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Abstract

In the olfactory bulb, lateral inhibition mediated by granule cells has been suggested to modulate the timing of mitral cell
firing, thereby shaping the representation of input odorants. Current experimental techniques, however, do not enable a
clear study of how the mitral-granule cell network sculpts odor inputs to represent odor information spatially and
temporally. To address this critical step in the neural basis of odor recognition, we built a biophysical network model of
mitral and granule cells, corresponding to 1/100th of the real system in the rat, and used direct experimental imaging data
of glomeruli activated by various odors. The model allows the systematic investigation and generation of testable
hypotheses of the functional mechanisms underlying odor representation in the olfactory bulb circuit. Specifically, we
demonstrate that lateral inhibition emerges within the olfactory bulb network through recurrent dendrodendritic synapses
when constrained by a range of balanced excitatory and inhibitory conductances. We find that the spatio-temporal
dynamics of lateral inhibition plays a critical role in building the glomerular-related cell clusters observed in experiments,
through the modulation of synaptic weights during odor training. Lateral inhibition also mediates the development of
sparse and synchronized spiking patterns of mitral cells related to odor inputs within the network, with the frequency of
these synchronized spiking patterns also modulated by the sniff cycle.
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Introduction

Lateral inhibition is one of the critical mechanisms underlying

responses to sensory neurons [1], but the detailed mechanisms at

the network level in the olfactory system are not clear [e.g. 2]. In

the Limulus eye [1] and the cat retina [3] it mediates contrast

enhancement between areas of differing illumination. It has also

been found in the auditory pathway (reviewed in [4]) and the

somatosensory system [5]. In the olfactory system, the clearest

evidence for lateral inhibition is the interaction between mitral

cells in the olfactory bulb, mediated through inhibitory granule

cells [6–7] and periglomerular cells [8]. The possible underlying

circuits and their computational properties have been widely

investigated experimentally [9–11] especially in terms of odor

selectivity and dynamics of mitral cell responses [12–14]. A major

problem in interpreting the experimental findings in vivo is that

they are usually obtained in single cells or in small randomly

selected sets of cells, whereas a clear understanding of fundamental

processes, such as the spatio-temporal organization of the mitral-

granule cell network, requires simultaneous recording from a

relevant subset of cells activated by any given odor. The functional

effects of network-wide processes, in relation to the patterns of

glomeruli activated by different odors, therefore remain relatively

unknown and extremely difficult to explore experimentally.

To gain insight into this problem we have focused on mitral-

granule cell interactions, the best understood circuit in the

olfactory bulb. For this purpose we have constructed a biophysical

network model of multicompartment mitral and granule cells with

connections similar to those in the real olfactory bulb. As input we

have used the activation of individual glomeruli by a large set of

odors identified by intrinsic imaging [15]. This model has allowed

us to investigate several fundamental questions: 1) How does the

network self-organize and modulate mitral cell responses to

different odor molecules? Lateral inhibition has been suggested

to be the primary mechanism. However, experimentally the focus

is almost exclusively on individual mitral and granule cell

interactions, and whether lateral inhibition is able to shape

network-wide connectivity is not known. 2) How does the precise

timing of mitral cell action potentials subject to lateral inhibition

relate to the sniff cycle (as shown in [16])? This appears to be one

of the critical processes affecting responses in awake mice [2], but

the mechanisms responsible for the firing behavior at the network

level are not understood. 3) Why is the olfactory bulb network

connectivity sparse and distributed (as shown in [10] and [17])?

There are no experimental data for describing the underlying

mechanism. We have previously proposed a physiologically

plausible process using a small network with simulated odors

and all-to-all possible connectivity [18]. Its validity for more
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realistic odor inputs, network size, and intrinsically sparse

connectivity required testing, which was carried out in the present

study.

The results show that: 1) Lateral inhibition mediated through

broadly tuned granule cells results in mitral cell output that reflects

the spatial distribution of the glomerular input and the temporal

structure of the inhibitory processing. Together, the mitral-granule

cell circuit operates to generate a unique spatiotemporal repre-

sentation for each odor. 2) Odor identity can emerge from a single

sniff as a specific distribution of spikes in which each mitral cell

makes its own contribution according to the specific type of input

it receives and the network of granule cells it activates. 3) The

mitral,-.granule cell interactions through dendrodendritic syn-

apses can account for the distributed network connectivity

observed experimentally. We discuss how these specific predictions

from the model provide new hypotheses for experimental testing.

Results

The input to the network model was based on experimental

data obtained by Mori et al. (2006) from 17 male rats using

intrinsic imaging of activity induced in the olfactory glomeruli by

different homologous series of chemically related odor molecules.

That report showed that a given odor molecule tended to elicit

glomerular responses in a given part of the olfactory bulb, and that

responses to related odor molecules tended to be near each other.

The authors defined these related glomeruli as a ‘‘cluster’’;

equivalent to ‘‘domain’’ as used by other authors [19–20].

Different clusters, labeled from A to I located on the dorsal and

lateral surfaces of the rat olfactory bulb, are summarized in Fig. 1A.

The present model of the mitral-granule cell network that would

process the inputs from these clusters, assumes preprocessing by

local glomerular circuits (reviewed in [21]). We began by

rendering the 74 contiguous clusters of A through D in a two-

dimensional map as shown in Fig. 1B. While many mitral cells

have been visually labeled, a 3D reconstruction of the mitral cells

belonging to a glomerulus, and moreover, the dendritic relation-

ships between mitral cells of different glomeruli, is not known.

Therefore, a complete 3- and 2-dimensional reconstruction of

mitral cell interactions via the lateral dendrites is unavailable. To

obtain insight into the rules of connectivity, we simplified the

relations to 1 dimension. To do this, we projected the 74 glomeruli

onto a single track that passed close to most of them as shown by

the bold line in Fig. 1B. Having the track complete a circle also

avoided edge effects in the model network. We then represented

the population of mitral and granule cells within these clusters. It

has been estimated [22–23] that in the rat the glomeruli, mitral

cells and granule cells are in a ratio of approximately 1:15:500. To

remain computationally tractable, we used a ratio of 1 glomerulus,

5 mitral cells and 100 granule cells. This enabled us to analyze the

mitral-granule interactions without having it overwhelmed by the

sheer numbers of mitral and especially granule cells. The 74

glomeruli thus corresponded to 370 mitral cells and 7400 granule

cells. We increased the numbers to 500 mitral and 10,000 granule

cells by randomly adding the cells between the clusters. Their

somas were laid out using {X,Y} coordinates reflecting the spatial

location of the real glomeruli in the dorsal surface investigated in

the experiments (Fig. 1B), and topologically aligned along the

5 mm linear space (black line in Figs. 1B,C). The final populations

and their relations to the track are shown in Fig. 1C. An obvious

limitation of the one-dimensional approach is that many glomeruli

are at variable distances from the single projection tract, so that

interactions between mitral cells belonging to specific neighboring

glomeruli are not precisely represented. However, the interactions

of a given mitral cell with many nearby mitral cells still holds in a

generic sense, so that the model gives an accurate reflection of

these population interactions within the mitral-granule network.

The connectivity between mitral and granule cells is illustrated

in Fig. 1D [24], where we show a basic microcircuit schematically

represented with two mitral (M1 and M2 in Fig. 1D) and granule

cells (GC1 and GC2 in Fig. 1D) and their dendrodendritic

reciprocal synapses. When odor concentration is sufficient to

activate a mitral cell tuft, an action potential (AP) is initiated

locally or in the initial axonal segment and backpropagates into

the lateral dendrites, activating excitatory synapses onto granule

cell dendrites along the way. This is consistent with the

experimental evidence that an AP can propagate throughout the

extent of the lateral dendrite [25]. The activation of one or more

granule cells close to the soma of a mitral cell (e.g. GC2 and M2 in

Fig. 1D) by a backpropagating AP is a crucial mechanism to

obtain a distance-independent lateral inhibitory action [24], as far

as the AP is able to backpropagate along a mitral cell lateral

dendrite.

