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Introduction

The seven APOBEC3 proteins are part of a larger polynucleotide 
cytosine deaminase family that in humans also includes activa-
tion-induced cytosine deaminase (AID), APOBEC1, APOBEC2 
and APOBEC4.1 All of the APOBEC3 proteins have the ability 
to convert single-stranded DNA cytosines to uracils, and this is 
the main mechanism by which several of these enzymes restrict 
the replication of HIV-1 and other retroviruses.1,2 Retroviral rest-
iction occurs when relevant APOBEC3s are packaged into viral 
particles along with the viral RNA genome. During reverse tran-
scription, the single-stranded viral cDNA becomes a target for 
cytosine deamination; replication across this cDNA template fixes 
uracils as point mutations in the retroviral genome and results 
in hypermutation and either inactivation or degradation.2 This 
mechanism is clear for APOBEC3G (A3G) and APOBEC3F 
(A3F) on HIV-1, as well as for other APOBEC3 enzymes on a 
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broad number of other viral substrates.2-4 In addition, APOBEC3 
proteins have a role in restricting retrotransposons (including 
LINE-1, Alu, IAP and MusD), primarily, although not solely, 
through a deamination process similar to retrovirus restriction.4-6

However, APOBEC3 enzymatic activity may also be prob-
lematic for genomic DNA. As an important precedent, AID-
dependent uracil lesions in the antibody locus can be processed 
into chromosomal translocations, and additional AID-dependent 
uracil lesions in other genomic areas may also be pro-carcino-
genic.7-9 For example, transgenic expression of AID causes T cell 
cancer in mice.7 Likewise, transgenic expression of APOBEC1 
can cause hepatocellular carcinoma.10,11 Although a role for 
APOBEC3A (A3A) in cancer development is unclear, heterolo-
gous expression causes S-phase arrest, γH2Ax focus formation 
and mutational events.12,13 In addition, we recently demonstrated 
APOBEC3B (A3B) upregulation in a majority of breast can-
cers, with corresponding increases in A3B-dependent mutation 
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DNA and provides comparative and mechanistic information on 
the mitotic regulation of the members of the APOBEC3 subfam-
ily. We also use cell cycle profiling as a measure of each DNA 
deaminase’s capacity to damage nuclear DNA and trigger DNA 
damage responses.

Results

A3A, A3C and A3H have access to genomic DNA during 
interphase and telophase. We first considered the single domain 
APOBEC3s, which are similar in size to AID and APOBEC1. 
The predicted molecular weight for A3A, A3C and A3H is 25 
kDa (50 kDa with eGFP). The interphase localization of these 
single domain proteins has been described.6,22-29 For all our 
experiments, we used the stable A3H haplotype II, which is more 
cytoplasmic than A3A and A3C but can be seen in the nucle-
oli of HeLa cells29,48,49 (Fig. S1). An E72A catalytic mutant was 
used for A3A, because the wild-type enzyme killed almost all 
cells after 48 h of transient expression (concordant with prior 
reports13,14). As described,30 AID was excluded from chromatin 
during prophase, metaphase and anaphase, but co-localized spe-
cifically with DNA during telophase (Fig. 1A and B; Fig. S2). As 
expected, eGFP alone was excluded from the condensed DNA 
in prophase, metaphase and anaphase50 (Fig. 1A; Fig. S2), but 
resumed its cell-wide distribution once the chromosomes began 
to relax during telophase (Fig. 1B). Likewise, A3A-E72A and 
A3C were excluded from condensed chromosomes during pro-
phase, metaphase and anaphase (Fig. 1A; Fig. S2). Once the 
cells reached telophase A3A-E72A and A3C became fully cell-
wide (Fig. 1B). Thus, A3A-E72A and A3C are excluded from 
DNA during early mitosis in a manner similar to eGFP, implying 
that these proteins do not bind to DNA and/or may simply be 
excluded physically from highly condensed chromosomes [unlike 
AID or eGFP-tagged histone 2B (H2B), Fig. 1A; Vid. S2]. These 
data are supported by two-color live cell microscopy using A3A-
E72A-mCherry and eGFP-H2B (Vids. S1 and S2). A3H-eGFP 
was also excluded from DNA during prophase, metaphase and 
anaphase (Fig. 1A; Fig. S2). However, during telophase, some 
A3H-eGFP remained excluded from DNA, but it could also be 
seen associated with punctate nuclear bodies, possibly part of 
re-assembling nucleoli (Fig. 1B). This continuing exclusion of 
A3H-Hap II during telophase is similar to the behavior of the 
double domain APOBEC3 proteins (below).

