

(1)

Here q = qn is the unknown number of the signal segments, possibly increasing with n, I1, …
Iq are disjoint intervals representing signal segments with unknown locations, µ1, … µq are

unknown positive means, σ is an unknown noise level, and . Let = n be the
collection of all signal segments. We formulate the detection and identification problem as
the following testing problem

and if the alternative is true, identify the set of signal segments 

The problem of detecting and identifying sparse and short signal segments pertains to
statistical research in several areas. Without segment structure, it is closely related to large-
scale multiple testing, which has motivated many novel procedures such as false discovery
rate (FDR) (Benjamini and Hochberg 1995) and higher criticism thresholding (HCT)
(Donoho and Jin 2008). Arias-Castro et al. (2005) considered the problem of detecting the
existence of signals when there is only one signal segment. This is a special case of the
detection part of our problem with q = 1. They showed that the detection boundary in this

case is , i.e., the signal mean should be at least  in order for a
signal with length |I| to be reliably detected and that the generalized likelihood ratio test
(GLRT) can be used for detecting the segment. A closely related result in Section 6 of Hall
and Jin (2010) demonstrates the detection boundary under a wide range of signal sparsity
when signals appear in several clusters. Further, Arias-Castro et al. (2005) and Walther
(2009) studied detection of geometric objects and spatial clusters in 2-dimensional space,
respectively, and Arias-Castro et al. (2008) provides detection threshold for the existence of
an unknown path in a 2-dimensional regular lattice or a binary tree.

The problem we consider here is also related to the problem of change-point detection, since
it involves shifts in the characteristics of a sequence of data. Change-point detection in a
single sequence has been extensively studied. See Zack (1983) and Bhattacharya (1994) for
a review of the literature. Olshen et al. (2004) used the likelihood ratio based statistics for
analysis of DNA copy number data, and Zhang and Siegmund (2007) proposed a BIC-based
model selection criterion for estimating the number of change-points. Olshen et al. (2004)
further developed an iterative circular binary segmentation procedure for segmentation of a
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single sequence and showed promising results in analysis of DNA copy number data,
whereas Zhang et al. (2008) extended the problem of change-point detection from single
sequence to multiple sequences in order to increase the power of detecting changes.

In this paper, we consider the challenging setting where the true signals are very sparse in
the sense that both the number and the lengths of signal segments are very small. We present
a statistical characterization of identifiable region of a signal segment, where it is possible to
separate the segment from the noise. Furthermore, we propose a likelihood ratio selection
(LRS) procedure to identify the signal segments, and show that the LRS provides consistent
estimates for any signal segments in the identifiable region. In other words, the LRS
procedure is an optimal procedure, which can reliably separate signal segments from noise
as long as the signal segments can be estimated.

Our results show that, when the segment structure of signals is taken into account, much
weaker signals can be identified, and the overall power is significantly improved. For
unstructured sparse signals, it follows from Donoho and Jin (2004) and Jeng (2009) that the

mean needs to be at least  in order for the signals to be identifiable. On the other
hand, for structured signals with one segment of length |I|, the detection threshold is

 (Arias-Castro et al. 2005). Since identifying the locations of signals is more
difficult than detecting their existence, the identification threshold for the structured signals

should be at least . In this case, we find the identification threshold to be the
same as the detection threshold in Arias-Castro et al. (2005) when signals are very sparse.
However, the fundamental difference between our procedure and that of Arias-Castro et al.
(2005) is that, in addition to detecting the existence of signals, our proposed LRS procedure
accurately identifies the locations of the segments. In addition, we extend the setting of
Arias-Castro et al. (2005) to more than one segment. Our study also provides a novel
connection between recent developments in sparse signal detection and change-point
problems.

The rest of the paper is organized as follows. We first introduce the LRS procedure for
identifying the sparse linear segments in the data in Section 2. We then present the statistical
characterization of the identifiable region and the asymptotic optimality results of the LRS
in Section 3. Monte Carlo simulations are demonstrated in Section 4 to compare the
performance of LRS with those of FDR and HCT. We also present real data results from
applying the LRS procedure to analyzing a CNV data from a trio of three individuals. We
conclude in Section 5 with some further discussions. The proofs are relegated to the
Appendix.