The interconnectivity between mitral and granule cells is the

critical factor in shaping the network of interactions. Experiments

show that a pseudovirus tracer injected into a group of mitral cells

labels a sparse and discontinuous mosaic of columns of granule

cells [10]. Experimental evidence (reviewed in [26]) suggests that

the overall effective connectivity is modulated by the past activity

of the olfactory bulb. This process presumably builds up on an

initial configuration of mitral-granule connections formed during

development that is unknown. Consistent with experimental

estimation of connectivity between pyramidal cells and interneu-

rons in the cortex [27], we have chosen to use an initial

configuration in which each granule cell was randomly connected

to 1065% of the mitral cell lateral dendrites directly above it, as

schematically represented in Fig. 1E. There are thus approxi-

mately 0.5 million synapses in the network. Note that this does not

represent the actual viral tracing data, which showed the

connectivity in terms of widely distributed clusters of granule cells

activated by widely distributed clusters of mitral cells, formed

during the lifetime of the animal. Instead, it should be considered

Author Summary

In the paper we address the role of lateral inhibition in a
neuronal network. It is an essential and widespread
mechanism of neural processing that has been demon-
strated in many brain systems. A key finding that would
reveal how and to what extent it can modulate input
signals and give rise to some form of perception would
involve network-wide recording of individual cells during
in vivo behavioral experiments. While this problem has
been intensely investigated, it is beyond current methods
to record from a reasonable set of cells experimentally to
decipher the emergent properties and behavior of the
network, leaving the underlying computational and
functional roles of lateral inhibition still poorly understood.
We addressed this problem using a large-scale model of
the olfactory bulb. The model demonstrates how lateral
inhibition modulates the evolving dynamics of the
olfactory bulb network, generating mitral and granule cell
responses that account for critical experimental findings. It
also suggests how odor identity can be represented by a
combination of temporal and spatial patterns of mitral cell
activity, with both feedforward excitation and lateral
inhibition via dendrodendritic synapses as the underlying
mechanisms facilitating network self-organization and the
emergence of synchronized oscillations.

Spatiotemporal Processing of Odors
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Figure 1. Schematic description of the model and its relation to in vivo experimental data. A) Dorsal surface of the olfactory bulb from
which experimental data were obtained; different letters identify different clusters of glomeruli responding to different molecular features of the odor
molecules; in this paper we used glomeruli activated in clusters A–D. B) Spatial distribution of the 73 glomeruli activated by the 72 odors used in this
work; the black line represents the projection track used to reduce the system to 1 dimension (see main text for details). C) Top view of the soma
spatial locations for the 500 mitral cells (blue triangles) and 10000 granule cells (red circles) used in all simulations; the black line is used to reduce the

Spatiotemporal Processing of Odors
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as the maximum average connectivity that can be obtained

between any mitral and any granule cells in our network. During

odor presentation, each synaptic weight will independently follow

the synaptic plasticity rule to increase/decrease its value,

according to the local spiking activity shaping the actual network

connectivity. In a smaller network with all-to-all connectivity [18]

we have previously shown how this process, through the

interaction among synthetic odor inputs, action potential back-

propagation, and dendrodendritic synapses can generate the kind

of distributed interconnectivity observed experimentally [10]. This

self-organization process can be summarized in the following way:

a) a strong odor input generates mitral cells firing at high

frequency; b) somatic APs backpropagate along the lateral

dendrites and potentiate excitatory mitral-granule synapses along

their way, activating granule cells; c) granule cells begin to fire at

high frequency, potentiating inhibitory synapses on the lateral

dendrites of mitral cells, d) inhibition from granule cells hinders AP

backpropagation as it travels far from the soma, thus reducing the

firing frequency of mitral and granule cells, e) this finally results in

the selective depression of synapses distant from the active mitral

cell soma but not those close to the soma. This mechanism is

robust and independent of the plasticity rule used to update the

synaptic weights during a simulation [18,28].

With the network constructed and represented in this way, it

was possible to generate a movie for each simulation to visualize

the evolution of the whole network activity during an odor

presentation. For this purpose, the cell somas were laid out using

(X,Y) coordinates reflecting the spatial location of the real

glomeruli in the dorsal surface shown by the experiments, and

distributed inside a 3D space schematically representing their

spatial organization in the real olfactory bulb (initial arrangement

panel); an opened-out view of the system was used as the view

point to display somatic spikes during a simulation (opened-up view

panel). Initial snapshots from a simulation are illustrated in Fig. 1F.

A low resolution movie for one of the odors (k3-3, an aliphatic

ketone) is reported as movie S1, whereas a full HD version is

available for public download on the ModelDB database (acc.n.

144570).

Emergence of odor processing properties: mitral-granule
cell network self-organization induced by the
experimentally observed activity from 72 odors in 74
glomeruli

In the experiments, 72 different odor molecules were used for

stimulation. Individual glomeruli in each of the clusters illustrated

in Fig. 1B were differentially activated by these odors, as shown in

the table of Fig. 2. Each odor induced activity in a group of

glomeruli, usually belonging to the same cluster but often with

outliers. Mori et al. (2006) [15] classified these responses into 4

different intensity levels: very strong, strong, moderate and weak,

represented by the different size circles in their table. Since it can

be assumed that the intensities reflected the postsynaptic dendritic

depolarization of the mitral cell glomerular tufts [29], in our model

we used the response levels to set 4 different levels for the peak

synaptic excitatory conductance activated in the glomerular tufts.

The aggregate activation of many OSN inputs onto a given tuft

with a single EPSP was implemented using a double exponential

conductance change with 20 and 200 ms for rise and decay time,

respectively [18,30]. To represent the range of intensities with

adequate sensitivity down to the weakest concentration without

saturating the network at the highest concentration, we set the

peak conductance sensitivity to give suprathreshold responses to

levels 3 and 4.

We simulated each of the 72 odor responses [15] in Fig. 2 in

order to analyze and compare the network responses. Key aspects

of the network properties are illustrated by three examples,

highlighted in the table in Fig. 2: a relatively strong glomerular

response (to octanal, in cluster B), a relatively widely distributed

odor response (to k3-3, in clusters B and C-D), and a relatively

weak response (to (+)-Cvn, in clusters B and D). Histograms in

Fig. 2B show the relative strengths and distribution of the

glomerular responses, which are the input magnitudes used to

activate the mitral cells.

The network self-organization in these representative cases is

illustrated in Fig. 3, where we show the raster plots for mitral and

granule cell spike discharges during the first seven seconds of odor

presentation for three odors. During a moderate glomerular input

(e.g. Fig. 3A, odor (+)-Cvn), the spiking response dynamics of the

most active mitral cells (around site 240) showed the progressive

appearance of a bursting pattern, accompanied by weak inhibition

of surrounding mitral cells to an extent of approximately 1.5 mm

on either side of site 240 (note the lighter area in the mitral cells

raster plot after the first 2 sec of simulation), reflecting the extent

of the lateral dendrites of the activated mitral cells. Bursts were

aligned with odor input activation (sniffs), with most spikes at the

onset of the sniff and fewer spikes later in the sniff cycle.

The mitral cell inhibition was correlated with activation of the

granule to mitral cell inhibitory synapses, as shown by the firing of

granule cells in Fig. 3A (right panel), again reflecting the 1.5 mm

extent of the mitral cell lateral dendrites. This granule cell spiking

produced the mitral cell inhibition, as evidenced by the similarity

between the granule cell spiking population and the extent of the

mitral cell inhibition in Fig. 3A.

