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Abstract

Human mobility is investigated using a continuum approach that allows to calculate the probability to observe a trip to any
arbitrary region, and the fluxes between any two regions. The considered description offers a general and unified
framework, in which previously proposed mobility models like the gravity model, the intervening opportunities model, and
the recently introduced radiation model are naturally resulting as special cases. A new form of radiation model is derived
and its validity is investigated using observational data offered by commuting trips obtained from the United States census
data set, and the mobility fluxes extracted from mobile phone data collected in a western European country. The new
modeling paradigm offered by this description suggests that the complex topological features observed in large mobility
and transportation networks may be the result of a simple stochastic process taking place on an inhomogeneous landscape.
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Introduction

Human mobility in form of migration or commuting becomes

increasingly important nowadays due to many obvious reasons [1]:

(i) traveling becomes easier, quicker and more affordable; (ii) some

borders (like the ones inside EU) are more transparent or even

inexistent for travelers; (iii) the density and growth of the

population and their gross national product presents large

territorial inequalities, which naturally induces mobility; (iv) the

main and successful employers concentrate their location in

narrow geographic regions where living costs are high, hence even

in developed countries the employees are forced to commute; (v)

large cities grow with higher rates, optimizing their functional

efficiency and creating the necessary intellectual and economic

surplus for sustaining this growth [2]. This higher growth rate of

the population can be achieved only by relocating the highly

skilled work-force from smaller cities. Here we propose a unified

continuum approach to explain the resulting mobility patterns.

Understanding and modeling the general patterns of human

mobility is a long-standing problem in sociology and human

geography with obvious impact on business and the economy [3].

Research in this area got new perspectives, arousing the interest of

physicists [4,5] due to the availability of several accurate and large

scale electronic data, which helps track the mobility fluxes [6–8]

and check the hypotheses and results of different models.

Traditionally mobility fluxes were described by models originating

from physics. The best-known is the gravity model [6,9] that

postulates fluxes in analogy with the Newton’s law of gravitation,

where the number of commuters between two locations is

proportional to their populations (i.e. the ‘demographic mass’)

and decays with the square of the distance between them. Beside

the well-known gravity model, several other models were used like

the generalized potential model [10,11], the intervening opportu-

nities model [12] or the random utility model [13]. Recently, a

parameter-free radiation model has been proposed, leading to

mobility patterns in good agreement with the empirical observa-

tions [14]. The model was developed assuming a spatially

discretized settlement structure, and consequently it operates with

a discretized flux topology on the edges of a complete graph. Here

we consider and test a continuum approach to this model

operating with fluxes between any two regions, and show that

several other mobility models can be derived within the same

framework. This novel approach based on the continuum

description offers a new modeling and data interpretation

paradigm for understanding human mobility patterns.

Results

The Modeling Framework
The radiation model [14] has been originally formulated to

estimate commuting fluxes, i.e. the average number of commuters

traveling per unit time between any two locations in a country.

The key idea is that while the home-to-work trip is a daily process,

it is determined by a one-time choice, i.e. the job selection.

Therefore commuting fluxes reflect the human behavior in the

choice of the employment. In real life many variables can affect

the employment’s choice, from personal aspirations to economic

considerations, but for the sake of simplicity only the most

influential variables are considered in the model: the salary a job

pays (or more generally, the working conditions), and the distance

between the job and home. The main idea behind the model is

that an individual accepts the closest job with better pay: each

individual travels to the nearest location where she/he can improve her/his

current working conditions (benefits). With this assumption, the
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probability Pw(zDa) that an individual with benefit z refuses the

closest a offers is:

Pw(zDa)~pƒ(z)a ð1Þ

where a is the number of open positions in the area within a circle

of radius r(a) centered in the origin location, and

pƒ(z)~
Ð z

0
dx p(x) is the cumulative distribution function of the

benefits. Equation (1) is equivalent with assuming that the rejection

of a job offers with benefits less or equal to z are independent

events.