2 LIKELIHOOD RATIO SELECTION
As mentioned in the introduction, our goal is to detect and identify the signal segments
based on the sample {X1, …, Xn} under the model (1). In this section we introduce a
procedure that selects candidate intervals based on their likelihood ratio statistics. For any
given interval Ĩ ⊆{1, 2, …, n}, define its likelihood ratio statistic as

Under the null hypothesis, X(Ĩ) follows the standard normal distribution for any Ĩ. With
sample size n, there are n2 candidate intervals in total, and searching through all of them is
computationally expensive if n is large as in many high-dimensional applications. Motivated
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by applications such as the CNV analysis and to reduce the computational complexity, we
utilize the short-segment structure of signals and only consider candidate intervals with
length less than or equal to L, where L is some number much smaller than n. We denote the
set of such candidate intervals as n(L) with cardinality n × L. We argue that the selection of
L should satisfy the following condition:

(2)

where s̄ is the maximum signal length and d is the minimum gap between signals, i.e.,

Condition (2) requires L to be larger than the maximum length of the signal segments, so
that each signal segment is covered by some candidate intervals. On the other hand, L
should be smaller than the shortest gap between signal segments, which ensure that no
candidate reaches more than one signal segment. For applications such as the CNV analysis,
L can be easily selected from a wide range since signals are very rare compared to the
amount of noise. In CNV data, the lengths of signal segments are usually less than 20 SNPs,
while the distances between deletion/amplification segments are rarely below 1000 SNPs.
We show later in Section 4 that different choices of L only result in negligible differences in
selection accuracy as long as condition (2) is satisfied. We mention that using smaller L
involves less computational complexity and is, thus, preferred. On the other hand, if L is
selected too small (< s̄) and some segments are estimated piece by piece, an easy remedy is
to combine the estimates that are very close to each other into one piece.

Based on extreme value theory of normal random variables, we have

with probability tending to 1 under the null hypothesis. So a reasonable threshold for
significance testing is

(3)

Our algorithm first finds all the candidate intervals with the likelihood ratio statistics greater
than tn. Intuitively, the proper estimates of signal segments should be the candidate intervals
whose likelihood ratio statistics achieve the local maximums. Thus, the LRS procedure
iteratively selects the interval from the candidate set with the largest likelihood ratio
statistic, and then delete the selected interval and any other intervals overlapping with it
from the candidate set. In the following, we present our procedure in detail for a chosen
window size L.

Step 1: Let n (L) be the collection of all possible subintervals in {1, …, n} with interval
length less than or equal to L. Let j = 1. Define 1D540(j) ={Ĩ ∈ n(L): X(Ĩ) > tn}.

Step 2: Let Îj = arg maxĨ∈ (j)X(Ĩ).

Step 3: Update (j+1)= (j)\{Ĩ ∈ (j):Ĩ ∩ Îj ∅}.

Step 4: Repeat Step 2–4 with j = j + 1 until (j) is empty.

Define the collection of selected intervals as 𝕀 ̂= {Î1, Î2, …}. If 𝕀 ̂ ≠ ∅, we reject the null
hypothesis and identify the signal segments by all the elements in 𝕀 ̂.
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Note that the above LRS procedure is designed for positive signal segments (µj > 0). When
both positive and negative signal segments exist, a simple modification is to replace the X(Ĩ)
in step 1 and 2 with |X(Ĩ)|.

3 ASYMPTOTIC OPTIMALITY OF LRS
In this section, we show that under certain conditions, LRS can reliably separate signal
segments from noise whenever the signal segments can be estimated. This property is what
we call the optimality of LRS.

To elucidate the exact meaning of optimality, we first introduce a quantity to measure the
accuracy of an estimate of a signal segment. Recall that I is the collection of signal
segments. Denote 𝕀 ̂ to be the collection of interval estimates. For any Î∈ 𝕀 ̂ and I ∈  define
the dissimilarity between Î and I as

(4)

where | · | represents the cardinality of a set. Note that 0 ≤ D(Î, I) ≤ 1 with D(Î, I) = 1
indicating disjointness and D(Î, I) = 0 indicating complete identity. Similar quantity has
been used in Arias-Castro et al. (2005) to measure the dissimilarity between intervals.