These results demonstrate several basic properties of the

network response to a glomerular activity pattern. As expected,

the odor drives the mitral cells receiving direct input from the

activated glomeruli. This defines the mitral cell cluster related to

system to 1 dimension, and the arrow indicates the viewpoint used for all simulation movies. D) The connectivity for an efficient lateral inhibition
from non-topographical connectivity of the granule-mitral cell network (see text). The basic microcircuit is schematically represented with two mitral
(M1 and M2), two granule cells (GC1 and GC2), and their dendrodendritic reciprocal synapses (open and closed circles represent excitatory and
inhibitory synapses, respectively). The somatic action potential elicited in M1 by an odor (red trace close to M1 soma) backpropagates (bAP) along the
M1 lateral dendrite (in red). This activates GC2 and a consequent local inhibitory potential (black trace) close to the soma of M2. In this way inhibition
can be independent of distance, imposed locally by granule cells activated by backpropagating action potentials. E) In the current model, the ratio of
granule to mitral cells is 20:1, with a 10% probability of connection, as schematically represented in the figure (triangles, mitral cells; large circles,
granule cells; small circles, reciprocal synapses) for two different mitral cells (green and red); the yellow circle represents a granule cell which receives
input from both the red and green mitral cells, whereas unfilled symbols represent mitral, granule, and reciprocal synapses not connected with either
the green or red mitral cells. F) To appreciate more clearly the network activity, a movie was generated from each simulation, with the mitral cell
somas laid out using {X,Y} coordinates reflecting the spatial location of the real glomeruli in the dorsal surface investigated in the experiments, and
granule cell somas distributed inside a 3D space schematically representing their spatial organization in the real olfactory bulb (initial arrangement
panel). An opened-out view of the system was used as the viewpoint to display somatic spikes during a simulation (opened-up view panel); the gray
line represents the projection track used to reduce the system to 1 dimension, and the arrow indicates the viewpoint used for all simulation movies.
See movie S1 and its full HD version on the ModelDB database (acc.n. 144570).
doi:10.1371/journal.pcbi.1003014.g001

Spatiotemporal Processing of Odors
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Figure 2. Odor inputs used for all simulations. A) Odor input to each mitral cell was implemented following the experimental findings [15] for
73 individual glomeruli within 4 clusters (Y-axis) during presentation of 72 different odors (X-axis). The intrinsic image responses of glomeruli in
clusters A, B, C, and D in the dorsal surface of the olfactory bulb were classified into 4 response levels (weak, moderate, strong, very strong),

Spatiotemporal Processing of Odors
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the activated glomerular cluster. A new property shown by this

realistic simulation is that the action potentials in the lateral

dendrites of the activated mitral cells bring about synaptic

excitation of the connected granule cells, which elicits spiking in

these cells. The sharp cutoff of the granule cell spiking at 1.5 mm

on either side of site 240 provides a novel indication of precisely

the extents of the lateral dendrites of the driven mitral cells. This

spatial pattern may be considered a 1-dimensional representation

of 2-dimensional lateral, or surround, inhibition. The surround

inhibition in this case is relatively weak because of the relatively

weak input and the consequent weak granule cells activity. These

results thus indicate an unexpectedly extensive engagement of the

granule cells in the dorsal olfactory bulb area by activation of just a

few glomeruli. As we will discuss later, this is not in contrast with

the discontinuous mosaic of clusters of mitral-granule cell

‘‘glomerular units’’ shown by tracing experiments [10] but, rather,

it suggests possible constraints on the transsynaptic virus transport

mechanisms.

Very strong localized odor activation produced much stronger

network responses. As shown for octanal, in Fig. 3B, the activated

mitral cells (sites 430–490) developed an intense intermittent

bursting pattern. In comparison with (+)-Cvn, the lateral inhibition

was much stronger, as shown by the complete lack of spikes in the

surrounding mitral cells. This strong bursting and surround

inhibitory activity is explained, respectively, by the intense

activation of the granule cell population at the site of the activated

mitral cells (through feedback inhibition) and on either side

(through lateral inhibition). In this example the same properties

evidenced in the moderately activated network are seen intensi-

fied. The glomerular cluster is larger and more strongly activated,

leading to a larger and more intense mitral cell response. The

granule cell response is correspondingly more intense and

widespread, and is associated with virtually complete inhibition

of surrounding mitral cells. The discharge patterns in both cases

include bursting, occasionally overwhelmed by the strength of the

activation.

To contrast with these examples of localized glomerular input,

in Fig. 3C we illustrate a third example, odor k3-3 (an aliphatic

ketone), where a less localized, more distributed pattern of

glomerular activation involved the activation of two main groups

of mitral cells, stronger at the 460–490 site than at the 240–270

site. This provided the opportunity to analyze the interactions of

the lateral inhibition elicited by the two sites. The mitral cell

discharges (Fig. 3C, left) at both of these sites showed patterns of

oscillatory bursts. Because of the separation of the two sites, the

lateral dendrites of the two mitral cell populations spanned the

entire network, thus activating the entire granule cell population,

developing relatively uniform bursting spike discharges (Fig. 3C,

right). This led to strong lateral inhibition of nearly all the mitral

cells not driven by the input. Note however that this inhibition was

slightly weaker over the network from sites 0 to 240, reflecting the

slightly weaker input to the mitral cells at the 240 site. This

indicates that the inhibition of the mitral cells reflects a balance

between the amount of excitation of the mitral cell lateral

dendrites and the corresponding excitation of the granule cells.

Comparison of these three responses to odor stimulation thus

indicates several basic properties underlying odor coding in the

olfactory bulb network. The three different odors are initially

represented by the three different, spatially restricted, distributions

of activated glomeruli. These spatial patterns are processed by the

more extensive spatial distributions of lateral inhibition brought

about by the interactions with broadly tuned granule cells. The

result is a mitral cell output reflecting the spatial distribution of the

glomerular input and the temporal structure of the inhibitory

processing, which together represent a unique spatiotemporal

representation for each odor.

Lateral and feedback inhibition after odor presentation
The spiking activity shown in Fig. 3 provides the driving force

for the formation of the synaptic conductances that represent the

odor training of the network in laying down the neural substrate

for an odor perception [18]. The spiking activity in turn is driven

by the weights of the tuft and dendrodendritic synapses. In order

to visualize and analyze the distribution of the synaptic weights, we

arranged plots of the mitral to granule cell excitatory weights and

granule to mitral inhibitory weights as shown in Fig. 4. Results for

all 72 odors are reported in Fig. S1.

In each panel, the top histogram shows the relative strengths

and distribution of the glomerular responses. The middle graph

shows the final weight configuration, after a 10 sec simulation of

odor input, of the excitatory synapses from mitral to granule cells,

with the 500 mitral cells on the abscissa and the 10,000 granule

cells on the ordinate. The background control is illustrated in

Fig. 4A, in which there is no odor input; weights of mitral to

granule cell (excitatory) synapses show only random low values of

peak conductance, generated by the background input (Fig. 4A,

middle); this activity is not enough to generate any potentiation of

the inhibitory synapses (Fig. 4A, bottom), which stay at their initial

value of zero.

The moderately intense focal glomerular activation by (+)-Cvn

(Fig. 4B, top) at mitral cell sites 240–250 elicited action potentials

that propagated through their secondary dendrites. This activated

the excitatory conductances of the mitral to granule cell synapses

between granule cell sites 2,000–8,000 (Fig. 4B, middle, yellow

areas). Note the slight increase in excitatory weights at mitral cell

sites 400–590; this reflects the summation of the very weak

glomerular input with the background activity). This excitatory

activity in turn activated granule cells and, thus, potentiation of

granule-to-mitral cell inhibitory synaptic conductances (Fig. 4B,

bottom). Yellow to white pseudocolors represent synaptic weights

fully potentiated, and in this case they are distributed throughout

the extent of the most active mitral cell lateral dendrites.

Comparison with the spiking data of Fig. 3A shows a close

correlation between the location and strength of the synaptic

weights and the patterns of mitral and granule cell spiking. For

example, the thin horizontal bands of potentiated inhibitory

weights (at mitral cell sites 240–250 in the bottom graph of Fig. 4B)

correspond to granule cells connected to the most active mitral

cells; the strong feedback inhibition generated by their activation is

responsible for the emergence of the bursting behavior observed in

Fig. 3A. The analysis of synaptic weight distribution in the network

for the case of a much stronger odor is shown in Fig. 4C (octanal).