Making different assumptions and approximations on the

benefit distribution p(z), one can obtain several formulas for the

number of trips between locations. Below we present four

examples: the original radiation model, the classic intervening opportunities

(IO) model [12], a uniform selection model, and a novel radiation model

with selection.
The original radiation model. If we solve Eq. (1) assuming

that the benefit distribution p(z) is a continuous function, we

recover the original radiation model’s formula [14]. Indeed, we

calculate the probability Pw(a) of not accepting one of the closest

a job offers by integrating Eq. (1) over the benefits:

Pw(a)~

ð?
0

dz
dpƒ(z)

dz
Pw(zDa) ð2Þ

~

ð?
0

dz
dpƒ(z)

dz
pƒ(z)a~

1

az1
: ð3Þ

The intervening opportunities model. We can also show

how the classical IO model [12,15] can be included within the

same framework as a degenerate case. Consider the situation in

which the benefit distribution is singular, i.e. all jobs are exactly

equivalent p(z)~
d

dz
pƒ(z)~d(z�{z) and pƒ(z)~1{H(z�{z)

(where H is the Heaviside function). In this case we have to specify

the individual’s behavior when s/he receives a job offer identical to

her/his current one: this corresponds to setting a specific value to

the step function at the discontinuity point, H(0)~k. If k~0, then

the individual will travel to an infinite distance; while if k~1, the

individual accepts the job in the closest location. If 0vkv1, then

the individual accepts each offer with probability k and refuses it

with probability 1{k. Applying Eq. (2) we obtain

Pw(a)~(1{k)a~e{aL ð4Þ

where L~{ ln (1{k)%k if k%0.
The uniform selection model. When a%1, a good

approximation of Eq. (4) is Pw(a)~1{aL, which corresponds

to randomly select one of the available job opportunities,

irrespective of the benefits and the distance. Generalizing this

interpretation, we can define a model on a finite space containing

N average job openings per unit time in which the accepted job is

selected uniformly at random, and thus Pw(a)~1{a=N.
The radiation model with selection. Let us assume that the

benefit distribution p(z) is continuous as in the original radiation

model, whereas the probability to accept any offer is reduced by a

factor (1{l) with l[½0,1�. As a consequence, the probability that

an individual with benefit z accepts an offer has to be replaced by a

reduced value: ~ppw(z)~(1{l)pw(z), Vzw0. This process can be

interpreted as a commuting population who is willing to accept

better offers with probability (1{l), or who is aware only of a

fraction (1{l) of the available job offers. This is equivalent to a

combination of the radiation model and the intervening oppor-

tunities model described above (here 1{l~k). In this case

Pw(zDa)~~ppƒ(z)a~½1{~ppw(z)�a, and the probability to refuse the

closest a offers is

Pw(a)~

ð?
0

dz
dpƒ(z)

dz
½lz(1{l)pƒ(z)�a~

~

ð1

0

dw½lz(1{l)w�a~ 1{laz1

az1

1

(1{l)
ð5Þ

Note that when l~0 we recover the original radiation model

(3), while a lw0 causes a shift of the median of Pw(a) towards

higher values of a. In particular, for l,l’?1 the following

approximation holds: Pw(a,l’)&Pw a
(1{l’)
(1{l)

,l

� �
, where we

made explicit the dependence on l. The validity of this

relationship can be verified by defining k~1{l and expanding

around k&0:

Pw(a,1{k’)~
1{(1{k’)az1

k’(az1)
&

1{½1{k’(az1)z
k’2

2
(az1)azO(k’3)�

k’(az1)
~1{

k’a
2

zO(k’2a) ð6Þ

and

Pw(a
k’
k

,1{k)~
1{(1{k)a(k’=k)z1

k(a(k’=k)z1)
&

1{½1{k(a(k’=k)z1)z k2

2
(a(k’=k)z1)a(k’=k)zO(k3)�

k(a(k’=k)z1)
~

1{
k’a
2

zO(k’ka) ð7Þ

The difference is of the order O(k’2a){O(k’ka), thus

DPw(a,1{k’){Pw(a
k’
k

,1{k)D?0 when k,k’?0. Note that Eq.

(7) follows immediately from Eq. (6) by substituting k’.k and

a.ak’=k. We can derive the dependence of the median on the

rescaling of the parameter l: if with l~0:9 the median is ~aa defined

by 0:5~Pw(~aaD0:9), with l’~0:99 the median is ten times higher,

i.e.
0:1

0:01
~aa~10~aa. By varying the parameter l it is thus possible to

adjust the median of the distribution Pw(a), which is equivalent to

set a characteristic length of the trips.