Definition 1
An identification procedure is consistent for a subset Ω ⊆ if its set of estimates 𝕀 ̂ satisfies

(5)

for some δn = o(1). Obviously, the first term on the left measures the type I error. The
second term, which is the probability that some signal segments in Ω are not ‘substantially
matched’ by any of the estimates, essentially measures the type II error.

Definition 2

For any fixed Ij ∈  if there exists a threshold  such that when  there exists some

identification procedure that is consistent for Ij, and when  no such procedure exists,

we call the regions corresponding to  and  the identifiable and unidentifiable
regions of Ij, respectively.

We shall call procedure an optimal procedure if it is consistent for all the segments in their
identifiable regions.

In this section, we demonstrate the optimality of LRS under condition (2) on L and
additionally

(6)

L that satisfies (6) can, for example, be of order loga n, a > 1. Condition (2) and (6) can both
hold in the situations that we are interested in, where signals are very sparse. We note that a
consistent procedure also consistently estimates the true break points, which is usually of
great interest in practical applications. This is because the dissimilarity measure D(Î, I) is
closely related to the measure of distance between the estimated break points and the true
break points. For two intervals I and Î with dissimilarity D(Î, I) < 1, define
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(7)

Note that BP(Î, I) is the sum of distances between the lower and upper break points and their
respective estimates. Then, it is easy to show that

We also assume in this section that the variance σ2 is known and, without loss of generality,
is set to be 1. In real data analysis, σ can be easily estimated from the data since signals are
sparse. More discussion on estimating σ is given in Section 5.

3.1 Optimality of the LRS when q = 1
In order to present all the basic theoretical elements in their simplest and cleanest form, we
start with q = 1 and define I = I1 and µ = µ1. The following theorem provides the consistency
result of LRS. The proof is given in the Appendix.

Theorem 1—Fix q = 1. Assume model (1), conditions (2) and (6). If

(8)

for some ϵn such that , then the LRS is consistent for I, and the set of
estimates𝕀 ̂ satisfies

(9)

and

(10)

for any δn such that .

The result in Theorem 1 implies that the identification threshold  is smaller than or

equal to . In order to specify ρ*, we also need to derive a good lower bound for
ρ*. By Theorem 2.3 in Arias-Castro et al. (2005), it follows that given log s̄ = o(log n),
which is implied by (2) and (6), no method can reliably detect the existence of the signal

segment when . Since identifying the location of a signal segment is more
difficult than detecting its existence, no identification procedure can be consistent when

. Therefore, ρ* should be larger than or equal to . By
summarizing the above, we have the following corollary on the exact level of ρ* and the
optimality of LRS.

Corollary 3.1—Fix q = 1. Consider model (1) and assume that the conditions (2) and (6)

hold. Then the identification threshold ρ* is , and no identification procedure

for I is consistent when . On the other hand, the LRS is optimal in a sense

that it is consistent for I when  for some ϵn such that

.
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The proof of Corollary 3.1 is straightforward and thus omitted.

3.2 Optimality of LRS when q > 1
We now consider the general case with q > 1 and assume

(11)

which says that the number of signal segments is relatively very small. Define

for some ϵn such that  and

Note that Ω+∪Ω− asymptotically equals to the whole set {I1, …, Iq} when ϵn = o(1). We
show that no procedure is consistent for Ω−. But it is possible for Ω+, and LRS is consistent
for Ω+.

Theorem 2—Consider model (1) and assumes that the conditions (2), (6) and (11) hold.
Then LRS is consistent for Ω+, and no procedure is consistent for Ω−.

In addition to being consistent for Ω+, LRS has a desirable property of estimating the
segments in an order that reveals the relative signal strength of the segments. It is clear that
the strength of a signal segment depends on its length and mean level. We can order the

segments in Ω+ as I(1), …, I(q1) such that , and we show that
under some mild conditions on the separation of signal strength, LRS first identify I(1), then
I(2), and so on. This additional information can be important to practitioners and provides a
rank order of the segments identified by the LRS procedure.