In this case, the wider range of potentiated excitatory synapses

(Fig. 4C, middle) generated a strong and widespread potentiation

of inhibitory weights (Fig. 4C, bottom), with an evident inhibition

of the mitral cells surrounding the most active ones, as indicated by

represented in the table with circles of different sizes. In our model, the 4 response levels defined the peak synaptic excitatory conductances in the
distal tuft of the mitral cells activated by each odor. The arrows at the bottom of the table point to the three odors (#14, octanal; #29, guaiacol; and
#54, (+)-Cvn) that are discussed in detail in the main text. B) Histograms represent the input signal to each mitral cell for the three odors indicated by
the arrows in part A.
doi:10.1371/journal.pcbi.1003014.g002

Spatiotemporal Processing of Odors
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Figure 3. Spatial-temporal firing patterns of the large scale simulated network for three types of odor input. A) Raster plot of mitral
and granule cell spikes during the first 7 sec of a weak odor presentation (odor 54, (+)-Cvn); note the weak suppression of mitral cell firing
surrounding the most active cells after the first few seconds of simulation (left panel), corresponding to the increase in firing of granule cells (right
panel) around the most active mitral cells. B) Raster plot for mitral and granule cell spikes during the first 7 sec of an odor with strong glomerular
activation (odor 14, octanal); note a strong suppression of mitral cell firing surrounding the most active cells (left panel) after the first two seconds of

Spatiotemporal Processing of Odors
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the darker purple area in the excitatory weights map in the range

of mitral cells 280–400 and 490–120. Note that this correlates

with the strong lateral inhibition shown in the left panels of

Fig. 3B. For a more distributed input, such as odor k3-3 (Fig. 4D,

top), the excitatory weights reflected the glomerular activation at

the two sites (Fig. 4D, middle), and the consequent strong

inhibitory weights on the most active mitral cells (Fig. 4D,

bottom). In this case, the distributed input involved more or less

synaptic plasticity of the entire network of inhibitory weights, with

the flanking weights reflecting the overlap of mitral cell lateral

dendrites, for example granule cells in the range around sites

2300, 6200, and 8000. The overall effect on network activity was

a widespread bursting behavior that involved the entire granule

cell network (see Fig. 3C, right). The formation of different

excitatory and inhibitory clusters in response to all odors is shown

in Fig. S1.

In summary, these results demonstrated how the learning of

different odors can generate, through the differential activation of

distributed glomeruli, widely different network behavior with: i)

distinct firing properties involving a variable population of granule

cells, ii) an emergent oscillatory bursting behavior that can span a

large portion of the olfactory bulb, and iii) a powerful lateral

inhibition surrounding the most active glomeruli.

Inhibitory conductance as a function of input strength
The relation between lateral inhibition and glomerular activa-

tion is critical to odor representation and processing. To

understand this property in a more quantitative way, for each

odor we calculated the average inhibitory conductance on any

given mitral cell as a function of the input strength. We were

particularly interested in mitral cells receiving a weak input (i.e. an

odor strength of 1 or 2). For any given odor, these cells correspond

to flanking components. Typical cases can be identified in the

histograms representing odor input for each odor, for example

mitral cell 292 for Eug (Fig. 5A, left), mitral cell 422 for octanal

(Fig. 4C, top), and mitral cell 235 for Gua (Fig. 5A, right). They all

receive a weak input, but the input of their respective neighbors is

quite different, as can be seen in the different histograms for these

odors: weak neighbors for Eug, very strong for octanal, and

medium for Gua. Given the low connection probability (10%) and

the spatially distributed glomerular activation, the emergence of a

significant lateral inhibition cannot be taken for granted, and it

would be difficult to explore experimentally.

In order to analyze the relation between input strength and the

effect of the lateral inhibition it generates, mitral cells activated by

any given odor were grouped in two input classes, low (strength 1–

2) and strong (strength 3–4). For each odor and each group, the

average overall inhibitory conductance was then calculated from

the final weight configuration at the end of the 10 sec simulation,

including both feedback and lateral actions. The results are shown

in Fig. 5B, as a function of the proportion of cells receiving a

strong input. Note that without any lateral inhibition the peak

inhibitory conductance on mitral cells receiving a weak input

(Fig. 5B, red circles) would be 0, since their firing rate would be too

low to generate any feedback inhibition. However, the results show

that lateral inhibition is developed as an odor activates a small

proportion of mitral cells with a strong input.

The differential effect on the weaker flanking components can

be clearly seen in Fig. 5C, where we show the somatic membrane

potential during the first few seconds of a simulation for three

mitral cells. As the weights develop, a strong odor, such as octanal,

will completely silence a flanking component, such as cell 422

(Fig. 5C, top), whereas a progressively lower effect can be seen for

cell 235 during presentation of the less strong Gua (Fig. 5C,

middle), and for cell 292 during presentation of the weak Eug

(Fig. 5C, bottom). These results demonstrate that significant lateral

inhibition can be developed by any given odor that is able to

generate strong activity in a relatively small proportion of mitral

cells, independently of their spatial location (but within the reach

of their lateral dendrites).

Effects of a sparse granule-mitral cell connectivity
The olfactory code relayed from mitral cells to the cortex for odor

recognition is sculpted by the activity of granule cells, which are

ideally positioned for this role in the olfactory bulb circuit. The

granule-mitral cell connection probability can thus be expected to

have a paramount role in modulating mitral cell firing. Experimen-

tally, the average probability with which a granule cell forms synapses

with mitral cells is unknown, although there are findings suggesting

that, in general, it is sparse and spatially distributed (see Discussion).

To test to what extent a sparse connectivity can significantly modulate

mitral cell firing we carried out additional simulations for odor k3-3

using different connection probabilities between granule and mitral

cells (Fig. 6). The configuration of inhibitory weights after a 10 sec

simulation using an average maximum potential connectivity of 2, 5,

and 15% is shown in Fig. 6A. In comparing the results obtained with

the control value of 10% (Fig. 4D), with those obtained using a higher

connectivity (Fig. 6A, 15%), we observed a sharp difference in the

clustering of high synaptic weights around the two regions with active

mitral cells with respect to those in other regions. This difference

tended to be smaller with 5% connection probabilities and almost

disappeared with 2% connectivity.

We hypothesized that these differences may result in a

significant change of mitral cell firing properties. We tested this

in the model by analyzing the average instantaneous firing rate,

which is the most relevant parameter to characterize and

understand mitral cell responses to an odor sniff. Without GC

all mitral cells were more or less active, depending on background

activity and/or odor input (Fig. 6B, top). The background activity

of mitral cells not receiving any odor input (e.g. cells in the 325–

425 range) was much reduced already with only 2% connectivity,

and almost completely suppressed with connection probabilities

above 5%. A higher connection probability (10 and 15%) also

suppressed firing of flanking components, a typical contrast

enhancement effect. Most interestingly, the firing rate of strongly

activated mitral cells was little affected by connection probability.

This was more clearly evident from the analysis of their ISI

distribution in the range of 10–50 ms, as shown in Fig. 6C (left) for

10% connection probability. The two distributions (with or

without granule cells in the network) were statistically indistin-

guishable (Mann-Whitney Rank Sum Test, p = 0.88), in contrast

with the distributions of 50–200 ms ISIs (Fig. 6C, right, Mann-

Whitney Rank Sum Test p = 0.021). This effect was very robust

with changes in connection probability (Fig. 6D). The distributions

simulation, corresponding to the increase in firing of granule cells (right panel) around the most active mitral cells. C) Simulation findings for an odor
with strong and spatially distributed glomerular activation, odor 39, k3-3; note a strong and widespread suppression of mitral cell firing surrounding
the most active cells (left panel) after the first two seconds of simulation, corresponding to the increase in firing of granule cells (right panel) around
the most active mitral cells.
doi:10.1371/journal.pcbi.1003014.g003
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Figure 4. Development of synaptic weights among mitral and granule cells underlying the spike responses. In all panels, the top
histogram represents the input strength of each mitral cell, the middle and bottom plots represent the normalized excitatory and inhibitory peak
synaptic conductance after 10 sec of odor presentation, respectively; (dark purple: 0, white: 1). A) Without odor input. B) Results for odor 54, (+)-Cvn;
note the extent of mitral-to-granule cell potentiated synapses in response to the glomerular input, due to action potential propagation in the lateral
dendrites, and the consequent formation of distributed inhibitory columns of granule-to-mitral synapses. C) Results for odor 14 (octanal); note the
greater extent of mitral-to-granule synapses in response to the glomerular input, caused by the larger group of activated glomeruli; D) Results for
odor 39 (k3-3); note the spatial distribution of excitatory mitral-to-granule synapses in response to the distributed glomerular input, and the
consequent wide distribution of inhibitory granule-to-mitral synapses. See also Fig. S1.
doi:10.1371/journal.pcbi.1003014.g004