A3B, A3D, A3F and A3G are excluded from the DNA dur-
ing mitosis. We next considered the double domain APOBEC3s. 
These proteins are twice the size of the single domain proteins 
(~50 kDa native or ~75 kDa with eGFP) and are generally com-
posed of a C-terminal active deaminase domain and a less active 
or inactive N-terminal deaminase domain. A3B is nuclear dur-
ing interphase, while A3D, A3F and A3G are cytoplasmic30,37-44,47 
(Fig. S3). Despite A3B’s nuclear interphase localization, we had 
previously seen that it was excluded from mitotic chromosomes30 
(Fig. 2B). Likewise, A3D, A3F and A3G were all excluded from 
condensed chromosomes during prophase, metaphase, anaphase 
and telophase (Fig. 2A and B; Fig. S4). This contrasts with 
AID, which associates with chromatin during telophase, and 

signatures and overall mutation loads.14 The role of the other five 
APOBEC3 proteins in genomic deamination is less clear.

Subcellular regulation allows cells to compartmentalize pro-
teins that could be genotoxic or cytotoxic. For example, caspase-
activated deoxyribonuclease (CAD) is a DNase containing a 
nuclear localization signal that is complexed with an inhibitory 
protein in the cytoplasm.15 Cleavage of this inhibitor by caspase-3 
allows CAD to enter the nucleus and degrade the genome as part 
of the natural apoptotic pathway. Likewise, the transcription 
factors STAT1 and NFκB are kept in the cytoplasm until acti-
vated, when they transport to the nucleus and bind promoters 
to enhance or suppress transcription.16,17 Proteins can be actively 
targeted to a region of the cell through localization sequences 
within the protein or in an interacting partner. They can also 
be excluded from the nuclear compartment passively, based on 
size and shape, with a limit of approximately 50 kDa and 6 nm 
diameter.18

To complete mitosis, a cell must split its replicated genome 
between two daughter cells. In mammals, mitosis is facilitated 
by breaking down the nuclear envelope to allow for spindle 
formation and physical segregation of the chromosomes. The 
nuclear envelope re-forms shortly after cytokinesis.19 Some pro-
teins change localization during mitosis. For example, activated 
NFAT, which is nuclear during interphase, is excluded from 
DNA during mitosis and remains cytoplasmic until it is activated 
again.20 RUNX proteins, which form nuclear foci, dissolve and 
reform after mitosis, unlike histones, which remain bound to the 
DNA.21

During interphase, the APOBEC3 proteins vary in subcel-
lular localization. A3A, APOBEC3C (A3C) and APOBEC3H 
(A3H) are the smallest deaminases, each having a single deami-
nase domain (~25 kDa). A3A and A3C have shown consistent 
cell-wide distributions, whereas A3H is more variable, but A3H 
haplotype II is both cytoplasmic and nucleolar.6,22-29 As a compar-
ison, AID, which is a similarly sized, single domain deaminase, 
appears cytoplasmic at steady-state, but clearly shuttles between 
the nuclear and cytoplasmic compartment.30-33 APOBEC1 is also 
a shuttling protein with a predominantly cytoplasmic steady-state 
distribution in the absence of its interacting partner ACF.34-36 The 
double domain APOBEC3s (~50 kDa) are composed of two con-
served deaminase domains and are either nuclear, A3B, or cyto-
plasmic, APOBEC3D, APOBEC3F and APOBEC3G (A3D, 
A3F, A3G) during interphase.30,37-44 Interestingly, DNA damage 
can cause cytoplasmic APOBEC3G to enter the nucleus,45 as well 
as affecting the shuttling of AID, shifting it from primarily cyto-
plasmic to more nuclear.46 It is not clear what the importance 
of subcellular localization is for the function of the APOBEC3 
proteins, although a cytoplasmic distribution may be related to 
antiviral activity.39,47