Theorem 3—Consider model (1) and assume that the conditions (2), (6) and (11) hold. In
addition, assume

(12)

for some δn such that . Then LRS is consistent for Ω+

and identifies the elements in Ω+ in the order of I(1), … , I(q1).

Remark: Condition (12) requires that the signal strengths of segments are well separated.
Otherwise, it is intuitively clear that the order of the segments being identified may change.

3.3 Comparison with identifying unstructured signals
When signals do not compose of segments or any other specific structures, we have the
following standard model for a sequence of high-dimensional data:

(13)
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where In is an n×n identity matrix and ℱs,µ is the collection of n-dimensional vectors with at
most s entries equal to µ > 0 and other entries equal to 0. The parameters s, µ, and the
locations of the nonzero entries are unknown. Compared to model (1), the current model
does not include any information on signal structure, so that consistent identification should
be more difficult. This is shown in the following lemma.

Lemma 3.1—Assume model (13) with log s = o(log n), then when , no
identification procedure is consistent for = {i : θi ≠ 0}.

Lemma 3.1 follows directly from Theorem 5 in Genovese et al. (2009) when log s = o(log
n). The result implies that the identifiable regions for unstructured signals cannot be broader

than . Comparing this result with the identifiable regions in Corollary 3.1, which

is , we see a clear advantage of the latter if signals have segment structure
with |I| > 1. Note that similar to log s = o(log n) in Lemma 3.1, log s ̄ = o(log n) is implied by
conditions (2) and (6) in Corollary 3.1. So the comparison here is meaningful. By utilizing
the segment structure, LRS is able to reliably identify much weaker signals than the popular
methods such as the FDR. More comparisons are demonstrated in Section 4.

4 NUMERICAL STUDIES
4.1 Simulation Studies

In this section, we study numerical properties of the LRS via Monte Carlo Simulations. The
sample size is set to be n = 5 ×104, q = 5 locations of signal segments are chosen randomly,
and the length of each signal segment is set to be s = 10. We set the signal mean µ = 1, 1.75,
and 2. The data Xi, i = 1, …, n, is generated from N(A, 1), where A = µ if i is located on a
signal segment and 0 otherwise. We repeat each simulation example 50 times.

For each simulated data set, we perform the LRS using L = 20, which satisfies the condition

(2). Further, we set the threshold tn at . Note that the identifiable threshold

for µ in Corollary 3.1 is . We measure the estimation accuracy of LRS
by three summary statistics: Dj and BPj measure how well a signal segment and particularly
its two endpoints are estimated, and #O measures the number of over-selections.
Specifically, for a signal segment Ij, define

where D(Î, Ij) and BP(Î, Ij) are defined as in (4) and (7). It is clear that smaller Dj and BP(Î,
Ij) corresponds to better matching between Ij and some estimate Î ∈ 𝕀 ̂, and Dj = 0 if and only
if Ij = Î. The summary statistic #O is defined as

which is a non-negative integer, and #O = 0 if there is no over-selected intervals. We present
in Table 1 the medians of D1, … ,Dq, BP1, …,BPq, and #O over 50 replications. To estimate
the standard error of the medians, we generate 500 bootstrap samples out of the 50
replication results, then calculate a median for each bootstrap sample. The estimated
standard error is the standard deviation of the 500 bootstrap medians. The results indicate
that the LRS quickly gains power after µ passes the threshold 1.47 and becomes more
accurate as µ further increases. These results also indicate that the LRS can estimate the
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exact segmental breakpoints very well when µ passes the theoretical threshold, as reflected
by the small values of the BP statistics.

Next, we show the order of signal segments being estimated by LRS. We use the same
setting as in the previous example, except that the signal mean of the 5 segments are set
differently as µ1 = 4, µ2 = 3.5, µ3 = 3, µ4 = 2.5, µ5 = 2, and the segment lengths s = 10, 15 are
employed for each segment. According to Theorem 3, the order of the segments being
estimated should be I1, I2, I3, I4, I5. In Table 2, we show the median of the estimation orders
for each segment in 50 replications and the number of times when all segments are estimated
in the correct order. In detail, let Aj be the vector of estimation orders of Ij in 50 replications
and Nj = median(Aj). We report Nj for j = 1, …, q and #OC, the number of times when I1 is
estimated first, then I2, and so on.