Figure 5. Odors with a strong input generate lateral inhibition on weaker components. A) Two typical odors with different input
structure; top panels represent the input to each mitral cell; bottom panels show the distribution of the normalized peak inhibitory (granule-to-mitral)
conductance after odor learning (dark purple: 0, white: 1); (left) example of a weak odor, all activated mitral cells receive weak input; (right) example of
a distributed odor, active mitral cells are spatially distributed and receive both weak and strong inputs. B) Average granule-to-mitral peak inhibitory
conductance for each odor; in all cases the average peak conductance was calculated over the set of mitral cells receiving a weak input (input levels
1–2, red circles), or a strong input (input levels 3–4, black circles); note that a value of 0 for the peak inhibitory conductance would be expected from
a weak input. C) Typical traces from different mitral cells, all receiving a weak input from three odors (octanal, gua, and eug), during 10 sec simulation
of odor learning; note the powerful inhibition, from mitral cells activated by odors with a very strong component (e.g. octanal, see Fig. 4C) after the
first few seconds of simulation, corresponding to the initial organization of the network.
doi:10.1371/journal.pcbi.1003014.g005
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Figure 6. Sparse granule-mitral cell connectivity modulates in a robust way a mitral cell response to an odor. A) Inhibitory synaptic
weights (granule-to-mitral) after 10 sec presentation of odor k3-3 using different levels of granule-mitral connection probability; the top histogram
represents the input strength on each mitral cell. B) Average instantaneous firing rate of mitral cells 220–500 during odor k3-3 presentation, without
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of 50–200 ms ISIs with or without GC in the network were

significantly different in all cases except 2% connectivity (Mann-

Whitney Rank Sum Test p = 0.115).

These model results predict that a sparse granule-mitral

connectivity will be able to significantly affect mitral cell firing in

two different ways: 1) suppressing flanking or weaker components,

and 2) changing the firing pattern structure of the stronger

components. The overall computational effects for odor coding of

these mechanism will be investigated in a future work.

Complementary role for mitral cell feedback and lateral
inhibition

The relative importance of the feedback and lateral inhibition

generated by a sparsely connected network of granule cells is

poorly understood. We have shown how they can modulate the

overall mitral cell firing structure by different odors (Fig. 3) and

under different connectivity (Fig. 6). To test their effects on

different odor concentrations we carried out, without granule cell

synapses in the network, a 50 sec long simulation of odor k3-3.

Odor strength was progressively increased every 5 sec, from 0

(no odor) to 1 (the maximum strength used in all simulations) in

steps of 0.1. The results, shown in Fig. 7 (top) for mitral cells

420–500, show a rather high and diffuse activity of all mitral

cells, with those receiving relatively lower inputs (,0.4)

practically indistinguishable from the background activity

(average S/N = 0.25 dB). We then repeated the simulation

including granule cells and starting from the weights configura-

tion obtained after odor learning (Fig. 4D). The results,

illustrated in Fig. 7, showed a surprising effect of feedback

inhibition for low odor concentrations, which selectively

suppressed the instantaneous firing activity of the most active

mitral cells (e.g. cells 475–484), making them clearly distinguish-

able (average S/N = 213.1 dB) from neighbor cells activated by

the background noise (e.g. cells 430–439) or by weaker

components (486–500). These results suggest that lateral and

feedback inhibition work together, in a complementary way, to

enhance the contrast between an odor signal and the

background noise over a wide range of odor concentrations,

including subthreshold inputs.

Comparison with experimental findings
We wished to test the network model against physiological

recordings of mitral cells responding to odor stimuli. We have

previously shown that a reduced network model gives generic

mitral cell responses consistent with those reported for different

odors in a homologous series [7]. A more detailed, although

qualitative, comparison with the present model can be carried out

with the data reported in [16]. These authors found that the

temporal firing structure of mitral cells in response to a sniff cycle

is very precise, with different mitral cells responding with different

onset times and firing rate to the same odor (Fig. 8A).

We were particularly interested in understanding the reasons

for the temporal firing distribution of the response with respect to

a sniff cycle. The experimental findings (Fig. 6A, see [16]) are

quite clear from this point of view: Different cells respond to the

same odor with different timing. This is increasingly recognized

as an important computational property for odor coding and

discrimination (e.g. [1,31,32]), but the underlying processes are

unknown.

In order to investigate this issue, which is otherwise experimen-

tally limited within a network framework, we calculated the

average distribution of spike times of all the mitral cells activated

during 70 sniffs by a strong, a medium, and a weak odor. As shown

in Fig. 8B, the distributions were different, and all were clearly

distinguishable from the ‘‘no odor’’ condition (Fig. 8B, gray line).

A more specific analysis of mitral cells activated by k3-3, obtained

by grouping the mitral cells according to the strength of their input

(Fig. 8C), suggested that the different distributions are correlated

with the interaction between the odor input strength and granule

cell activity. Mitral cells receiving a weak or very weak input

(Fig. 8C, top two panels) are mostly modulated by weak lateral

inhibition generated later in the sniff cycle, whereas cells receiving

medium and strong inputs (Fig. 8C, bottom two panels) generate

earlier strong inhibition that impacts the response latency.

Taken together these results indicate how odor identity could

emerge from a single sniff as a specific distribution of spikes

composed of spatially and temporally positive or negative

contributions (with respect to the ‘‘no odor’’ condition) from all

the mitral cells activated by the odor, each mitral cell making its

own contribution according to the specific type of input it receives

and the underlying network of granule cells it activates.

It is also of interest to compare the model properties with recent

experimental studies which revealed sparse and segregated lateral

connectivity between mitral and granule cells [10,17,33], as

illustrated in Fig. 9 (left panel). It showed the connectivity in terms

of widely distributed columns of granule cells labeled by widely

distributed clusters of mitral cells, formed during the lifetime of the

animal. It therefore represents the ‘‘maximum’’ average connec-

tivity that can be obtained between any mitral and any granule cell

in the network. During odor presentation, each synaptic weight

will independently follow the synaptic plasticity rule to increase/

decrease its value, according to the local spiking activity, shaping

the actual network connectivity. We have previously shown [18]

that this process, through the interaction among odor inputs,

action potential backpropagation, and dendrodendritic synapses

can generate the kind of distributed interconnectivity observed

experimentally [10].

We tested whether our dynamic circuit model could produce

similar patterns. As a typical example, we considered all mitral

cells activated by odor k3-3 and calculated the peak inhibitory

synaptic conductance along their lateral dendrites after odor

learning. This is equivalent to the experimental protocol used in

the PRV injection experiments, where a few nearby glomeruli are

injected with the virus to give labeling of the widely distributed

granule cell clusters. Although it contained no inherent cluster

connectivity, as shown in Fig. 9 (right), the circuit model generated

narrow labeled granule cell patterns similar to those observed

experimentally. This included the strong clustering of inhibitory

synapses below the most active mitral cells in the model (Fig. 9,

right), corresponding to a region of intense staining of mitral and

granule cells in the experiments (Fig. 9, left), and the weaker

clustering of granule cells in a region with no active mitral cells

(Fig. 9, indicated in orange). In the top traces in Fig. 9, right, it can

be seen that, associated with this pattern, the soma of strongly

granule cells (no GC) and with GCs connected to mitral cells with different probabilities (2-5-10-15%). C) Interspike interval (ISI) distribution of the
most active mitral cells (odor strength.2) in the range 0–50 (left) and 50–200 ms (right) with (triangles) or without (circles) GCs with 10% connectivity;
D) ISI in the range 50–200 ms with (triangles) or without (circles) GCs using different connection probabilities with mitral cells. In all cases, the first and
the last second of 10 sec simulations were used to calculate firing rates and ISI probabilities without or with GCs, respectively.
doi:10.1371/journal.pcbi.1003014.g006
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activated mitral cells showed strong action potential firing,

whereas the invasion of distal lateral dendrites was weaker. This

suggests that the granule cell inhibitory synapses, once established,

can gate the backpropagation of a train of action potentials in a

precise location along a mitral cell lateral dendrite as suggested

experimentally (e.g. [9], [25], [34]).