Recently, we analyzed A3B and AID during mitosis.30 A3B is 
excluded from nuclear DNA during the entire process of mito-
sis, while AID associates with nuclear DNA during telophase. 
We thus became interested in the potential for other APOBEC3 
enzymes to bind nuclear DNA during mitosis. The present study 
tests the hypothesis that nuclear envelope breakdown during 
mitosis allows all of the APOBEC3 proteins access to genomic 
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Size-dependent and -independent effects on mitotic localiza-
tion. All the double domain proteins were excluded from genomic 
DNA. Since these tagged APOBEC3 proteins are approximately 
75 kDa, they are considerably larger than the native double 
domain enzymes or the tagged 50 kDa single domain enzymes. 
This size difference could be an important biological means of 

with A3A-E72A, A3C and eGFP alone, which begin to resume 
their cell-wide distributions during telophase (Fig. 1B). These 
data are supported by time-lapse microscopy using A3F-mCherry 
and eGFP-H2B (Vids. S3 and S4). These results indicate that 
that A3D, A3F and A3G have little opportunity for contact with 
genomic DNA during interphase or throughout mitosis.

Figure 1. A3A-E72A, A3C and A3H are excluded from DNA as the chromosomes condense but become cell-wide during telophase. (A) Images of HeLa 
cells in prophase expressing the indicated APOBEC3-eGFP constructs (top) merged with Hoechst stain to visualize the nuclei (merge, middle). Boxed 
regions (bottom) are magnified below each image with APOBEC3-eGFP exclusion from DNA indicated (white arrows). (B) Images of HeLa cells in telo-
phase expressing indicated APOBEC3-eGFP constructs (top), merged with nuclear stain (middle) and magnified (bottom). All images are representa-
tive of at least three mitotic cells. See Figure S2 for APOBEC3-eGFP localization during metaphase and anaphase and Videos S1 and S2 for time-lapse 
images of A3A-E72A-mCherry localization during mitosis.
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by its tag from its normal cellular distribution. To further rule 
out the effect of a tag on the localization of the double domain 
APOBEC3s, we used recently developed rabbit polyclonal sera 
to analyze the subcellular distribution of untagged A3B and 
A3G (Fig S6). After transient transfection, the interphase local-
ization of untagged A3B was nuclear, and, as expected, it was 

control or an effect of the tag. To test this possibility, we analyzed 
all four double domain proteins with a smaller HA-tag. Similar 
to our previous data, we saw that A3B, A3D, A3F and A3G-HA 
were all excluded from mitotic DNA during telophase (Fig. S5). 
This triple HA-tag is less than 5 kDa. Since A3A-eGFP is cell-
wide (51.3 kDa), A3B-HA (50.1 kDa) should not be impeded 

