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Abstract
Purpose—Most objective image quality metrics average over a wide range of image
degradations. However, human clinicians demonstrate bias toward different types of artifacts.
Here, we aim to create a perceptual difference model based on Case-PDM that mimics the bias of
human observers towards different artifacts.

Method—We measured artifact disturbance to observers and calibrated the novel PDM. To tune
the new model, which we call Artifact-PDM, degradations were synthetically added to three
healthy brain MR data sets. Four types of artifacts (noise, blur, aliasing, or “oil-painting” which
shows up as flattened, over-smoothened regions) of standard Compressed Sensing (CS)
reconstruction, within a reasonable range of artifact severity, as measured by both PDM and visual
inspection, were considered. After the model parameters were tuned by each synthetic image, we
used a Functional Measurement Theory pair-comparison experiment to measure the disturbance of
each artifact to human observers and determine the weights of each artifact’s PDM score. To
validate Artifact-PDM, human ratings obtained from a Double Stimulus Continuous Quality Scale
experiment were compared to the model for noise, blur, aliasing, oil-painting and overall qualities
using a large set of CS reconstructed MR images of varying quality. Finally, we used this new
approach to compare CS to GRAPPA, a parallel MRI reconstruction algorithm.

Results—We found that for the same Artifact-PDM score, the human observer found incoherent
aliasing to be the most disturbing and noise the least. Artifact-PDM results were highly correlated
to human observers in both experiments. Optimized CS reconstruction quality compared favorably
to GRAPPA’s for the same sampling ratio.

Conclusions—We conclude our novel metric can faithfully represent human observer artifact
evaluation and can be useful in evaluating CS and GRAPPA reconstruction algorithms, especially
in studying artifact trade-offs.
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1. INTRODUCTION
Magnetic Resonance Imaging (MRI) provides soft tissue contrast superior to other imaging
modalities, but also typically requires longer acquisition time, which limits its applications
in many scenarios such as diagnosis and management of acute ischemic stroke33. One way
to reduce acquisition time is by reducing the amount of acquired data, and applying
complicated reconstruction algorithms to recover full FOV images from the partially
acquired data. However, the challenge is to retain as much diagnostic information as
possible, relative to an ideal image reconstructed from fully sampled data.

In Partially Parallel Imaging (PPI), the incomplete data can be reconstructed using
knowledge of coil sensitivity patterns and/or reference data19. However, noise and aliasing
artifacts are commonly seen in PPI32. As a result, many regularization techniques have been
applied to PPI reconstruction to improve or trade-off these degradation patterns. For
instance, Tikhonov regularization, when applied to Generalized Autocalibrating Partially
Parallel Acquisition (GRAPPA), trades off noise and blur artifacts34. Since these
regularization techniques require optimization of reconstruction parameters, it is possible to
create thousands of test images. It is impractical to evaluate all of these images by hand, so
there is a great need for computer evaluation of image quality, a need that has been
emphasized in recent scientific meetings1–3.

Current popular assessment methods are insufficient. Signal to Noise Ratio (SNR) and Root
Mean Square Error (RMSE) are the standard measurements, but they can be diagnostically
misleading35. For example, an image with higher SNR but lower spatial resolution does not
necessarily provide more diagnostic information than an image with lower SNR but higher
spatial resolution36. In fact, radiologists are more accustomed to images with a certain level
of white noise than to noise-free images36,37. When a reference image is available, a
minimum error energy criterion, RMSE, is often employed. However, the minimum error
may not be the most diagnostically accurate image either, especially after trading-off
different types of artifacts that happen when regularization is employed. Regularization also
has the potential to create structured image features that do not exist in the true image. This
kind of image features like ghosting artifact may show up as a small RMSE, but could lead
to misdiagnosis4–6, especially when these new features have similar structure to local
anatomy. This prevents the using of blind expert reviewers to assess comparative image
quality, because those erroneous “features” will not necessarily be recognized as incorrect.