The results in Table 2 clearly demonstrate that segments with stronger signal strength are
estimated earlier, and the estimation order of each segment (represented by Nj) is very stable
over 50 replications. On the other hand, the order consistency of all segments (represented
by #OC) is harder to be achieved, and the result improves as the difference between signal

strengths increases. The signal strength is a combination of effects of , so that,
when s increases from 10 to 15, the difference between signal strengths is multiplied by

.

We now compare the LRS procedure with two other popular procedures for selecting
significant signals, the FDR and the HCT procedures, both of which do not consider
segment structure of the signals. The FDR procedure is carried out by first calculating the p-
values of observations as pi = P(N(0, 1) > Xi), 1 ≤ i ≤ n, and then performing the BH
procedure in Benjamini and Hochberg (1995). Note that the unidentifiable region for

unstructured signals is  as shown in Lemma 3.1. We conjecture that the

successful region for FDR and HCT is . In order to compare these three
procedures, we simulated data with signal mean set to be µ = 2, 4, and 6. Since FDR and
HCT procedures do not provide interval estimates as LRS does, the measures of Dj and #O
cannot be applied. Instead, we report the median of the true positives (TP), which counts the
number of correctly identified signals, and that of the false positives (FP), which counts the
number of incorrectly selected noises.

Table 3 presents results that clearly demonstrate the advantages of using the LRS procedure.
When µ = 2, which is greater than the bound 1.36 for LRS and less than 4.65, FDR has no
power, HCT has some power but severe over-selection, while LRS selects 39 out of 50
signals and controls the number of false positives to be less than 2. As µ increases, the
performances of FDR and HCT improve, while LRS remains very accurate. The simulation
results clearly verify the advantage of LRS achieved by utilizing segment structure of the
signals.

Our last set of simulations aim to evaluate the effect of possible spatial correlations on the
LRS procedure by generating the noises from a multivariate normal distribution with the
correlation matrix Σ specified by Σi,j = ρj−i, for ρ = 0.5, 0.7 and 0.9. All the other parameters
are set to the same values as those in the first example with µ=2.0. Table 4 shows that the
LRS procedure is not very sensitive to the spatial correlations of the noises, unless the
correlations are very high. As we see in our analysis of real CNV data set in Section 4.3, the
autocorrelations of the noises are very small, we therefore expect the spatial correlations
should have no or little effect on the LRS procedure for real applications.

Jeng et al. Page 9

J Am Stat Assoc. Author manuscript; available in PMC 2013 March 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.2 Sensitivity to Choice of L
The parameter L determines the computational complexity of LRS, so that smaller value of
L is preferred as long as condition (2) is satisfied. We study the effect of L on estimation
accuracy using the same simulation setup as in Section 4.1 with µ = 2. and present the results
in Table 5.

Table 5 shows that the estimation result is robust with respect to the choice of L as long as
condition (2) is satisfied. When L < s̄, estimation accuracy deteriorates as no candidates
cover a whole segment and the LRS does not efficiently utilize the segment structure. A
simple remedy is to increase the value of L, which will cost more computation complexity.
Another simple remedy is to combine the identified intervals that are very close to each
other. A more serious problem may occur when L > d. Then it is possible to have long
interval estimates that cover more than one signal segments, and the adjacent signal
segments cannot be distinguished. However, we note that in applications, such as CNV
analysis, signal segments are rare and randomly located, and the value of d is usually large.
In the simulation example with n = 5 × 104, s = 10 and q = 5, d is observed to be above 1000
in all 50 replications.