Figure 2. A3B, A3D, A3F and A3G are excluded from DNA during cell division. (A) Images of HeLa cells in prophase expressing the indicated APOBEC3-
eGFP constructs (top). Cells were stained with Hoechst dye to identify the nuclei (merge, middle). Boxed regions (bottom) are blown up below each 
image with APOBEC3 exclusion indicated (white arrows). (B) Images of HeLa cells in telophase expressing indicated APOBEC3-eGFP constructs (top), 
merged with nuclear stain (middle) and magnified (bottom). All images are representative of at least three mitotic cells. See Figure S4 for APOBEC3-
eGFP localization during metaphase and anaphase and Videos S3 and S4 for time-lapse images of A3F-mCherry localization during mitosis.
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and its C-terminal domain was cell-wide (Fig. 4). This difference 
prompted us to test whether A3D shuttles from the nucleus into 
the cytoplasm through the CRM1 pathway using the inhibitor 
leptomycin B (lepB).51 As a control, AID was cytoplasmic, and 
lepB caused it to become more nuclear32,33 (Fig. S7). In contrast, 
A3D remained cytoplasmic in the presence of lepB, implying that 
it does not use the CRM1 pathway (Fig. S7). In addition, the 
ability of N-terminal A3B to co-localize with DNA during telo-
phase was different from the delayed re-entry of full-length A3B, 
which remains excluded from DNA during telophase (Figs. 2B 
and 4A). Concordant with prior work,37,39 these data indicate that 
that A3F and A3G are likely to be excluded actively from DNA, 
since their N-terminal domains alone are excluded (Fig. 4A). A3B 
and A3D may rely on the size of the double domain or a motif 
created from the combination of both domains since in both 
cases the N-terminal half of the protein has access to DNA dur-
ing telophase while the full-length protein is excluded (Figs. 2B 
and 4A). Interestingly, forcing two A3C proteins together in an 
A3C-A3C-eGFP chimera created a protein that was cytoplasmic 
in interphase and excluded from genomic DNA in the same way 
as A3B, A3D, A3F and A3G (Fig. S8). Thus, both cis determi-
nants and size have the capacity to influence the telophase DNA 
exclusion phenotype seen for A3B, A3D, A3F and A3G.

DNA deaminase activity does not change between inter-
phase and mitosis. We hypothesized that in addition to physical 
exclusion of the APOBECs during mitosis, the instrinsic deami-
nase activity of these enzymes might be up or downregulated dur-
ing mitosis. First, we tested for changes in the deaminase activity 
of APOBECs that co-localize with DNA (A3A, A3B, A3C and 
A3H). We observed no difference in activity from transiently 
transfected untreated or mitotic cell lysates (Fig. S9). However, 

excluded from DNA during telophase and then began to re-enter 
the nucleus in cells progressing through telophase (Fig. 3A). 
Untagged A3G was cytoplasmic during interphase and excluded 
during telophase (Fig. 3B). The localization of untagged A3B 
and A3G mimics the localization of HA- and eGFP-tagged pro-
teins (compare Fig. 3 and Figs. S5 and S6). These data support 
our findings with tagged proteins that, under normal condi-
tions, A3B only co-localizes with DNA during interphase and 
that A3D, A3F and A3G are excluded in both interphase and 
throughout mitosis.

Determinants of double domain APOBEC3 localization. 
We hypothesized that APOBEC3 exclusion from mitotic DNA is 
governed by an internal regulatory element. To test the hypothe-
sis that at least one of the two domains in the double domain pro-
teins harbor subcellular localization determinants, we analyzed 
the localization of the N- and C-terminal domains of A3B, A3D, 
A3F and A3G separately. During prophase, metaphase and ana-
phase all of these proteins were excluded from condensed chro-
mosomes, similar to AID and all the other APOBEC3s (Figs. 1 
and 2, data not shown). During telophase, the N-terminal halves 
of A3B and A3D were both cell-wide and associated with DNA, 
while the N-terminal domains of A3G and A3F were excluded 
from the reassembling nuclear compartment (Fig. 4A). The 
C-terminal domains of A3B, A3D, A3F and A3G were cell-
wide (Fig. 4B). As expected,39 the localization of the N-terminal 
domains during interphase was similar to the localization of the 
full-length proteins during interphase (i.e., A3B N-terminal 
and full-length were nuclear, while A3F and A3G N-terminal 
and full-length were cytoplasmic Fig. 4C). Interestingly, the 
N-terminal domain of A3D was an exception, as it appeared pre-
dominantly nuclear, whereas full-length A3D was cytoplasmic 