A perceptual difference model (e.g., Case-PDM) is superior to other automatic evaluation
metrics, including detection models, for evaluation of MR image quality7. However, current
models do not differentiate between different artifacts, each of which interferes with
diagnostic information in different ways. For example, Hunold et al.8 found that aliasing
artifacts impair diagnostic value of the cardiac images more severely than noise in cardiac
cine MRI. Krishnam et al.9 found that flow-related artifacts and cardiac motion artifacts
degrade diagnostic content of steady-state free precession (SSFP) magnetic resonance
angiography (MRA) images more than noise and blurring effects. In 7T brain imaging,
aliasing artifacts are more dangerous than other artifacts. For instance, they can obscure
Hippocampal structures to create a significant disturbance during brain disease diagnosis10.
Radiographic interpretation training documents11 state that structured noise, as opposed to
random noise, can contribute to visual search errors that are common and most often result
from incomplete evaluation of a medical image. Although many observers learn to recognize
artifacts, the need to negotiate around numerous artifacts leads to reduced observer
confidence in decision making12. Therefore, to create an image quality metric that is
diagnostically relevant, one has to quantify the relative disturbance of those different image
artifacts to the observer.

Miao et al. Page 2

Magn Reson Imaging. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To assess MR image reconstruction algorithms in the past, we have used a perceptual
difference model (Case-PDM), which models the functional anatomy of the visual pathway,
including the optics of the eye, the sensitivity of the retina, the spatial contrast sensitivity,
and the channels of spatial frequency found in the visual cortex7,20. The two inputs are a test
image (acquired quickly and therefore likely to be degraded) and a reference image
(acquired more slowly and therefore with higher quality). The output is a spatial map of the
likelihood of a perceptible difference, which can be averaged over a region-of-interest (ROI)
to yield a scalar image quality metric. Case-PDM has been shown in a variety of MR
experiments (including parallel MR imaging) to correlate with human observers7,20–22. It
has been used for comparing competing MR reconstruction methods and for optimizing
algorithmic free parameters20–22.

Compressed Sensing (CS) allows the reconstruction of sparse images or signals from very
few samples13–14. It has recently been applied to MRI for reconstruction with partially
acquired data15–18. There are at least two advantages to CS over PPI. First, although PPI
reduces acquisition time at the cost of reduced SNR, CS typically has higher SNR than the
reference image, whereas PPI does not, because CS typically does not use as much
regularization as PPI due to its highly incoherent sampling15. Second, CS does not require
expensive multi-channel receiver systems. However, current CS reconstructions also trade
off artifact removal and preservation of sharp edges and fine structures. This can be caused
by improper regularization of the sparsifying transforms and/or improper balance of sparsity
and data fidelity38,39. The damaged information and unpredictable residual artifacts could be
mistaken for pathology36.

In this paper, we develop a novel model (Artifact-PDM) that is able to quantify the severity
of different degradations. We calibrated and compared the results of this model to
experimentally measured CS and PPI reconstruction image quality using two kinds of
experiments: FMT (Functional Measurement Theory) experiments to calibrate the relative
severity of different typical MRI reconstruction artifacts, and DSCQS (Double-Stimulus
Continuous-Quality Scale) experiments to determine the correlation between the automatic
and human observer image quality.

2. METHODS
Case-PDM mimics the human visual system to capture the perceptual difference between
input reference and test images. In the Case-PDM, the visual cortex filter has 31 channels: 6
different orientations with 6 different spatial frequencies and the baseband (zero spatial
frequency). Each of these channels is equally weighted, which means that Case-PDM
averages image quality over a wide range of image artifacts. We extended Case-PDM to
include the severity of disturbance of different reconstruction artifacts. Then, we calibrated
the relative severity among artifact evaluations and validated this new metric using human
observer experiments.