Remark:We note that the variance σ2 is pre-specified in theory and simulation analysis
above. In practice, the noise level σ is often unknown and needs to be estimated. Under the
sparse setting of the present paper, σ can be easily estimated. A simple robust estimator is
the following median absolute deviation (MAD) estimator:

Alternatively, other standard estimation procedures such as the MLE, can be applied. In
particular, under the sparsity condition in Section 3, (log q +log s̄= o(log n)), the
convergence rate of the MLE , which is much faster than the convergence rates in
Section 3 for segment identification with known σ. In numerical analysis, either the MAD
estimator or the MLE can be used.

4.3 Application to CNV Identifications
Copy number variants refer to duplication or deletion of a segment of DNA sequences
compared to a reference genome assembly. Availability of high-throughput genotyping
technology such as the Illumina HumanHap550 BeadChip has greatly facilitated the
identification of such genomic structural variations in kilo-base resolution (Feuk et al.
(2006); Eichler et al. (2007)). Such CNVs are not so rare in the population and have been
reported to be associated with several complex human diseases such as autism (Sebat et al.
2007), bipolar disorder (Lachman et al. 2007), cardiovascular disease (Pollex and Hegele
2007), and neuroblastoma (Diskin et al. 2009). It is therefore, very important to have
computationally efficient statistical methods to detect such copy variants.

We demonstrate our proposed method using the genotyping data for a father-mother-child
trio from the Autism Genetics Resource Exchange (AGRC) collection (Bucan et al. 2009),
genotyped on the Illumina HumanHap550 array. For each individual and each SNP, our data
is the measurement of normalized total signal intensity ratio called the Log R ratio (LRR),
which is calculated as log2(Robs/Rexp) where Robs is the observed total intensity of the two
alleles for a given SNP, and Rexp is computed from linear interpolation of canonical
genotype clusters (Peiffer et al. 2006). For each individual, we have a total of 547,458 SNPs
over 22 autosomes, and the numbers of SNPs on each chromosome range from 8,251 on
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chromosome 21 to 45,432 on chromosome 2. To assess the levels of spatial correlations, we
calculated the first- and second-order autocorrelations for the LRRs along the chromosomes
and obtained the values of 0.095 and 0.085 for the child, 0.043 and 0.028 for the father, and
0.075 and 0.059 for the mother, respectively. This indicates that the spatial correlations
among noises are indeed very weak. For each individual, our goal is to identify the CNVs
based on the observed LRRs. We chose to use data from a trio in order to partially validate
our results since we expect some CNVs are inherited from parents to child.

We first standardize the observed LRRs using MLE of mean and variance of the noise.
Since both duplication and deletion can occur in a CNV region, a simple modification of
taking absolute value of the likelihood ratio should be added in the LRS procedure, i.e.
replace the X(Ĩ) in step 1 and 2 with |X(Ĩ)|. Also, because the numbers of SNPs in observed
CNVs are usually smaller than 20 SNPs, we chose L = 20 in our LRS procedure. In addition,
we only consider CNVs with 4 or more SNPs. The LRS procedure identified 18, 28 and 25
CNVs in father, mother and the child, respectively. The sizes of the identified CNV regions
range from 4 to 20 for all three individuals, with most of them smaller than 20. Figure 1
shows the CNV segments with the likelihood ratio test scores (xstar) for the segments that
the LRS algorithm selected for the child. We also plotted the CNV segments identified in
the parents if they overlap with the CNV segments of the child. It is interesting to note that
many of the CNV segments identified in the child were also observed in one of the parents,
further indicating that some CNVs are inheritable and our LRS algorithm can effectively
identify these CNVs. We examined the segments that were identified in the child only (i.e.,
the De novo CNVs) and noted that most of these segments are real. For example, plot (a)
and (b) of Figure 2 presented the observed LRR values for the CNV regions that were
identified in the child, but not in either of the parents. Plot (a) clearly indicates two CNVs
identified by the LRS procedure. Further examination of this region indicates that there is in
fact one longer CNV in this region, which is longer than 20. The LRS algorithm identified
these two CNVs because L was set to 20 in order to save the computation time (see our
discussion on the choice of L in Section 4.2), so that only intervals ≤ 20 were considered. As
a common practice, one can always perform certain post-processing of the results to merge
the close segments. The LRR values in plot (b) are not very large, however, most of the
SNPs have negative LLR values. Comparing to the neighboring SNPs, it seems that there is
indeed a change in LRR values.