Human Mobility in a Continuum Approach
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These examples show the versatility of the radiation model’s

formalism, which can successfully provide an explanation to

several probability distributions Pw(a) observed empirically in

different contexts [12,14]. The probability density, P(a), to accept

one of the offers between a and azda for a unit da value can be

obtained from Pw(a) by derivation. To be more specific, let us

consider the original radiation model. From Eq. 3 we have

P(a)~{
d

da
Pw(a)~1=(1za)2. Let n(x) be the density of job

offers at point (x,y) (in polar coordinate, (r,h), we will use the same

notation for the density n(r,h)). Then one gets the following

expression for the number of job offers within a distance r from x0,

a(r)~
Ð
Dx{x0 Dƒr

dx n(x)~
Ð r

0
dr’
Ð 2p

0
dh r’(r’,h) and da~rdr

Ð 2p

0
dh

n(r,h). Thus the probability to accept an offer within a region at

distance between r and rzdr, P(r)dr, is given by

P(r)dr~P(a)da~
dr

½1za(r)�2
da(r)

dr
~

rdr
Ð 2p

0
dhn(r,h)

½1za(r)�2
: ð8Þ

This also suggests that

Px0
(x)dxdy~

n(x)

½1za(DxD)�2
dxdy ð9Þ

is the probability to travel from the origin, x0, to an area dxdy
centered at the spatial point x. In general, Px0

(x) has the following

simple expression for any model presented above:

Px0
(x)~{P’w½a(Dx{x0D)�(x). From Eq. (8) we can derive the

probability Px0
(D) of a trip from the origin to a generic region D

(see Fig. 1a) as

Px0
(D)~

ð
D

dxPx0
(x)~

ðr2

r1

dr
n̂n(r)

½1za(r)�2
n̂nD(r)

n̂n(r)
ð10Þ

where n̂n(r)~r
Ð 2p

0
dhn(r,h) is the radial job offers’ density, and

n̂nD(r)~r

ðh2(r)

h1(r)

dhn(r,h) is the job offers’ density in D at distance r

from x0. If the radial job offers’ density has small variations around

its average between r1 and r2, i.e. n̂nD(r)&
1

r2{r1

ðr2

r1

drn̂nD(r):

Sn̂nDTr2

r1
and n̂n(r)&Sn̂nTr2

r1
Vr[½r1,r2�, then we can derive a simple

approximated formula for Px0
(D)

Px0
(D)&

()
ðr2

r1

dr
n̂n(r)

a�(r)2

Ð r2
r1

dr n̂nD(r)Ð r2
r1

dr n̂n(r)
~

~

ðr2

r1

dr

da�(r)

dr

a�(r)2

a(D)

a�(r2){a�(r1)
~

a(D)

a�(r2):a�(r1)
ð11Þ

where a�~1za, and a(D)~
Ð

D
dxn(x) is the number of job offers

in D.

This equation is especially important because data are usually

collected as fluxes in a discretized space, whose regions are defined

according to the local administrative subdivision (e.g. counties or

municipalities). Px0
(D) has a particularly simple expression if we

consider the probability P(n,a) to accept one of the n offers

between a and azn, corresponding to the ring in Fig. 1b. This is

given by P(n,a)~

ðazn

a

dxP(x)~Pw(a){Pw(azn)~1=(1za)

{1=(1zazn), which in the limit n?0 tends to nP(a). If we only

consider trips outside a circular region centered on the origin

location and containing m job offers, then the probability P(n,aDm)
to accept one of the n offers between a and azn given that none of

the closest m offers has been accepted, is

P(n,a)=Pw(m)~
(1zm)n

(1za)(1zazn)
. Note that P(n,aDm) is the

same probability of one trip derived in the original radiation

model’s discrete formulation [14] with the only difference being

that here we have 1zm instead of m (a is equal to szm).

It is important to observe that the equations derived for P(a) are

correctly normalized when the total number of job offers, N tot, is

infinite and therefore finite-size corrections are required in real-

world applications [16]. The normalized probability is P(a)=N ,

where the normalization constant is N~
ÐNtot

0
daP(a)~

Pw(0){Pw(N tot). The correction to P(a) is of the order

O(1=N tot), which in most cases is very small given that usually

N tot&1. This normalization scheme has a straightforward

mechanistic interpretation: it offers another try at job selection

for individuals who during their first job search did not find any

job offer with better benefit than their current one. Other kinds of

normalization procedures that combine two of the models

presented above are also possible. If, for example, we assume that

the individuals who did not find a better job in their first try decide

to select the offer with the highest benefit, even if it does not

exceed their current one, (a mechanism corresponding to the

random selection model) the normalized probability we obtain is

P(a)zPw(N tot)a=N tot. Therefore, there are multiple ways to

normalize the models, each capturing a different selection

mechanism. This suggests that a systematic investigation of finite

size effects could also help understand the mechanisms underlying

job selection.