Figure 7. A complementary role for mitral cell feedback and lateral inhibition. A) Average instantaneous firing rate of mitral cells 420–500
during 5 sec presentation of odor k3-3 at different concentrations without granule cells in the network; note the rather uniform and unstructured
mitral cell activity at low odor concentrations (below 0.5). In all simulations, synaptic plasticity was blocked and a synaptic weights configuration
corresponding to the ‘‘no odor’’ condition (see Fig. 4A) was used in all cases. B) Average instantaneous firing rate as in A) but with granule cells in the
network; in all simulations synaptic plasticity was blocked. The synaptic weights configuration obtained after presentation of odor k3-3 (see Fig. 4D)
was used in all cases. Note the firing depression of mitral cells activated by low odor concentrations (odor concentration below 0.5, mitral cells 446–
465 and 476–485), and the firing depression of flanking mitral cells for higher odor concentrations (odor strength above 0.5, mitral cells 420–445,
466–475, and 486–500).
doi:10.1371/journal.pcbi.1003014.g007
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Figure 8. Spike timing of individual mitral cells following odor onset depends on input strength. A) Experimental findings (from [16],
Reprinted by permission from Macmillan Publishers Ltd: Nat. Neurosci.) on the spike times of 6 mitral cells during presentation of the same odor,
warped to the sniff cycle (left) and their post stimulus time histograms (PSTH) (right). B) Distribution of spike times from the stimulus onset in our
model for octanal (strong odor, red), k3-3 (strong and distributed, black) and +(2)Cvn (weak, blue); light grey line represents the distribution of spike
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These results confirm our previous suggestion [18,26] that the

sparse and distributed patterns observed experimentally can

emerge from the interaction between mitral and granule cell

activity during an odor presentation.

Discussion

Many studies have documented the spatial patterns of olfactory

glomeruli activated by odor stimuli, but the responses of the

olfactory bulb network in processing that input are still poorly

understood. A major technical problem in the experimental

investigation of this issue is the practical impossibility of recording

simultaneously from a large set of mitral and granule cells

activated by an odor. The present scaled up model of interactions

between populations of mitral and granule cells is a step toward

the goal of understanding the emergent properties of the olfactory

bulb network in generating its output to the olfactory cortex. Here

we discuss several novel features arising from the present study

that are directly related to experimental observations.

Lateral inhibition as a mechanism for efficient odor
representation

Lateral inhibition of mitral and tufted cells has been firmly

established by many experiments at the single cell level over the

past nearly 50 years [6–7,35–41], providing evidence that

excitation of mitral cells leads to dendrodendritic activation of

the granule cells, which then brings about feedback and lateral

inhibition of the mitral cells. The interpretation of these studies has

been supported by a number of realistic (e.g. [24,26]), simplified

(e.g. [39,42]), or artificial (e.g. [43–44]) computational models.

The present study has enabled us to extend the characterization of

lateral inhibition from the single cell to a realistic network level,

and provided a clearer representation of the sharpening by the

lateral inhibition of the neural response to different odor inputs.

We have shown that activity-dependent mechanisms are

capable of sculpting the network, leading to the formation of

dendrodendritic synaptic clusters in a large, sparsely-connected

network. The independent evolution of each synaptic weight,

according to the local dendritic spiking activity, will shape the

actual network by forming the widespread mosaic of clustered

connectivity observed experimentally [10]. This mechanism may

be in effect, for example, during the important process of merging

newborn granule cells, with their facilitated synaptic plasticity

[45], into the existing bulb network to drive stimulus response

decorrelation [44].

The spatial extent of the lateral inhibition was correlated with the

strength of mitral cell activation; stronger glomerular activation

results in more extensive lateral inhibition. Stronger antidromic

activation of mitral cells has been known to be associated with more

extensive lateral inhibition of surrounding mitral cells [46]. The

model indicates how orthodromic mitral cell activation from the

glomeruli produces the same result in the mitral cell ensemble.

times from background activity. C) (left) raster plots of spike times from 70 simulated sniffs for mitral cells activated by odor k3-3, grouped according
to the 4 input levels coding odor strength in the different glomeruli (see Fig. 2); (right) corresponding distribution of spike times from the stimulus
onset. The gray line in the top three graphs represents the ‘‘no odor’’ condition; to aid in comparing the distribution of mitral cells with strong inputs
(bottom graph) with those obtained under other conditions, the distributions for ‘‘no odor’’, medium, and weak inputs are indicated by gray lines.
doi:10.1371/journal.pcbi.1003014.g008

Figure 9. Emergence of distributed mitral-granule cell connectivity. (Left) Typical experimental findings for pseudorabies virus staining
patterns after olfactory bulb injection (adapted from Fig. 2D of [10] with permission from the National Academy of Sciences, U.S.A); the photo shows
a coronal section of the olfactory bulb, with labeling of columns of granule cells; GCL, granule cells layer; MCL, mitral cells layer; GL, glomerular layer;
colored loops indicate regions of strong (purple), medium (blue), and weak (orange) cell activation. (Right) Model results after learning of odor k3-3.
The top traces show bursts in the soma (right) that become single spikes as they propagate in a lateral dendrite (left) of mitral cell 457 at the end of
the learning period (t = 8–9 sec). The red histogram represents the strength of glomerular input to the mitral cell tuft (see Fig. 2B), and the field shows
the location and normalized peak inhibitory conductance from granule cells on the mitral cell lateral dendrites (see color bar: strong conductance in
yellow; moderate in green; low or absent in black). Note that the locations of strong conductances line up primarily with sites of mitral cell responses
but also occur in the intervening spaces (see text). Regions similar to the experimental patterns are indicated with different colors (purple, blue,
orange).
doi:10.1371/journal.pcbi.1003014.g009
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In relation to recent experimental findings [16], the model

explains in terms of different input strengths the results showing

different timing among the mitral cells activated by an odor, and

supports the suggestion that the time-to-first-spike can be a critical

property for odor identification as the mitral cells project their

ensemble response to olfactory cortex [31].

With the use of single odor stimulation, as in experiments

discussed in [15] and the present model, the spatial pattern of

inhibition reached the full extents of the lateral dendrites of the

activated mitral cells, since the action potentials can propagate, in

the absence of active inhibitory synapses, to the ends of the lateral

dendrites. This has been experimentally demonstrated [25],

although there is evidence that it may not occur under some

conditions [47]. However, our model was also able to demonstrate

intermittent clusters (Fig. 9). This was surprising because the initial

specific connectivity rules between mitral and granule cell

dendrites formed during neurogenesis are not known; we

hypothesize that when those rules will be identified the clustering

will be even clearer and more widespread.

Full propagation is most likely to occur under conditions of

single odor stimuli, in which the odor activates specific isolated

clusters, with associated mitral cells spanning regions of reduced

connectivity with granule cells, as in the present study. In nature,

however, odors are usually smelled as combinations of many

components that may activate glomeruli in much more compli-

cated and dense patterns [48]. This experience will thus drive

mitral cells to set up correspondingly more or less complicated

patterns of inhibition which will modulate and gate the back-

propagating action potentials, as demonstrated experimentally

[9,25] and computationally [26]. This forms the foundation for the

emergence of lateral inhibition in such a large-scale network (see

Figs. 3 and 4) and provides potential functions for modulating

precise spatio-temporal patterns of action potentials during

exposure to different odorants.