As a comparison, the hidden Markov model (HMM)-based method as implemented in
PennCNV package (Wang et al. 2007) identified 16, 18 and 17 CNVs in father, mother and
the child, respectively. If the trios are considered together and the familial transmission of
the CNVs is also considered, the PennCNV identified 21, 21 and 20 CNVs in the father,
mother and the child, respectively. Overall, we see that the LRS procedure identified almost
all the CNVs that were identified by the HMM-based procedure. However, the LRS
identified a few more CNVs that are missed by the hidden Markov model-based method. As
an example, the LRS procedure identified an identical deletion CNV of 5 SNPs in both the
father and the child on chromosome 12, but the HMM method failed to identify this CNV.
The plot (c) of Figure 2 shows the observed LLR for the SNPs in this CNV region, clearly
indicating that the existence of a CNV in this region. Another example includes a deletion
CNV with 6 SNPs that was not identified in the child by the HMM approach (see plot (d) of
Figure 2). Note that the LLR of all these 6 SNPs are negative in this CNV region, further
indicating that this CNV is likely to be true. However, this of course needs further biological
validation.
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5 Discussion
We have studied the problem of detecting and identifying sparse short segments in a long
one dimensional sequence of data with Gaussian noise. The conditions for the existence of a
consistent identification procedure were given. The LRS procedure was developed and
shown to be optimal in selecting the true segments. The simulation results have clearly
demonstrated that the proposed procedure can greatly outperform other popular methods
such as the FDR or HCT when the segmental features of the signals are present. We
demonstrated the LRS procedure in an application that identifies CNVs based on high-
density SNP data, showing that our procedure can be more powerful than other popular
methods such as the HMM-based methods.

The optimality of LRS is essentially guaranteed by its close relationship to generalized
likelihood ratio test (GLRT), which can be computationally very expensive when dealing
with high-dimensional data. The LRS procedure utilizes the short-segment structure of the
data by only considering short intervals as candidates, which reduces the order of
computation complexity from n2 to n × L. This large reduction makes LRS an efficient
method for handling ultrahigh-dimensional signal detection problem.

In the present paper we focused on the optimal segment identification with Gaussian noise.
Another important topic is the development of efficient procedures and theoretical results
for segment identification with general noise. Moreover, an interesting problem for future
research is to develop a similar framework for segment identifications using data from
multiple sequences when one can assume that the segment starts at the same location at least
over a subset of these sequences (Zhang et al. 2008). This can potentially increase the power
of detecting the true segments that are shared across multiple samples.
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APPENDIX: PROOFS
In this section, we provide the proofs for the theorems and lemma presented in this paper.
Denote PA(B) as the probability of B given A.

Proof of Theorem 1
We show (9) first. Recall that for any interval Ĩ,

The construction of 𝕀 ̂ by LRS implies that

.

Next, we show (10). Recall (1) = {Ĩ ∈ n(L) : X(Ĩ) > tn}. Define the following events:

It is easy to see that

(14)

Now we calculate the above two terms respectively. By definition of (1),

(15)

under condition (8). For the second term, define

Then given A, Bc implies Î1 ∈ n(L), which, by the definition of Î1, implies the existence of
some Î ∈ n(L) such that X(Ĩ) ≥ X(I). Denote

So we have

(16)

Since both X(Ĩ) and X(I) are normal random variables, we can write
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Where

Note that LR1, LR2 and LR3 are independent, then

Where

Since M(Ĩ, I) < 1 − δn implies

then for any Ĩ ∈ n(L),
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On the other hand, the cardinality of 0 is bounded by ΣĨ∈ n(L):Ĩ∩I=∅ 1{X(Ĩ) > tn}, which
converges to ΣĨ∈ n(L):Ĩ∩I=∅P(X(Ĩ)>tn) exponentially fast. Therefore, under condition (8), we
have

(17)

and

(18)

where  by the range of δn. Combine (16), (17), and (18), we have

(19)

.

Finally, (10) follows by summing up (14), (15), (19) and the range of ϵn.

