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Abstract

Prospective memory (PM) refers to our ability to realize delayed intentions. In event-based PM paradigms, participants must
act on an intention when they detect the occurrence of a pre-established cue. Some theorists propose that in such
paradigms PM responding can only occur when participants deliberately initiate processes for monitoring their
environment for appropriate cues. Others propose that perceptual processing of PM cues can directly trigger PM
responding in the absence of strategic monitoring, at least under some circumstances. In order to address this debate, we
present a computational model implementing the latter account, using a parallel distributed processing (interactive
activation) framework. In this model PM responses can be triggered directly as a result of spreading activation from units
representing perceptual inputs. PM responding can also be promoted by top-down monitoring for PM targets. The model
fits a wide variety of empirical findings from PM paradigms, including the effect of maintaining PM intentions on ongoing
response time and the intention superiority effect. The model also makes novel predictions concerning the effect of
stimulus degradation on PM performance, the shape of response time distributions on ongoing and prospective memory
trials, and the effects of instructing participants to make PM responses instead of ongoing responses or alongside them.
These predictions were confirmed in two empirical experiments. We therefore suggest that PM should be considered to
result from the interplay between bottom-up triggering of PM responses by perceptual input, and top-down monitoring for
appropriate cues. We also show how the model can be extended to simulate encoding new intentions and subsequently
deactivating them, and consider links between the model’s performance and results from neuroimaging.
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Introduction

In standard laboratory paradigms for assessing prospective

memory (PM), participants are engaged in an ongoing task

requiring classification of a series of stimuli. For example, on each

trial the participant might be presented with a pair of letters, one

upper-case and one lower-case, and respond with a left or right

keypress to indicate the location of the upper-case letter [1;2]. In

PM conditions, an additional instruction is introduced, for

instance to press a middle button if the same letter is presented

on both sides (e.g. ‘‘a A’’). In this way PM targets are embedded

within an ongoing task. However, these stimuli do not compel

a PM response; participants could also make a standard ongoing

response (in this case, right key) if they did not classify the stimulus

as a target. In some respects this is similar to real-world situations

in which people hold a delayed intention (e.g. to post a letter),

while performing an ongoing task (e.g. walking down the street,

engaged in conversation). On encountering a target (i.e. mailbox),

one might make an appropriate PM response (post the letter), or

miss the target and continue the ongoing task (walk past the

mailbox).

Within the PM literature, a debate has arisen over the

mechanisms by which PM responses are triggered. According to

some authors [3], detecting a PM target is contingent upon the

engagement of preparatory attentional processes, i.e. resource

demanding processes that lead to appropriate monitoring of the

environment for PM cues. Without such processes, it is argued,

PM cues cannot be detected as such. Consistent with this account,

several studies have shown that response times (RTs) in the

ongoing task to nontargets are slowed when participants hold in

mind a delayed intention [3;4]. This slowing (‘‘PM task in-

terference effect’’) is taken to reflect the withdrawal of resources

from ongoing task performance in order to permit monitoring for

PM targets. Furthermore, at least in some studies, the size of each

participant’s PM interference effect is correlated with the

percentage of PM targets detected, suggesting that the PM

interference effect is functionally related to detection of PM targets

[3]. However, this relationship between the PM interference effect

and PM target detection has not always been observed [5].

Additional evidence that could be taken to support monitoring

theories comes from analyses of RTs on PM miss trials (where an

ongoing response is made to a PM target) versus ongoing trials

(where an ongoing response is made to a PM nontarget). It has

been reported that (erroneous) ongoing responses made to PM

targets have faster RTs than (correct) ongoing responses made to

nontargets [6]. This can be considered an example of an ‘intention

superiority effect’ [7], seeing as responses on trials associated with

a delayed intention are speeded relative to nontarget trials (see [8]

for further discussion). This pattern of results could be caused, at

least in part, by a failure of preparatory monitoring on PM miss
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trials. This could lead to faster RTs than standard ongoing trials,

on which preparatory monitoring will be engaged at least on

a proportion of trials. In support of this hypothesis, West et al. [9]

found that RTs on nontarget ongoing trials preceding a PM miss

were faster than trials preceding a PM hit, suggesting that

a disruption of preparatory monitoring, associated with faster

ongoing RTs, predicted subsequent PM misses.