2.1 Development of Artifact-PDM
To selectively evaluate different image artifacts, the 31 channels of the cortex filter should
be weighted differently, according to the characteristic spatial frequency and orientation of
each specific artifact. To do this, synthetic images were created from each input reference
image by adding one type of distortion like noise, blur, aliasing, or oil-painting artifact, and
then normalized between 0 and 255. Responses of these 31 cortex channels for each
synthetic image were summarized to be 31 scalar scores and then normalized between zero
and one. Thus, there are 4 sets of normalized values, or channel weights, corresponding to
each type of artifact. In order to evaluate one specific artifact of a MR image reconstruction,
which has multiple types of artifact in it, a corresponding set of channel weights multiplied
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PDM to weight the 31 cortex channels for the selective evaluation. The whole image region
was used as a ROI in this paper. Thus, the new algorithm can give multiple artifact-specific
assessments. However, these selective-artifact PDM scores may not be comparable due to
their unknown relative importance. To make the selective evaluations comparable, we must
calibrate them to the disturbance of each type of artifact, which was determined by human
observers. We term this algorithm “Artifact-PDM”.

2.2 Raw Data and Reconstruction Algorithms Used in Experiments
A Total Variation (TV) and Wavelet Transform (WT) sparsification based CS reconstruction
algorithm15, and the GRAPPA parallel MRI k-space reconstruction algorithm27 were
evaluated and compared in this paper. Three high resolution raw parallel MRI brain data sets
(T2-weighted, flip angle = 90°, TR/TE = 3000/85 ms, matrix size 512×512, slice thickness =
20mm, FOV = 205mm×205mm, resolution 0.4mm×0.4mm) were acquired from a healthy
volunteer. Three planes were acquired (Sagittal, Coronal, and Transverse) on a Philips
Achieva 3T scanner (Best, Netherlands) with an 8-channel head coil (Invivo Corporation,
Gainesville, Florida, United State). Data for GRAPPA reconstruction27 was synthetically
generated by decimating the original full-sampled k-space data by the reduction factor,
which is an integer number fR (i.e. one of every fR k-space lines in phase encoding direction
is omitted). The calibration region of k-space was fully sampled, and the missing k-space
data were estimated with GRAPPA. Finally, the reconstructed image was obtained by sum-
of-squares of the multi-channel data. The reference images were obtained from the raw data
sets by using sum-of-squares.

Data for CS reconstruction was generated synthetically by randomly under-sampling the
two-dimensional reference k-space data, which was obtained from the reference image
through Fourier transform, in the phase encoding direction. Then, the CS algorithm was
used to recover a full-FOV image15. The sampling pattern was created according to
predesigned probability density function (PDF) with a sampling ratio rS (rS = 1/fR) 15. We
used a set of optimal regularization parameters reported previously39.

We compared both algorithms to the naive zero-filling method (i.e. zero-filling the non-
sampled k-space), or “ZF”, and to each other. For GRAPPA reconstruction, a kernel of
regular size 4×5 was used for each channel. A wide range of rS was used in the MRI
reconstructions. All three reconstruction methods can produce noise, blur and aliasing
artifacts. Only CS reconstruction can have oil-painting artifact.

2.3 Measuring Artifact Disturbance: FMT (Functional Measurement Theory) Experiment
We used a FMT experiment to measure artifact disturbance to human observer. In image
quality research, it is known that if scenes have to be judged by direct rating, subjects may
use a separate internal quality scale for each distortion observed. The Functional
Measurement Theory (FMT) experiment is adopted from Anderson’s functional
measurement theory23–24. In this approach, image qualities are compared rather than
separately evaluated, in order to force subjects to link the quality ratings for both images that
have degradation patterns. Thus, it is possible to measure artifact disturbance to observer by
rating different degradation patterns through FMT experiment.