Comparison with Empirical Data
In Fig. 2 we apply the original parameter-free radiation model

(Eq. 3) and the one-parameter radiation model with selection (Eq.

5) to commuting data among United States’ counties. We show the

agreement between the theoretical P(a)~P(aDm):Pw(m) distri-

butions and the collapses predicted by the original radiation

model, Fig. 2b, and the radiation model with selection, Fig. 2c. In

Fig. 3 we compare the theoretical distributions P(a) of the original

radiation model, the radiation model with selection, and the IO

model, to the empirical distributions extracted from a mobile

phone database of a western European country. For a description

of the data sets and the analyses performed see the section Materials

and Methods.

An advantage of the proposed approach is that it is defined for a

continuous spatial density of job offers, and its results are thus

independent of any particular space subdivision in discrete

locations. This feature solves some consistency issues present in

other mobility models defined on a discretized space. Consider for

example the gravity law [6,9,17], the prevailing framework to

predict population movement [18–20], cargo shipping volume

[21], inter-city phone calls [22], as well as bilateral trade flows

between nations [23]. The gravity law’s probability of one trip

from an area with population m to an area with population n
(assuming that population is proportional to the number of job

offers) at distance r is obtained by fitting a formula like

Human Mobility in a Continuum Approach
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P(n,rDm)!manbf (r) to previous mobility data. As shown in [14],

the values of the best-fit parameters a and b are strongly

dependent on the spatial subdivision considered, raising the

problem of deciding which subdivision gives the correct results.

Also, the continuous formalism developed here helps finding a

solution to the issue concerning the additivity of the fluxes

frequently encountered in discrete formulations. As an example,

consider two adjacent areas, 1 and 2 with populations n1 and n2

respectively, at the same distance r from the origin location. The

gravity law predicts T(1)~Cman
b
1f (r) and T(2)~Cman

b
2f (r)

travelers to 1 and 2 respectively. If we consider a different spatial

subdivision, in which locations 1 and 2 are now grouped together

forming a single location, 1z2, and we calculate the number of

travelers we obtain T(1z2)~Cma(n1zn2)bf (r)=T(1)zT(2)
unless b~0 or b~1. If the exponent b is different from one, the

additivity requirement does not hold and the difference in the

estimated trips can be considerably high. For example, if b~0:5
and n1~n2~5000, then DT~T(1)zT(2){T(1z2)!141

{100~41, i.e. a 41% relative difference. The additivity of the

fluxes is a necessary property required to any mobility model in

order to be self-consistent. We can easily verify that all models

derivable from Eq. (1) have the additivity property. This is a

consequence of the linearity of the integral in Eq. (10). In fact, for

every two regions D1\D2~1 and D1|D2~D1z2 we

have STx0
(1z2)T!Px0

(D1z2)~
Ð

D1
dxPx0

(x)z
Ð

D2
dxPx0

(x)
h i

~

STx0
(1)TzSTx0

(2)T, for a generic Px0
(x). We observe that it is

possible to develop a continuum formalism for the gravity model

that fulfils the additivity constraint by assuming that the probability

to travel from location x0 to location x is

Pgm
x0

(x)~n(x0)an(x)bf (Dx{x0D). The average number of travelers

from region O to region D is STO(D)T~
Ð

O
dx0n(x0)

Ð
D

dxPgm
x0

(x)

and because of the linearity of the integral on D the fluxes are

additive.

We can use the continuum approach to investigate the

relationship between a region’s population and the total number

Figure 1. Definition of the variables used in the calculations. a) Notation used in Eq. 10. b) Configuration used to calculate the probability
P(nDa,m) c) Configuration used in Eq. (12) to calculate STO(Oc)T.
doi:10.1371/journal.pone.0060069.g001
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Figure 2. Testing the radiation model’s theoretical predictions on commuting trips extracted from the US census dataset. a) We
divide the commuting flows in deciles according to the population of the origin county, m, and for each set we calculate the distributions P(aDm). The
values in the key indicate the mean origin population, m, of each decile. We use the population as a proxy to estimate the number of employment
opportunities in every county, a, assuming in first approximation a linear relationship between population and job openings. b,c) The collapse of the
distributions P(a)~P(aDm):Pw(m) on the theoretical curves Eqs. (3) and (5) predicted by the original radiation model and the radiation model with
selection respectively. (See the section Materials and Methods for details).
doi:10.1371/journal.pone.0060069.g002