In contrast with monitoring theories, some authors have

suggested that in certain circumstances PM cue detection can be

triggered relatively automatically by presentation of the appropri-

ate stimulus, in the absence of deliberate preparatory monitoring

[4;10;11;12]. According to these accounts, deliberate target

monitoring can still play a part in prospective remembering, but

it need not be mandatory. For example, according to the

multiprocess framework of McDaniel and Einstein [4;13], some

situations encourage automatic detection of PM targets, whereas

other situations require deliberate monitoring. According to

McDaniel and Einstein [13], ‘‘focal’’ cues, in which the stimulus

attributes defining PM and ongoing responses overlap, can

sometimes lead to automatic PM target detection. By contrast,

‘‘nonfocal’’ cues, where PM targets and ongoing responses are

related to different aspects of stimuli, or even different stimuli, are

proposed to require monitoring. Evidence for multiprocess

accounts comes from studies showing that the size of the PM

interference effect is modulated by the nature of the PM and

ongoing tasks, suggesting that monitoring is required to a greater

or lesser degree depending on the nature of the task [4;14].

Furthermore, in some studies, accurate PM responding has been

reported [11], or PM cues have been noticed [10], in the absence

of a detectable PM interference effect (see also [15;16]).

Here, we attempt to address this debate by presenting

a computational model simulating performance in a PM para-

digm. The model is related to the earlier model of Gilbert and

Shallice [17], which was itself an extension of the model presented

by Cohen, Dunbar, and McClelland [18]. Gilbert and Shallice’s

model simulated performance in a task switching paradigm, in

which participants switch rapidly between different tasks on a trial-

by-trial basis. The present model is conceptually related to this

earlier work, seeing as PM paradigms require participants to

switch from an ongoing to a PM response on target trials. Like the

Gilbert and Shallice model, the present model is based on the

Parallel Distributed Processing (PDP) framework, using the

interactive activation equations introduced by McClelland and

Rumelhart [19]. The model consists of several processing units

(‘‘nodes’’), each with an associated activation value. Activation

spreads between nodes, dependent on the weights of connections

between them. A simulated trial begins with activation being

applied to input units. Processing is then iterated in cycles, with

activity propagating through the network on each cycle, gradually

accruing in units to which the input units are connected. The trial

ends when a threshold is met at the response units, determining

that a particular response has been selected; the number of cycles

taken to reach the response threshold is recorded as the model’s

RT. Behaviour and RT can then be compared against analogous

empirical results.

In the Gilbert and Shallice model, two possible tasks (colour-

naming and word-reading in response to Stroop colour-word

stimuli) were implemented as distinct input-output pathways,

connecting input and output nodes. Empirical phenomena

associated with task switching were simulated as a consequence

of competition between these two pathways. A pair of ‘task

demand’ units implemented top-down control, biasing processing

towards one or the other pathway. On trials where one pathway

was much stronger than the other, the model produced relatively

fast responses. But on trials where the two pathways were more

similar in strength (e.g. immediately after a switch of tasks), RT

was extended as a result of competition between conflicting

responses. The present model implements a similar mechanism.

There are two pathways leading from input to output: one

representing the ongoing task and one representing the PM task

(i.e. detecting PM cues and pressing the PM response button).

These input-output pathways represent relatively automatic

responses triggered directly by perceptual input. In addition,

a ‘monitoring unit’ implements top-down control, by selectively

boosting activation along the PM pathway. Thus, competition

between ongoing and PM responses is modulated by activation of

the monitoring unit. Consistent with the multiprocess framework

[13], PM responding is therefore triggered by a combination of

mechanisms: direct triggering of the PM response by an automatic

stimulus-response link, and top-down monitoring, which assists

this PM stimulus-response link. Crucially, monitoring in the model

is a graded phenomenon: the monitoring unit can be set to

variable levels of activation or to zero, in which case it has no

impact on processing at all. In this respect, the model differs from

the theoretical account put forward by Smith and Bayen [20],

which was implemented in a mathematical model whereby

monitoring either takes place or does not on a particular trial, in

an all-or-nothing fashion.

The Model

Task
The task simulated by the model was as described in the

Introduction, and used empirically in the studies of Gilbert et al.