Figure 3. Untagged A3B and A3G are excluded from genomic DNA in the same manner as HA- and eGFP-tagged derivatives. (A) Images of HeLa cells 
transfected with untagged A3B labeled with anti-A3B and anti-rabbit FITC (top) then stained with Hoechst dye to illuminate the DNA (bottom). The 
indicated progression through telophase (early and late) was based on chromatin condensation. (B) Images of HeLa cells transfected with untagged 
A3G labeled with anti-A3G and anti-rabbit FITC (top) and DNA stain as before (bottom). Representative images are based on several telophase cells.
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A3A and A3B blocked cells from exiting 
G

1
, preventing comparison of activity in 

untreated and mitotic cells (Fig. S9). To 
circumvent the arrest caused by enforced 
overexpression of A3A and A3B, we 
chose to focus on endogenous A3B activ-
ity. A3B mRNA is expressed highly in 
the osteosarcoma cell line U2OS, which 
grows normally and may have adapted 
to A3B expression (Burns, Leonard and 
Harris, unpublished data). We tested 
lysates from asynchronous cell popula-
tions, synchronized cells harvested in 
S phase, as well as nocodazole-treated 
synchronized cells in prometaphase52 
(Fig. 5A). Both deaminase activity and 
A3B protein levels were similar under 
all conditions (Fig. 5B and C). These 
experiments show that endogenous A3B 
is active in during interphase and during 
mitosis, and they further indicate that its 
intrinsic DNA deaminase activity may 
not vary during the cell-cycle. These 
results suggest that genomic deamina-
tion is not prevented by cell cycle-specific 
regulation of APOBEC3 activity.

APOBEC3-induced cell cycle per-
turbations. The cell cycle is a highly 
regulated developmental program with 
delicate checks and balances that pre-
vent cells from dividing in the pres-
ence of DNA damage. We used these 
innate DNA damage-sensing properties 
to test for DNA damage caused by the 
APOBEC3 proteins. Tetracycline induc-
ible HEK293 and HeLa cells show cell 
cycle disruptions after overexpression of 
A3A13,14 and A3B,14 and repair-deficient 
B cells have shown toxicity after AID 
induction.53 We therefore tested all 
APOBEC3s and AID for cell cycle effects 
by transient transfection in HEK293T 
and HeLa cells. Based on the mitotic 
images described above, we predicted 
that A3A, A3B and A3H were mostly 
likely to alter the cell cycle profile over 
time, and, based on our activity data, 
A3C would have little effect even though 
it distributes cell-wide. Representative 
profiles for each APOBEC3 in these two 
cell lines are shown for 48 h expression 
in HEK293T cells and 96 h expression 
in HeLa cells (Fig. 6A; Fig. S10A).

A3A caused a consistent shift of the 
G

1
 peak toward S in both cell lines and 

a broadening of the G
2
 population in 

Figure 4. Localization of single domain variants of A3B, A3D, A3F and A3G. (A) Images of HeLa 
cells in telophase expressing N-terminal or (B) C-terminal halves of the indicated APOBEC3-eGFP 
constructs. DAPI and merged images below. Wild-type A3D-CTD was toxic, so a catalytic mutant 
was used (A3D-CTD-E264A, indicated by *). All images are representative of several telophase 
cells. (C) Representative images of HeLa cells in interphase expressing the N-terminal halves of the 
indicated APOBEC3-eGFP constructs.
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A3F and A3G, for example, have cis determinants, because their 
N-terminal domains alone are cytoplasmic, whereas A3B and 
A3D N-terminal proteins co-localize with DNA during telo-
phase, while their full-length forms are excluded.

We were surprised that full-length A3D is cytoplasmic, but 
separately, each domain had access to the nucleus. Moreover, full-
length A3D had the capacity to affect HEK293T and HeLa cell 
cycle profiles. We theorized that full-length A3D might shuttle 
between the cytoplasmic and nuclear compartment, but we did 
not detect CRM1-dependent shuttling. Although we have no evi-
dence that the N- and C-terminal domains of A3D are expressed 
separately in our transient transfections, it is possible that separate 
N- and C-terminal domains may have a role to play in genomic 
mutation. Double-domain APOBEC3 proteins in other species 
(e.g., sheep and pig) can be expressed as either N- or C-terminal 
domains alone, as well as the full-length form.56,57 Human A3F 
also has alternative isoforms.58 It is therefore possible that other 
double domain APOBEC3 proteins may be expressed as single 
N- or C-terminal domain variants that could have subcellular 
distributions that differ from the full-length enzymes.