Three raw brain images (“Sagittal”, “Coronal”, and “Transverse” in Fig. 1a–c) of size
512×512 were used to generate test images. Each image was directly degraded by adding
four types of artifacts respectively: noise, blur, aliasing and oil-painting artifacts. Gaussian
white noise with zero mean and different standard deviations (σ=1–30) was added to the real
and imaginary channels of complex k-space data, obtained from the original image through
Fourier transform, to create the noisy datasets. Blurred datasets were created by convolving
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the original image with a circular averaging filter (i.e. a pillbox filter) of radius 0.5 to 0.7.
Aliased datasets were created by variable density random sampling patterns. Here, randomly
selected phase encode lines are inverse Fourier transformed after zero-filling the unsampled
k-space data. Oil-painting artifacts were created by CS reconstruction with a relatively high
TV weight. We ensured the range of severity for each artifact was reasonable and
comparable by using both Case-PDM and visual inspection. Hence, three datasets were
generated, where each dataset had one reference image (Sagittal, Coronal, or Transverse)
and 20 degraded images (four degradation patterns with 5 levels of degradation each).
Within each dataset, every test image was compared to every other test image, including a
comparison to itself, giving a total 231 comparisons. Each pair of images was shown twice
at random, giving 441 evaluations.

During the experiment, each evaluation was displayed with the images side by side on the
screen, and human subject was asked to rate the quality difference between them (subjects
were asked: “how much Left image is better than Right image”) using a scale from −10 to
+10. The plus and the minus signs were used to indicate whether the left or the right image
was preferred. A training session of 60 randomly selected images pairs, which were not
included in the test datasets but were similar to them, was presented to each subject before
the start of the actual experiment. There was 18 seconds time limit for each trial.

FMT data analysis was done on subjective rating matrices. For each subject, one 21×21-
element matrix was obtained (one row and one column per image) for each part of the
experiment, with element (i, j) representing the score given by the subject for the difference
in quality between the pair of images, images i and j being displayed on the left and the right
hand sides of the GUI, respectively. To apply the FMT method, one needs to observe
parallelism for the scores within the different rows and columns, or to calculate the
interaction between rows and columns by means of two-way analysis of variance method24.
If parallelism was observed or no significant interaction was found, according to FMT, a
quality score on an interval scale for each stimulus can be determined by averaging (with
opposite signs) the row and column means of the matrix that correspond to that stimulus. A
general quality score for all subjects was obtained by averaging the individual quality
scores, after normalizing the individual scores using a z-score transform24,

(1)

where x̄ and σ are mean and standard deviation for score x, to minimize the variation in the
individual score, which is caused by the fact that not all subjects used the full range of the
numerical scale in comparing image qualities.

We calibrated Artifact-PDM to the subjective data. First, Artifact PDM was used to
calculate artifact-selective PDM scores for the test images. Then, for each degradation
pattern, we fit Artifact-PDM scores and their corresponding z-scores obtained from FMT
experiment to a curve modeled by y = axb using a least squares approach. a and b are scalar
values, y represents z-scores shifted by an offset value equal to the reference z-score and x
represents for the Artifact-PDM predictions. An origin is added representing the reference
image, which has the best image quality, to optimize the regression line. This allows
Artifact-PDM to be comparable across different degradation patterns, with a calibrated score
of zero representing best image quality. The fitting accuracy was examined by calculating
the correlation coefficient of the model transformation log(y) = log(a) + b log(x).

Once the Artifact-PDM has been calibrated by FMT, it can be used to evaluate images
degraded by multiple types of artifacts. Assessment of each artifact can be quantified by
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converted z-score (or, “artifact score”) from Artifact-PDM score. Overall image quality,
which considers the observer’s bias over different degradation patterns, can thus be obtained
by averaging all the artifact scores (we call it “comprehensive score” hereafter). A score
value of zero always indicates the best image quality.