Figure 3. Testing the mobility models on trips extracted from a mobile phone dataset. We analyze all call records collected during one
day, and we define a trip when we observe two consecutive calls by the same user from two different towers. We define the variable a(D),
representing the number of possible points of interest in a circular area D centered at a given cell tower, as the total number of calls placed from the
towers in D, assuming that a location’s attractiveness is proportional to its call activity. We then calculate the empirical distribution P(a)da, i.e. the

fraction of trips to the towers between a and azda (red circles), and we compare it to the various models’ theoretical predictions P(a)~{
d

da
Pw(a),

with Pw(a) defined in Eqs. (??), (4), and (3), and whose parameters, l~0:99986 and L~0:00007, are obtained with least-squares fits (black lines). In
the inset we show the plot in a log-log scale. (See the section Materials and Methods for details).
doi:10.1371/journal.pone.0060069.g003
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of travelers from that region outwards (i.e. the commuters whose

destination is outside the region). It is often assumed that the

number of commuters is proportional to the region’s population.

This is the case, for example, for the commuting fluxes measured

by the US census 2000 [14]. We can check the validity of this

assumption by writing the average number of commuters leaving a

region O as STO(Oc)T~
Ð

O
dx0n(x0)Px0

(Oc), where Oc~R2
\O is

the complement of O, and Px0
(Oc)~

Ð
Oc dxPx0

(x) is the

probability for an individual in x0 to travel outside O (cf. Eq.

10). We can easily calculate STO(Oc)T if we make the simplifying

assumptions that the number of job offers in a region is

proportional to the region’s population (see the section Materials

and Methods for details), that the population density is uniform, i.e.

n(x)~n, and O is a circle of radius R (see Fig. 1c). Then

STO(Oc)T~

ð
O

dx0 n(x0)

ð
Oc

dxPx0
(x)~(2pn)

ðR

0

dr0 r0

1

p

ðRzr0

R{r0

drP(r) cos{1 R2{r2
0{r2

2r0r

� �
z

ð?
Rzr0

drP(r)

" #
ð12Þ

where P(r)dr is the probability to travel to a distance rzdr (cf. Eq.

8). For the original radiation model P(r)~2pnr=(1znpr2)2, and

Eq. (12) can be calculated exactly and has the following asymptotic

limits: STO(Oc)T(R)~RR2n if R%n{1=2, and STO(Oc)T(R)~RR
ffiffiffi
n
p

p if

R&n{1=2. The same asymptotic behaviour is obtained for the IO

model, with P(r)~Le{Lnpr2

: STO(Oc)T(R)~RR2 if R%(nL){1=2,

and STO(Oc)T(R)~RR if R&(nL){1=2. For both models if the size of

the region, R, is sufficiently small then the number of commuters,

STO(Oc)T(R), is proportional to the total population of the region.

When R becomes larger than a characteristic size only the

individuals living close to the boundary have a non-zero chance of

travelling outside O.

A further generalization of the model could take into account

the fact that Euclidean distance is not appropriate in situations

where geographical barriers exist and/or travel facilities are

heterogeneously distributed. In this case one introduces a metric

tensor gij(x) and the square distance between neighboring

positions at point x is (dr)2~
P

ij gij(x)dxidxj with x1~x and

x2~y. In this case Eq. (9) is rewritten as Px0
(x)dx1dx2~

n(x)

½1za(DxD)�2
ffiffiffiffiffiffiffiffiffi
g(x)

p
dx1dx2, where

ffiffiffiffiffiffiffiffiffi
g(x)

p
~ det (gij) is a local

parameter of the model.

Discussion

The fundamental Eq. (1) represents a unified framework to

model mobility and transportation patterns. In particular, we

showed how the intervening opportunity model [12] can be

regarded as a degenerate case of the radiation model, correspond-

ing to a situation in which the benefit differences are not taken into

account in the employment’s choice. We also explained the

advantages of a continuous approach to model mobility fluxes, we

derived the appropriate discretized expressions that guarantee the

consistency of our predictions on any discrete spatial subdivision,

verifying that the fluxes additivity requirement holds.