Spatiotemporal coding and sniffing
There are two major components of information contained in

an odorous molecule: odor molecule identity and odor concen-

tration. It is suggested that mitral cells might employ both firing

rate of individual mitral cells and spatial patterns of spike timings

of particular combination of active mitral cells in encoding odor

molecule concentration and identity information separately [49–

50]. Recent experiments showed that mitral cells sharing the same

glomerulus have highly correlated firing rates in response to odors,

but their spike timings are relatively different with respect to the

phase of the sniff cycle [50]. These studies suggest that mitral cells

may use different coding channels to represent information, but

cannot extract more specific information on the underlying

process. Our study is in full agreement with those studies, and

suggests that the spatial patterns of precise timing locked to sniff

cycle may represent odor identity, by generating a spatio-temporal

representation of odor molecule information.

Lateral inhibition by recurrent granule cells not only plays a role

in decreasing firing rates of olfactory bulb activities resulting in

‘‘spiking packets’’ [51], but can also enhance synchrony [30] and

precise timing of both mitral cells and granule cells, suggesting a

temporally sparse code. In awake animals, the act of sniffing

increases the air velocity and changes the duration of airflow in the

nose, which improves olfactory detection [52]. It has also been

shown that the waking state [53] enhances the level of inhibition in

the network, which increases the sparseness of the mitral cell

responses. Our model is consistent with this result (Fig. 5 C; see

also Fig. 6B), which will be explored in more depth in a future

study.

Behavioral studies have suggested that there is an active process

modulating neuronal responses during sniffing [52]. This may

produce optimal temporal sequences in the olfactory bulb [54].

Recordings in vivo and in vitro have shown evidence that the

frequencies of response oscillations are modulated by breathing

and sniff rates [1,16,51–52,54]. Our model provides one

explanation by showing how lateral inhibition can modulate this

process by strongly suppressing the background noise while

synchronizing the mitral cell responses. A more comprehensive

analysis of mitral cell responses in the presence of mixtures at

different concentrations in relation to the sniff cycle will be

presented in a future study.

Sparse coding and downstream processing
Recent studies have suggested several possible mechanisms that

could result in sparse odor coding in the olfactory bulb.

Interestingly, there are also recent experimental findings in vivo

[48] showing that natural odorants are represented by dense (as

opposed to sparse) glomerular activation. In this paper we

demonstrate that a sparse representation can emerge naturally

from the mitral-granule cell interactions, realistically implemented

in our model with self-organizing dendrodendritic synapses driven

by mitral cell activity. Feedback and lateral inhibition cooperate to

maintain a sparse representation complementarily acting over

different odor concentrations. This differs from more theoretical

and speculative artificial network models suggesting that sparse

coding in the mammalian olfactory bulb can arise from an

external cortical signal generating an incomplete feedforward

inhibition [49] or from feedforward inhibition in the mushroom

body of insects [55–57]. In regard to downstream processing, in

modeling the analogous antennal lobe of the fly it has been

recognized [55] that it is necessary to know how the output is

processed in the downstream mushroom body and lateral horn.

Those downstream mechanisms are not well known even in the

fly, and that applies as well to the olfactory cortex; in particular,

the precise cortical targets of the mitral cells in the mammalian

olfactory bulb are not known. We have therefore focused on the

processing inherent in the olfactory bulb network.

Plasticity
It remains to note that synaptic plasticity is fundamental to any

dynamic network. The clustered activity generated by odor stimuli

is dependent on action potential backpropagation along the mitral

cell lateral dendrites (according to the sequence of events discussed

in Results), rather than the specific plasticity rule used to evolve the

synaptic weights during odor presentation [18,26]. Synaptic

plasticity in the mitral-granule circuit has not been observed

directly. We consider this lack of information as a shortcoming of

the experimental techniques rather than a demonstration that

there is no plasticity in the olfactory bulb. Indeed, recent studies

have shown more or less direct evidence for plasticity of olfactory

input in mitral cells [58–59], and in granule cells [60–62].

Although further experimental investigation is required to have a

more detailed picture, one of the reasons that can explain the

problems encountered in investigating plasticity in the olfactory

bulb can be easily predicted by our model, and is related to

network connectivity. The granule cell inhibitory synapses, once

formed, can prevent any further activity-dependent plasticity of

synapses far from the soma of the most active mitral cells (see

Fig. 7). The model thus predicts that plasticity could be more easily

characterized by recording from mitral and granule cells forming

reciprocal perisomatic connections.

In conclusion, the present model suggests a physiologically

based mechanistic explanation of how dendrodendritic excitation
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and inhibition, generated by experimentally measured odor

inputs, can drive self-organization of the evolving dynamics in a

large-scale olfactory bulb network. The process promotes the

emergence of clustered organization in granule cell synaptic

weight structure and mitral cell responses found in experimental

studies [10,16,33]. The results demonstrate how odors can be

represented in the olfactory bulb by a combination of temporal

and spatial patterns, with both feedforward excitation and lateral

inhibition via dendrodendritic synapses as the underlying mech-

anisms necessary and sufficient to maintain a sparse representation

of odor identity.

Materials and Methods

Model cells
The network was composed of multi-compartment canonical

models of 500 mitral and 10000 granule cells, implemented as

described in our previous studies [18,24], and connected through

dendrodendritic synapses [63]. The canonical model for mitral cells

was implemented with 312 compartments representing an axon, the

soma, the apical dendrite, and 2 lateral dendrites each 1.5 mm in

length, in the range indicated by anatomical measurements [40]. In

the real case the 1.5 mm is the maximum extent of the mitral cell

lateral dendrites. Cell stains show that some dendrites will be less,

but a uniform extent enabled us to assess more clearly the extent of

the lateral inhibition under different conditions in the model.

Uniform passive properties were used, with Ra = 150 V?cm,

tm = 20 ms, and Rm and Cm adjusted to obtain an input resistance

of about 100 MV [40]. Resting potential was set at 265 mV and

temperature at 35uC. Cells were modeled as regular firing cells (see

Fig. 1d in Ref. [64]), with Na, KA, and KDR conductances uniformly

distributed over the entire dendritic tree [65]. Kinetics for the Na

conductance were from hippocampal pyramidal neurons [66],

whereas those for KA and KDR were from mitral cell data [67]. This

resulted in the mitral cells firing within the range of experimentally

observed firing rates and, in further agreement with experimental

findings, somatic action potentials backpropagated at full amplitude

up to the tuft [68], and an AP could initiate in the tuft or in the

primary dendrite for moderate to strong odor inputs [69] (see also

Fig. 1e in Ref. [64]. Granule cells (GC) were modeled with a soma

and a 20 segment radial dendrite (250 mm of total length)

representing the dendritic tree. Na+ and KA channels were

distributed throughout [70–72] whereas KDR was present only in

the soma [70]. In agreement with experimental findings [70], the

dendritic KA resulted in a significant effect on the spike latency of

these cells (see Fig. 1Bb of Ref. [24]), and adaptation under strong

inputs [73–74].

It should be noted that a number of additional ion channels and

mechanisms were not included in our model cells. Virtually all of

them, such as additional K+ conductances, Ih current, persistent Na+

current, Ca2+ and Ca2+-dependent currents, but also activity-

dependent changes in channels density or kinetic, non-uniform

channels distribution, intracellular Ca2+ dynamics, intercellular

variability, additional external inputs etc, may result in some

modulation of the results. This is precisely why we did not include

them in the model at this stage. Our focus has been on understanding

the processes underlying lateral and feedback inhibition and their

main consequences. Future works will eventually investigate how and

to what extent additional cell types, mechanisms, and external inputs

can affect the basic findings shown in this paper.