2.4 Human Subject Correlation: Double-Stimulus Continuous-Quality Scale (DSCQS)
Experiment

We used DSCQS experiment to validate the new artifact assessment metric on CS
reconstructions corrupted by four types of artifacts. Test images were created by the CS
reconstruction algorithm15. The same raw brain images (Fig 1a–c) were used. DSCQS is a
human subject rating method recommended by International Telecommunication Union25 It
has been applied to MRI previously20,26. Here, we used a previously described method7, 21

to test the full range of image quality in our images. For each experiment, we selected 40
test reconstructions with Case-PDM scores spread uniformly from the best to the worst.
Each human subject presentation consisted of a two-panel display, with the high-quality
reference image and a randomly selected test image on the left and right, respectively.
Observers were instructed to score the quality of the test image on a scale of 100 to 0, with 0
being the best quality and 100 being the worst quality. Observers were aware that we
considered the reference image to be “best” and that they should consider it to have a score
of zero7. A training session consisted of 30 test images was supplied for each subject before
the experiment. The training dataset was independent of experimental datasets but was
similar to one of them. In both the training and the experimental sessions, subjects were
asked to rate five image quality aspects (noise, blur, aliasing, oil-painting and overall) in
each image presentation. The score was entered using either the mouse or keyboard. To
account for intra-observer differences, each of the 40 test images was displayed and
evaluated twice in each session. The experiment was carried out in a darkened room and
normally took 1 hour. A perceptually linearized, high quality monitor was used. There was
no time limitation, and subjects were allowed to revise any of their results at any time.

We studied correlation between artifact scores and subjective ratings. First, the two scores
for the same test image and subject were averaged to reduce intra-observer variability.
Observer data from each subject were fitted to model y = ax + b, where x is Artifact-PDM
score and y is z-score. The x-intercepts of these fitted lines were calculated, and these
intercepts actually corresponded to the data points where Artifact-PDM found the difference
but human subjects did not. Therefore, the x-intercept could be regarded as a measurement
of the “non-perceptible” threshold. To test the model prediction accuracy, linear correlation
coefficients (i.e. Perason’s product-moment coefficients) between artifact scores and
corresponding human ratings were calculated.

2.5. Experimental Conditions
We used a display software running on a conventional Dell Precision T5400 Mini Tower,
Quad Core Xeon Processor 3.0-GHz personal computer (Dell Inc., Round Rock, TX) with a
NVIDIA NVS 290 256MB RAM display adapter. We used a standard Dell UltraSharp 24-
inch widescreen flat panel LCD display color monitor (model 2408WFP) with a 6ms pixel
refresh rate and a display resolution of 1920 × 1200 pixels. The display had an 8-bit
dynamic range and pixel size on the screen was 0.3 mm. The minimum and maximum
luminances were 0.01 Cd/m2 (black) and 99.9 Cd/m2 (white) at gray-levels of 0 and 255,
respectively. All experiments were performed in a dark room. The viewing was binocular
and the viewing distance was loosely enforced at 0.3 meter. To maintain constant display
conditions across observers, subjects were not allowed to adjust window or level settings or
to use the zoom function. The same display and viewing conditions were also applied to
Artifact-PDM.
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Four engineers and one radiologist, aged between 19 and 33 years, participated in the FMT
(Eng_1-4 and Rad) and DSCQS (Eng_1-2) experiments as observers. All observers had
normal or corrected-to-normal visions, and their acuities were measures using a Snellen eye
chart at a distance of 10 ft (3.05 m) and a reading card at 14 in (0.356 m).