Furthermore, our approach also provides an insight on the

theoretical foundation of the most common types of gravity

models. Indeed, when the space is homogeneous and the job’s

distribution is fractal, a(r) is independent of the point of origin, i.e.

a(r)~rrdF where dF and r are the fractal dimension and an

average density of job offers, respectively. Equation (11) for the

probability, P(D), to observe a trip to a generic region D within

distances r1 and r2 from the origin becomes (n~a(D) is the

number of job offers in D) P(D)&½Pw(rrdF

1 ){Pw

(rrdF

2 )� n

rrdF

2 {rrdF

1

. In particular, for the original radiation model,

Eq. (3), the average number of trips to a region D containing n job

offers is T(D)!
n

(r2r2
:r1)dF

, whereas for the intervening opportu-

nities model, Eq. (4), T(D)!

n

rrdF

2 {rrdF

1

eLrr
dF
1 {eLrr

dF
2

. These two classes of

deterrence functions f (r), power law and exponential, are actually

the two most used form of gravity models [17,20,24]. Moreover,

our approach provides an interpretation to the gravity model’s

fitting parameters. First, the exponents a and b are both one when

the benefits are spatially uncorrelated, i.e. the benefit distributions

at the local (regional) and global (country) scales are the same. If a
or b differ from one it means that there are regions where job

offerings with higher or lower benefits tend to concentrate.

Second, the exponent of the power law is predicted to be two times

the fractal dimension of the job offers, dF , whereas the exponential

deterrence function should be substituted with a stretched

exponential with shape parameter dF and a characteristic length

of the order of (rL){1=dF . Thus, when the spatial displacement of

the potential trip’s destinations is a fractal, the radiation model’s

formalism offers a theoretical derivation of the gravity models from

first principles.

In conclusion, we have developed a general framework for

unifying the theoretical foundation of a broad class of human

mobility models. The used continuum approach allows for a

consistent description of mobility fluxes between any delimited

regions. The successful comparison with real mobility fluxes

extracted from two different data sources confirms that our

approach not only provides a theoretically sound modeling

framework, but also a good quantitative agreement with exper-

imental data. This suggests that the decision process we assumed

for the job selection also captures the basic decision mechanism

related to the choice of the destinations for other activities

(shopping, leisure, …). On the other hand, our study suggests that

the weighted network representing the mobility fluxes among

geographic regions can be the result of a stochastic process

consisting of many independent events. This approach is somehow

complementary to the theory of optimal transportation networks

[25–30] that describes the patterns observed in different natural

and artificial systems solely as the adaptation to a global

optimization principle (e.g. leaf venations, river networks, power

grids, road and airport networks). The modeling framework we

propose provides also a plausible example of spontaneous bottom-

up design of transportation networks. Indeed, we show how

complex patterns can arise even in those systems lacking a global

control on the network topology, or a long-term evolutionary

selection mechanism of the optimal structure.

Materials and Methods

Analysis on the Inter-county Commuting Trips Extracted
from United States’ Census Data

The data on US commuting trips can be freely downloaded

from http://www.census.gov/population/www/cen2000/

commuting/index.html.
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The files were compiled from Census 2000 responses to the

long-form (sample) questions on where individuals worked, and

provide all the work destinations for people who live in each

county. The data contain information on 34,116,820 commuters

in 3,141 counties.

Demographic data containing the population and the geo-

graphic coordinates of the centroids of each county can be freely

downloaded from https://www.census.gov/geo/www/gazetteer/

places2k.html.

Our goal is to use the US commuting data to calculate the

empirical distribution P(a)~{
d

da
Pw(a) and compare it to the

theoretical predictions of the original radiation model, Eq. (3), and

the radiation model with selection, Eq. (5).

We assume that the number of employment opportunities in

every county, ajobs, is proportional to the county’s population,

apop, i.e. ajobs~apop, where cv1 is the ratio between the average

number of job offers considered by an individual (i.e. the ones

known and of potential interest) over the population. Under this

assumption, if we calculate the probability P(a) using the

population instead of the job openings the resulting distribution

is simply rescaled as P(ajobs=c)=c.

From the census data we obtain the fraction of individuals who

live in county i with population m and work in county j that lies

beyond a circle containing a population a as

P(a)~Tij=m~(Tij=Ti)(Ti=m)~P(aDm):Pw(m), where Tij is the

number of commuters from i to j, and Ti is the total number of

commuters from i to all other counties. It follows that upon

rescaling with Pw(m), all the P(aDm) should collapse on the

theoretical distribution P(a). This is what we want to test in Fig. 2.