Network elements
There are a number of different types of cells in the olfactory

bulb network, each of them carrying out or involved in functions

that in most cases are not understood. Rather than include a priori

in the network all cell types for which there was some experimental

suggestion on their electrophysiological properties or function, we

decided to keep the model simple enough to allow a clear

identification of the key mechanisms underlying the effects of

lateral and feedback inhibition, and constrained enough by

experimental findings to allow not only a direct comparison of

the results with specific experimentally observable but also to make

experimentally testable predictions. From this point of view, as

shown and discussed in our previous papers [e.g. 18,24], as long as

there are action potentials propagating along the mitral cell lateral

dendrites and granule cells making local plastic synaptic dendro-

dendritic connections with them, the network will self-organize

following an odor presentation. The level of details included here

are thus those necessary and sufficient to have these mechanisms

in place. With respect to our previous reduced model network, in

this paper we added a new level of realism in network size and

connectivity and odor input, obtaining a more realistic network

dynamics that has not been achieved by other modeling

approaches.

Synaptic properties
Network connectivity is presented and discussed in Results.

Effective dendrodendritic coupling between granule cell synapses

and mitral cell secondary dendrites was implemented by

connecting a GC synapse, containing the same proportion of

AMPA and NMDA channels, with the appropriate compartment

of mitral cells secondary dendrites containing GABA channels.

The AMPA conductance was modeled as an alpha-function with a

time constant of 3 ms and a reversal potential of 0 mV. The

NMDA conductance was based on a NEURON model [75] of

experimental findings [76–77], assuming an external magnesium

concentration of 1 mM and a reversal potential of 0 mV. The

model parameters were adjusted to obtain a time-to-peak and

decay time constant of 10 and 50 ms, respectively. A double

exponential function was used to model the GABA conductance,

with a reversal potential of 280 mV. Rise and decay time

constants were 1 and 200 ms, respectively, implicitly taking into

account the mechanisms underlying the overall time course

observed experimentally for the inhibitory potential elicited by a

single AP in a mitral cell [78]. Unless otherwise noted, the peak

excitatory and inhibitory conductances of each synapse were

0.5 nS and 3 nS, respectively, equivalent to about 1 and 5 real

individual synapses, respectively [78]. Synapses (excitatory or

inhibitory) were activated whenever the corresponding presynaptic

compartment reached the threshold of 240 mV, in agreement

with experimental findings [79] suggesting that recurrent inhibi-

tion of the secondary dendrite of a mitral cell does not necessarily

require the generation/propagation of an action potential to the

soma of the GC.

Synaptic weights of dendrodendritic synapses started at zero and,

in response to odor input, followed the same plasticity rule

previously used [18,26]. Briefly, each component (inhibitory or

excitatory) of each dendrodendritic synapse was independently

modified according to the local membrane potential, of the lateral

dendrite of the mitral cell or the granule cell synapse, to calculate the

instantaneous presynaptic ISI. After each spike, the peak conduc-

tance, w, of any given synapse was updated from its current value

w{exc,inh},p = gsyn,{exc,inh}NS(p) to w{exc,inh},p+D = gsyn,{exc,inh}NS(p+D), where

the function D = {0,+1,21} followed a classical scheme [80–81] in

which D = 0 for ISI.250 ms, D = 21 for 30,ISI,250 ms, and

D = 1 for ISI,30 ms. The typical sigmoidal activation function S(p)

[82] was defined as S(p) = 1/(1+exp((p-25)/3)). In this way, the

weight (i.e. the peak synaptic conductance) of any given synapse

Spatiotemporal Processing of Odors

PLOS Computational Biology | www.ploscompbiol.org 17 March 2013 | Volume 9 | Issue 3 | e1003014



could go from a fully depressed (for p<0) to a fully potentiated state

(for p<50), or vice-versa, in about 50 consecutive spikes of the

appropriate frequency. Unless explicitly noted otherwise, p = 0 at

the beginning of a simulation. This plasticity rule is non-hebbian,

since it changes a synaptic weight ignoring any postsynaptic activity.

However, we have previously noted, shown, and discussed [18,26]

that the formation of synaptic clusters consistent with those observed

experimentally [10] is robust and does not depend on the specific

choice for the functional form used to update the synaptic weights.

Odor stimulation of mitral cells was modeled using a

synchronous activation, in all tuft compartments, of synaptic

inputs with a double exponential conductance change (20 and

200 ms rise and decay time, respectively), and an individual peak

conductance in the range 0–0.5 nS. This corresponds to a total

aggregate input conductance of up to 10 nS. It elicits 6 somatic

spikes during a single activation, within the range observed

experimentally for the number of APs generated during a

respiratory cycle [81]. To simulate the learning process of a given

odor, unless explicitly noted otherwise, the synaptic inputs to the

mitral cells belonging to the active glomeruli were activated at a

random frequency in the range of 2–10 Hz, corresponding to the

range of natural sniffing frequency during explorative behavior in

rats [55]. An independent random background synaptic activity

(eliciting spikes at around 2 Hz), was added to the soma of all cells

to model in vivo activity. During preliminary tests, we found that a

10 sec odor presentation was sufficient to stabilize synaptic weights

and cell activity. All simulations were thus carried out for 10 sec.

Experimentally, the instantaneous firing rate of individual mitral

cells during an odor presentation is highly variable (e.g. [39]),

depending on many factors such as input strength, stimulation/

sniffing frequency, and network interactions. In our model, the

instantaneous firing rate of mitral cells activated by an odor was up

to 75 Hz, within the physiological range observed in vivo.

Simulations
All simulations were carried out with the NEURON simulation

program (v7.3, [83]) on a BlueGene/Q IBM supercomputer

(CINECA, Bologna, Italy) or a Cray XE6 system (INCF,

Lindgren, Sweden). Under control conditions, the model network

was composed by a system of 12,877,500 non-linear differential

equations, and a typical 10 sec simulation required about 2 hours

using 400 processors using a fixed time step of 25 ms. To test the

robustness of the results, we ran additional test simulations of odor

k3-3 using a smaller time step (10 ms), cells modeled with a larger

number of compartments (5 mm membrane segments), or a

different random number sequence. In all cases (see Fig. S2), the

final inhibitory weights distribution was statistically indistinguish-

able from control (Mann-Whitney rank sum test p.0.913). The

model and simulation files are available for public download under

the ModelDB section of the Senselab database suite (http://

senselab.med.yale.edu, acc.n. 144570). Movies from each simula-

tion were created offline, with a custom developed command-line

environment that generates a movie from the spike times. We used

the open-source tool Octave (www.gnu.org/software/octave) to

create all frames, updating each cell’s visual aspect in each frame,

and pipeline them to concurrent instances of POVRay (www.

povray.org), a multi platform, free tool for creating high quality

three dimensional photo-realistic scenes. All frames were finally

joined together into a compressed MPEG-4 movie using FFmpeg

(www.ffmpeg.org). A typical hi-resolution (1280*720 pixels) 10 sec

simulation movie is composed by 600 frames. On 16 quadcore

CPUs interconnected via InfiniBand, the rendering of all frames

takes less than 4 minutes.

Supporting Information

Figure S1 Synaptic weights between mitral and granule cells

after 10 sec odor presentations for each of the 72 odors used in this

paper. A–D) panels presents the results for a single odor. In each

panel, the top histogram represents the input strength on each

mitral cell, and the middle and bottom plots represent the normalized

excitatory and inhibitory peak synaptic conductance after 10 sec

of odor presentation, respectively; (dark purple: 0, white: 1).

(PDF)

Figure S2 Results from test simulations of odor k3-3 for 10 sec,

using the control values used for all simulations, a smaller time step

(10 ms instead of 25), modeled with a larger number of

compartments (5 mm membrane segments, instead of 10–

30 mm), or a different random number sequence.

(PDF)

Video S1 Movie illustrating somatic activity of mitral cells (red

cones) and granule cells (green spheres) during a 10 sec simulation.

Synaptic weights start from 0, and the network self-organizes

during presentation of odor k3-3, an aliphatic ketone. To illustrate

better the network activity, spikes from 100 granule cells below the

most active mitral cells have been associated with sound clicks. In

order to meet the journal’s limit on files size, frames have been

highly compressed. A full HD resolution version (about 200 Mb) is

available for public download on the ModelDB database (http://

senselab.med.yale.edu/modeldb/default.asp, acc.n.144570).

(AVI)
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