Importantly, we have shown that endogenous A3B is similarly 
active in interphase, S phase and mitotic cell lysates. Transient 
transfection experiments with A3C and A3H also indicated 
no difference in activity between extracts from interphase and 
mitotic cell populations. These results suggested that DNA 
deamination activity is not up or downregulated during differ-
ent stages of the cell cycle. Instead subcellular localization may 
direct a perpetually active APOBEC3 enzyme to its substrate. In 
this model, we expect that the majority of genomic deamination 
events by APOBEC3 proteins occur during interphase. Previous 
work has indicated that AID deaminates genomic DNA dur-
ing G

1
 phase.59 Because we see exclusion of the APOBEC3 pro-

teins during the majority of mitosis, it seems likely that genomic 

HEK293T cells (arrows in Fig. 6A; Fig. S10A). In HEK293T 
cells, only A3B, A3D and AID caused decreases in mitotic cells 
(Fig. 6A), while in HeLa cells only A3B and AID caused a dra-
matic decreases in DNA content, an indication of apoptotic cells 
(Fig. S10A). Surprisingly, A3H did not cause a reproducible 
effect on the cell cycle profile. A3C, A3F and A3G did not cause 
dramatic changes to the shape or proportions of the cell cycle 
profile, indicating that transient overexpression is not the cause 
of these cell cycle perturbations. From these data it is clear the 
A3A, A3B and AID can affect cell cycle progression, as has been 
shown in different systems,13,14,53 and that A3D may also be able 
to activate cellular checkpoints despite low levels of expression 
(Fig. 6B; Fig. S10B). Similar cell cycle defects are dependent on 
the catalytic activity of both A3A and A3B and have been linked 
to genomic mutations, supporting our use of cell cycle perturba-
tions as a measure of genomic DNA deamination.13,14

Discussion

We hypothesized that the mitotic breakdown of the nuclear 
envelope would allow APOBEC3s access to genomic cytosines 
for deamination. Since several APOBEC3s are positively charged 
and known to bind DNA,54,55 we expected to see the APOBEC3 
proteins interacting with DNA during prophase upon dissolution 
of the nuclear envelope. Instead, we discovered that cytoplasmic 
APOBEC3 proteins do not have access to genomic DNA, even 
during mitosis. The mechanism preventing the APOBEC3s from 
interacting with genomic DNA during prophase, metaphase 
and anaphase is unclear but may be as simple as exclusion from 
condensed chromatin, since eGFP is excluded in a similar man-
ner. However, this simplistic model does not explain all obser-
vations, as DNA exclusion during telophase may be dependent 
on a combination of N-terminal determinants and protein size. 

Figure 5. Similar A3B deaminase activity in untreated, S-phase and mitotic cell lysates. (A) Cell cycle profiles of asynchronous cells (red), S-phase cells 
(blue) and mitotic cells (green). See methods for synchronization details. (B) Deaminase assay using lysates from cell populations shown in (A). (C) Im-
munoblot of protein lysates from (A) probed with anti-A3B or anti-tubulin antibodies.
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regulated and is confined to cells of the myeloid lineage,60 other 
APOBEC3 proteins are expressed more broadly.61,62 Interestingly, 
A3B, A3D and A3H all have been inactivated or deleted to a cer-
tain extent in the human population.29,48,49,63-65 More than 90% 
of people of Oceanic heritage have an A3B deletion polymor-
phism that leaves the surrounding A3A and A3C genes intact 
but completely removes A3B.63 Chimpanzee A3D is much more 
active than human A3D, and this is largely dependent on a single 
amino acid difference.64,65 Likewise, there are several haplotypes 
of A3H, and the most prevalent among them are unstable.29,48,49 
We used the human A3H haplotype II in these experiments, 
because it is stable and active against HIV-1.3,6,29 Thus, A3B, 
A3D and A3H may be sufficiently detrimental to genomic DNA 