First, we divide the commuting fluxes in deciles according to the

population of the origin county, m. Then, for each set we calculate

the distributions P(aDm) (Fig. 2a), and the rescaled distributions

P(a)~P(aDm):Pw(m) with m equal to the mean origin population

of the counties in each set, and using the Pw(m) of Eq. (3) in Fig.

2b, and of Eq. (5) in Fig. 2c. The value of the parameter

l~0:999988 has been obtained by maximizing the likelihood that

the observed fluxes are an outcome of the model. The discrepancy

observed at very high a (&107) can be the result of boundary

(finite-size) effects that become relevant at large populations,

corresponding to long distances. Also, the fluctuations at very

small a values are due to the resolution limit encountered when

a&m. The parameter l is close to 1 because in the comparison

with data we consider populations instead of job offers and we

assume that the two quantities are proportional, and consequently

the fitting parameter we find is lpop~lc
jobs, which is always close

to 1 irrespective of ljobs given that c%1.

Analysis on Trips Extracted from a Mobile Phone Dataset
We use a set of anonymized billing records from a European

mobile phone service provider [5,31,32]. The dataset contains the

spatio-temporal information of the calls placed by ~110M anony-

mous users, specifying date, time and the cellular antenna (tower)

that handled each call. Coupled with a dataset containing the

locations (latitude and longitude) of cellular towers, we have the

approximate location of the caller when placing the call. We

analyze all call records collected during one day, and we define a

trip when we observe two consecutive calls by the same user from

two different towers. The type of mobility information obtained

from the mobile phone data is radically different from that

provided by the census data. In fact, the scope and method of the

mobile phone data collection is complementary to the self-

reported information of the census survey, and it offers the

possibility to consider all trips, not only commuting (home-to-

work) trips. Additionally, the mobility information that we extract

from the mobile phone data is more detailed in both time and

space. Indeed, we can observe trips of any duration, ranging from

few minutes to several hours. In a similar manner, we can analyse

trips on the much finer spatial resolution of cellular towers, whose

average distance is ~11km, compared to the average size of counties,
~110km. We are therefore including in the current analysis many

more trips, obtaining a more complete picture of individual

mobility.

In Figure 3 we use the trips obtained from the mobile phone

data to provide a direct test of the models’ fundamental prediction,

i.e. the specific functional form of the trips distribution P(a). In the

case of mobile phone data the trips’ destinations are determined by

the particular purpose of the users when they start the trip.

Therefore, the variable a should now represent not only the

number of job opportunities in a region, but rather the number of

all possible venues that could be the destination of a trip, e.g.

shopping centers, restaurants, schools, bars, etc. We therefore

define the variable a(D), representing the number of possible

points of interest in a circular region D centered at a given cell

tower, as the total number of calls placed from the towers in D,

assuming that a location’s attractiveness is proportional to its call

activity. We then calculate the empirical density distribution

P(a)da, i.e. the fraction of trips to the towers between a and

azda, and we compare it to the various models’ theoretical

predictions P(a)~{
d

da
Pw(a), with Pw(a) defined in Eqs. (5), (4),

and (3), and whose parameters, l~0:99986 and L~0:00007, are

obtained with least-squares fits. Moreover, we verified (plots not

shown) that the result presented in Fig. 3 is stable with respect to

other possible ways of defining a trip using the mobile phone data,

e.g. between the two farthest locations visited by each user in 24

hours, or between the two most visited locations.

Acknowledgments

We thank J. P. Bagrow, A.-L. Barabási, F. Giannotti, J. S. Juul, and D.

Pedreschi for many useful discussions.

Author Contributions

Conceived and designed the experiments: FS AM ZN. Analyzed the data:

FS. Wrote the paper: FS AM ZN.

References

1. Cohen JE, Roig M, Reuman DC, GoGwilt C (2008) International migration

beyond gravity: A statistical model for use in population projections. Proceedings

of the National Academy of Sciences 105: 15269.

2. Bettencourt L, West G (2010) A unified theory of urban living. Nature 467: 912–

913.

3. Ritchey PN (1976) Explanations of migration. Annual review of sociology 2:

363–404.

4. Brockmann D, Hufnagel L, Geisel T (2006) The scaling laws of human travel.

Nature 439: 462–465.
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