3. RESULTS
3.1 Artifact Disturbance Calibration for Artifact-PDM (FMT)

Parallelism was observed and no significant interaction was found within every subject’s
raw 21×21-element matrix data, confirming a good FMT experiment. For each data set, the
subjective rating matrix was transformed into 21 z-scores for the 21 test images including
the reference image, and then averaged over all four subjects. The averaged z-score for each
reference image is listed in Table 1. With an origin at the z-score of reference image, the
averaged human subject data were plotted against corresponding artifact PDM scores in Fig.
2, and data from four different degradation patterns (i.e. noise, blur, aliasing and oil-
painting) were fitted to a non-linear model, to form four FMT curves (or, “calibration
lines”). The Artifact-PDM predictions agreed an average correlation coefficient of 0.98 with
subjects’ ratings for all different artifacts, subjects and data sets. All four calibration lines
were separate, indicating that not all artifacts have the same ranking according to human
observers. Within a reasonably wide range of artifact, which we found to be approximately
from 0 to 12 in terms of PDM score7, only calibration lines of blur can interact with aliasing.
Noise is the least disturbing artifact among the four types of artifacts. We found the
variation of calibration lines across three brain data sets was about 0.11 of the ratio of
standard deviation to mean, which implies little variability between data sets.

The radiologist performed similarly to the other engineers. Fig. 3 shows individual ratings
against PDM predictions for one brain data set during the FMT experiment.

3.2 Human Subject Correlation (DSCQS)
The human rating results were plotted as the function of artifact scores and Fig. 4 shows
results from the DSCQS aliasing artifact experiment for the Sagittal data set. A highest
linear correlation coefficient, r2=97%, was observed between the human subject ratings and
aliasing scores. Correlations with different artifact scores and x-intercepts for all three data
sets are summarized in Table 2.

3.3 Comparison of MRI Reconstruction Algorithms
To compare reconstruction algorithms, we averaged calibration lines (Fig. 2) across three
training data sets since their variations were relatively small. Fig. 5 contains plots of the
reconstruction image quality (artifact score and overall quality, or comprehensive score) as a
function of sampling rate rS for the Transverse data set. Out of the averaged artifact scores
for the three algorithms, ZF’s aliasing had the highest score and CS’s noise the lowest (Fig.
5a). In terms of overall image quality (Fig. 5b), CS outperformed GRAPPA at low sampling
rate (rS <0.33) but both performed very closely above that. Both algorithms were better than
ZF. Fig. 6 shows images reconstructed by each of the three algorithms with a 50% sampling
rate. Similar results were also observed for the Coronal and Sagittal data sets.

4. DISCUSSION
In this preliminary study of diagnostically relevant image quality, we measured human
observer bias towards individual artifacts, and correlated this to our novel perceptual model,
Artifact-PDM. For a comparable severity of image degradation, as measured by Case-PDM,
observers rated images degraded with different artifacts differently. For our brain data sets,
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within a relevant, but wide, range of severity, as measure by Artifact-PDM, disturbances due
the four tested artifacts were ranked as: aliasing>oil-painting>noise, with blur ranked either
before or after aliasing (depending on its severity). The high ranking of aliasing might be
because subjects’ eyes are more sensitive to middle spatial frequencies as compared to both
low and high spatial frequencies40. Among the four artifacts, disturbance due to noise is
almost linear with severity (i.e. fitting coefficient b ≈ 1 in the model y = axb), while all
others are nonlinear (Fig. 2). This is likely because the frequency spectrum of white noise is
very stable28,41.

The observer and artifact scores were highly correlated in both the FMT and DSCQS
experiments. The FMT experiment showed a correlation of r2=0.97 between observer
ratings and Artifact-PDM scores, which indicates that calibrated Artifact-PDM can faithfully
represent the observer bias. The DSCQS experiment validated the ability of this new metric
to discriminate between different artifacts in images corrupted by a mixture of degradations.
In this experiment, calibrated Artifact-PDM showed high correlation (r2 up to 96%) with
both selective artifact ratings and overall quality ratings (Table 2). The Artifact-PDM’s
overall quality assessment, or comprehensive score, was obtained by averaging the artifact
scores. The x-intercepts in Fig. 4 provide one method to determine the “non-perceptible
difference” threshold. As shown in Table 2, these intercepts varied for different artifacts and
different images. This implies that human perceptual sensitivity varies to different artifact42.
However, this is not a very robust method to calculate the threshold, because significant
extrapolation is required. To precisely measure the non-perceptible difference threshold, one
needs to perform an alternative forced choice (AFC) experiment7. However, this result was
not needed for this demonstrative study, so we did not determine the thresholds in this paper.