deamination generally occurs during interphase and may be 
specific to G

1
, although further work is needed to distinguish 

between G
1
, S and G

2
 deamination by endogenous APOBEC3 

proteins in relevant primary cell types.
Use of cell cycle profiles as proxy for DNA deamination has 

precedent for both A3A and A3B and has been linked to the 
catalytic activity of these enzymes and their capacity to cause 
genomic mutations.13,14 We observed a cell cycle progression 
defect in HeLa and HEK293T cells expressing A3A, A3B, A3D 
and AID (and mildly for A3H), implying that deamination and 
the ensuing DNA damage response is occurring in these cells. 
Based on our results, we predict that A3A, A3B, A3D, A3H 
and AID may deaminate genomic DNA. While A3A is tightly 

Figure 6. APOBEC3 effects on cell cycle progression in HEK293T cells. (A) DNA flow cytometry profiles of HEK293T cells transfected with APOBEC3-
eGFP constructs. Representative profiles of triplicate independent PI-staining experiments are shown at 48 h. APOBEC3-eGFP expressing cell profiles 
(red) are overlaid on untransfected cells in the same population (blue). The shift toward S-phase in A3A-eGFP expressing cells is indicated (black ar-
row). (B) Expression of the indicated APOBEC3-eGFP proteins in HEK293T cells as shown by flow cytometry (top) and immunoblotting (bottom).
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Treatment with leptomycin B to inhibit CRM1 dependent export 
has been reported.30,75 Cells were treated with 40 ng/mL of lepto-
mycin B dissolved in ethanol or ethanol diluted in media alone. 
After 3 h these cells were fixed for imaging.

DNA deaminase oligonucleotide cleavage assays. 
Synchronization protocols were modified for this experiment.52 
HEK293T or U2OS cells were treated with 2 mM thymidine 
(Sigma-Aldrich) to cause G

1
/S-phase arrest. After 17 h the thy-

midine was removed and the cells were released in DMEM with 
fetal bovine serum (media). The HEK293T cells were then 
transfected with the indicated APOBEC3-eGFP constructs 
(Transit-LT1, Mirus). After 8 h the media was removed, and a 
second thymidine block was added. After another 17 h incuba-
tion the thymidine was removed, and the cells were released into 
media. After 4 h cells were harvested for S-phase. Alternatively, 
the cells were released for 2 h and then treated with 120 ng/mL of 
nocodazole (Sigma-Aldrich). After 16 h the nocodazole treated 
cells were harvested for metaphase. A fraction of the cells were 
analyzed for cell cycle profile (see below). The rest were pelleted, 
washed and resuspended in lysis buffer (25 mM Hepes, pH 7.4, 
250 mM NaCl, 10% glycerol, 0.5% Triton X-100, 1 mM EDTA, 
1 mM MgCl

2
, 1 mM ZnCl

2
) then sonicated three times for 3 

sec. Samples were run on western blots and probed with anti-A3B 
(Rb10 14), anti-GFP (1:5,000, 632 381; BD Clontech) or anti-
tubulin (1:20,000, MMS-407R; Covance). The DNA deamina-
tion assay has been described.60 Lysates were mixed with 6-FAM 
labeled 43 nucleotide containing oligo containing a TTCC 
deamination site for 30 min at 37°C before addition of uracil 
DNA glycosylase and NaOH to create and break an abasic site. 
The samples were run on 15% acrylimide-urea gels for separation 
and analyzed with a Fuji-FLA 5000 scanner.