Proof of Theorem 2
For the result in set Ω−, we apply a similar regrouping idea as in Arias-Castro et al. (2005).
Assume (A) only segments in Ω− exist, and they are in {kjs̄+1, …, (kj+1) s̄} for some k1, …
kq1 . We show that no procedure is consistent under this situation. This is enough to show
that no procedure is consistent in Ω− without assuming (A). Let

where . Note that θk = 0 at all but q2 randomly chosen locations. Since log q2 =
o(log n) is implied by condition (11), then result follows by Lemma 3.1.

For the result in set Ω+, it is enough to show

(20)

and

(21)

for ϵn and δn such that

We extend the proof of Theorem 1 to the case q1 > 1. Obviously, (20) can be derived by the
same argument for (9). Now we consider (21). Note that all the elements in n(L) can not
reach more than one signal segments. Therefore, the construction of 𝕀 ̂ implies that the
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accuracy of estimating any Ij ∈ Ω+ is not influenced by the estimation of other elements in
Ω+. (Other elements can only influences the order of Ij being estimated.) This means that the
accuracy of estimating any Ij ∈ Ω+ is equivalent to the case when only one segment Ij exists.
Define the following events:

Then we have

(22)

By similar arguments leading to (15) and (19) in proof of Theorem 1, we have

(23)

Then (21) follows after combining (22) and (23).

Proof of Theorem 3
For the result of LRS in set Ω+, it is enough to show

(24)

and

(25)

for ϵn and δn such that

Note that the order of segments being estimated is fixed in (25).

Obviously, (24) can be derived by the same argument for (9). Now consider (25). Define the
following events:

Then we have

(26)
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.

Since the signal segments are not too close to each other, by the choice of L in (2), none of
the candidates in (1) reaches more than one signal segments. This means that given A1,B1,
…,Aj−1,Bj−1, I(j) has not been deleted in the first j −1 loops. So by similar argument leading
to (15), we have

(27)

.

Some modifications are needed to derive a similar result as (19). Given Aj, we have X(Îj) ≥
X(I(j)) since I(j) is not deleted in the first j − 1 loops. Define

Then given , which further implies the existence of some 
such that X(Ĩ) ≥ X(I(j)). Denote

So we have

(28)

Rewrite X(Ĩ) − X(I) = LR1 + LR2 + LR3 the same way as in the proof of Theorem 1.
Consider the set Ĩ\Ĩ ∩ I(j). Unlike in the q = 1 case, where this set includes only noise, here it
can overlap with other signal segments, which are I(j+1), …, I(q1) and I(1)\(Ĩ1 ∩ I(1)), …,
I(j−1)\(Ĩj−1 ∩ I(j−1)). Note that for any k ∈ {1, …, j − 1},

Then, given A1, …, Bj−1, Aj, LR2 has mean value
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when Ĩ∩I(k) ≠ ∅ for k ≠ j, and ν2 = 0 otherwise. Correspondingly, given 
implies that LR1 + LR2 + LR3 has mean value

By the fact that  in Ω+ and condition (12), we further get

So, in set Ω+, we have

(29)

and

(30)

Combine (28), (29), and (30), we have

(31)

.

Finally, (25) follows by summing up (26), (27), and (31).

Jeng et al. Page 19

J Am Stat Assoc. Author manuscript; available in PMC 2013 March 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Summary of results of LRS for CNV detection for a trio: the LR test statistics for the CNV
segments identified by the proposed LRS procedure for the child, sorted by the absolute
values of the likelihood ratio statistics. One segment with large statistics (−116.70 for the
child) is truncated as −40 for better view.
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Figure 2.
LRR data for the CNV segments identified in the child. Top panel: CNV segments identified
in the child, but not in either of the parents. (a) the two CNV segments on chromosome 3
and (b) the CNV segment on chromosome 1 that were identified in the child but not in either
of the parents. Bottom panel: CNV segments identified by the LRS procedure but missed by
the HHM method. (c) CNV segment on a chromosome 12 region and (d) CNV segment on a
chromosome 4 region that were identified by LRS procedure but missed by the hidden
Markov model. The CNV is marked by the two vertical dashed lines.
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