Artifact-PDM can characterize image artifacts by their spatial frequencies and orientations.
Similarly, findings in both physiology and psychophysics28 show that human visual system
is a linear system and neurons in the striate cortex are tuned to specific spatial frequencies
and orientations. Here, we used a cortex filter with 6 orientation channels and 6 spatial
frequency channels to mimic the human visual cortex. By weighting these different
channels, Artifact-PDM was able to discriminate different types of image artifacts, as
validated by DSCQS experiment. This is because each image artifact can be characterized
by specific frequencies and orientations. For example, aliasing artifact due to under-
sampling demonstrates certain repetitive spatial pattern, which is often seen in MR image
reconstruction. However, a calibration procedure might be needed when evaluating a new
type of artifact and/or a different organ/anatomy. In this preliminary study, we only showed
brain data sets. We will use other organs/image contents to validate this new metric. As the
current study did not include pathological data, we will continue to study the performance of
Artifact-PDM for evaluation of clinical images.

We used the entire image region as a ROI for assessing different types of artifacts including
aliasing. To evaluate aliasing better, one can apply a binary mask, which corresponds to the
repetitive image parts, to the spatial map of Artifact-PDM output. Such masks may be
determined through edge detection on both reference and test images, and/or Fourier
analysis of sampling pattern. We will study this topic further in the future.

Artifact-PDM was useful for evaluating reconstruction algorithms. The proposed image
quality evaluation metric was able to quantify the relative severity of different artifacts in
the same image. For the same sampling ratio, Artifact-PDM showed that CS reconstruction
quality compared favorably to that of GRAPPA, having less noise, blur and aliasing artifact.
Our metric was especially helpful in quantifying image artifact trade-offs, which can allow
the optimization of free parameters to yield reconstructions with the lowest possible
perceptual disturbance.
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Fig. 1.
Raw images used for human observer experiments. (a) is Transverse, (b) Coronal, and (c)
Sagittal. Their MR raw data were used for both CS and PPI reconstruction.

Miao et al. Page 11

Magn Reson Imaging. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Artifact disturbance calibration lines obtained from FMT experiment for the Transverse (a),
Coronal (b) and Sagittal (c) data sets. For the same artifact severity of noise, blur, aliasing,
or oil-painting degradation pattern, as measured by Artifact-PDM, their disturbances to
human observer distribute differently, with noise being the least disturbing. One could
observe that the Artifact-PDM shows good correlation to artifact scores, but the relationship
is not linear except for the noise.
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Fig. 3.
Individual ratings from one radiologist and four engineers against Aliasing-PDM predictions
when they evaluated Transverse brain data set during the FMT experiment.
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Fig. 4.
Linear correlation between Artifact-PDM and observers when evaluating aliasing artifact.
Data are from CS reconstructions of Sagittal image in the DSCQS experiment. Cross points
represent responses from subject Eng-1, “x” points represent responses from subject Eng-2,
and open circle points represent average responses. The average human subject data (open
circle) were fitted to y = ax + b, and the functions were represented by the straight lines in
the figure.
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Fig. 5.
Comparison of MR reconstruction algorithms for the Transverse data set. (a) shows different
artifact scores for CS, ZP and PPI reconstructions at different sampling rate. (b) shows
comprehensive score for the three methods. CS was ranked the best by both selective artifact
evaluation and overall quality evaluation.
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Fig. 6.
Algorithm comparison for MR reconstructions using only 50% data. (a) is a reference
image. (b)–(d) correspond to images reconstructed by ZF, CS and GRAPPA, respectively.
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Table 1

Reference image’s z-score (origin of calibration line)

Transverse Coronal Sagittal

Reference Z-Score mean −1.7983 −1.6644 −1.7501

std 0.2279 0.2788 0.1818
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