Cell cycle profiling experiments. HeLa or HEK293T cells 
were plated into 6-well plates at 200,000 cells/well and trans-
fected the next day with 300 (A3A, A3B, A3C, A3F, A3G) or 
400 ng (A3D, A3H and AID) of eGFP constructs. The cells were 
harvested and fixed with 4% PFA for cell cycle analysis or lysed 
in loading buffer for western blots. The cell cycle samples were 
treated with 0.1% Triton X 100, 20 μg/mL propidium iodide and 
40 μg/mL RNase A (Qiagen) in PBS for 30 min at room tem-
perature before flow cytometry (BD Biosciences FACS Canto II). 
GFP-positive and GFP-negative live cells were analyzed for their 
PI staining profiles using FloJo and GraphPad Prism. The lysates 
were run on 4–15% polyacrylamide gels, transferred to pvdf and 
then blotted with anti-GFP (1:5,000, 632 381; BD Clontech) 
and anti-tubulin (1:20,000, MMS-407R; Covance).
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and an individual’s well-being to warrant selective inactivation 
of the activity of these enzymes. Although the experiments we 
report are transient tests of the capability of the APOBEC3s to 
affect cell cycle progression, the data suggest that A3A, A3B, 
A3D and A3H may be interesting for further studies on genomic 
mutation. In fact, transient expression of A3A causes genomic 
mutations in the nuclear and mitochondrial genomes,12 and high 
levels of endogenous A3B induce genomic mutations in breast 
cancer cells and correlate with higher mutation loads in tumors.14

The long-term effect of chronic or episodic genomic deamina-
tion may be cancer predisposition. This is strongly supported by 
the link between AID expression and B cell cancer.7,8,66 Breast 
cancer genome sequencing has shown that breast tumors have 
large numbers of somatic mutations and also high percentages 
of cytosine to thymine (C to T) transitions and regions of clus-
tered mutations.67,68 These mutation signatures from breast can-
cers have been linked to A3B signatures, especially in clustered 
regions, where single-stranded DNA may be available for deami-
nation.14 Many other cancers also have a high proportion of C 
to T mutations, including brain, gastric, head and neck, ovar-
ian, pancreatic and prostate cancers.69-73 Over the next few years, 
with the increasing availability of cancer genome sequences and 
additional molecular studies of the APOBEC3 proteins, we pre-
dict that minimally A3B14 and potentially other APOBEC3s will 
come to the center stage as our understanding of cancer muta-
genesis develops.

Materials and Methods

Fixed cell microscopy experiments. Microscopy procedures 
have been described.30 Briefly, HeLa cells plated on glass cov-
erslips (12-545-85; Fisher Scientific) in 6-well plates were tran-
siently transfected with 400 ng each of eGFP, HA or untagged 
constructs (Transit-LT1; Mirus) and incubated for 48 h. The 
cells were fixed with 4% paraformaldehdye in phosphate buff-
ered saline (PFA in PBS) for 20 min at room temperature. 
APOBEC3-HA and untagged expressing cells were incubated 
with primary antibody in blocking buffer. Rabbit polyclonal 
sera were identified as described.74 Hybridoma media was used 
for immunofluorescence. The anti-HA antibody (MMS-101P; 
Covance) was used at 1:200 and visualized with anti-mouse 
FITC (115095146; Jackson), while untagged A3B was identified 
with Rb10 14, untagged A3G was identified with Rb10 93, and 
these samples were visualized with anti-rabbit FITC (111095144; 
Jackson) (Fig. S6). All slides were treated with 0.1% Hoechst dye 
to stain the nuclei. The slides were mounted with 50% glycerol 
and imaged (Deltavision; Applied Precision). All images were 
deconvolved using SoftWorks (Applied Precision).

Live cell experiments. Movies were taken as described.30 Briefly, 
HeLa cells plated at 40,000 cells/well in 4-well chambers (Nunc) 
were transiently transfected with 200 ng of eGFP-tagged histone 
2B and 400 ng of APOBEC3-mCherry. The cells expressed these 
constructs for 48 h before transfer to a heated chamber (37°C) 
on the microscope (Deltavision; Applied Precision). Images of 
dividing cells were taken every three minutes for 1–3 h. These 
images were deconvolved and used to create quicktime movies. 
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