[1] and Okuda et al. [2]. Possible inputs consist of a pair of letters

from the set (A, B, C), with one letter presented in upper-case and

one letter presented in lower-case. The appropriate response is left

if the upper-case letter is on the left, and right if the upper-case

letter is on the right. This constitutes the ongoing task. In addition,

if the same letter is presented on both sides (e.g. ‘‘a A’’), the

appropriate response is to press the middle button rather than the

right button. This constitutes the PM task.

Model Architecture
The architecture of the model is presented in Figure 1. There

are 12 input units, representing each of the six possible stimuli at

each position. For example, the stimulus ‘‘A c’’ would be simulated

by activating the leftmost and rightmost input unit. The three

output units represent Left, Right, and PM responses. The three

input units representing an upper-case letter on the left are

connected with positive connection weights to the Left output unit;

likewise the units representing upper-case letters on the right send

a positive input to the Right output unit. These connections

(labelled 1 in Figure 1) constitute the direct stimulus-response

pathway underlying the ongoing task. The PM input-output

pathway involves an intervening set of ‘target detection’ units; thus

the pathway is constituted by the connections labelled 2 and 3 in

Figure 1. Each of the four input units representing the letter ‘A’ or

‘a’ is connected to the ‘A/a’ target detection unit; likewise for the

units representing B/b and C/c. The three target detection units

are all connected with a positive weight to the PM output unit.

Thus, when a PM target stimulus is presented, both input units will

send activation to the relevant target detection unit, which itself

sends activation to the PM output unit. However, a nontarget

stimulus will send activation to different target detection units, so

no single unit will achieve a high degree of activation. The

monitoring unit sends activation to each of the three target

detection units. This top-down pathway (labelled 4 in Figure 1) is

Prospective Memory
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assumed to represent strategic, deliberate monitoring for PM

targets. Thus activation of target detection units arises from both

direct bottom-up triggering from the stimulus input units, and top-

down modulation from the monitoring unit. Insofar as bottom-up

triggering from the input units is insufficient for PM responding,

top-down input from the monitoring unit is additionally required,

as proposed in the multiprocess framework [13]. In addition to the

connections described above, each of the three output units send

a negative connection to the other two output units; likewise the

three target detection units are connected to each other in a similar

manner. This implements a form of lateral inhibition, whereby

activation in one of the output or target detection units tends to

suppress activation in the other two units. This encourages the

model to converge on activation of a single unit within these

modules.

Operation of the Model
The model parameters were set by hand in order to produce

adequate performance of the task (see Table S1 for values). The

model is therefore potentially open to the criticism that it could

capture any pattern of behaviour and that its parameters have

simply been set so that it reproduces known empirical results,

without providing any theoretical constraints. In order to address

this point, it is important that the model is able to generate novel

predictions that can be tested empirically. Insofar as the model

makes such predictions, and they are empirically validated, this

indicates that the model goes beyond simply reproducing pre-

existing empirical results.

The steps taken to simulate a trial are as follows (essentially

following the procedure used in the model of Gilbert and Shallice

[17]). All units are initialized to an activation level of zero at the

beginning of the trial. A ‘‘cycle’’ then takes place as follows. Two

input units have their activation level set to the input activation

level (to represent the stimulus presented on that trial) and the

monitoring unit is set to the monitoring activation level (to

represent the PM top-down monitoring level for that trial; see

Table S1 for parameter settings). For the remaining units, the net

input is calculated by summing the activation level of every other

unit, multiplied in each case by the relevant connection weight to

the target unit (see Table S1 for connection weights). In addition,

there is a negative bias term added to the net input for each target

detection unit, so that net input to these units will always be

negative unless counteracted by positive activation contributed

from other units. Once the net inputs have all been calculated, the

activation level for each unit is updated as follows:

If the net input is positive : Dact~step|net|(max{act)

If the net input is negative : Dact~step|net|(act{min )

Where act = current activation, step = step size, net = net input,

max=maximum activation value, and min=minimum activation

value. The step size parameter determines the magnitude of the

change in activation on each cycle, setting the speed of processing.

On each cycle, a random noise term is also added to the activation

values of every unit. This term is drawn from a Gaussian

distribution, with a mean of zero; the standard deviation of this

distribution determines how much disruption is caused by noise on

each cycle. After noise has been added the activation levels of any

units outside the maximum and minimum values are reset to the

relevant extreme. At the end of each cycle, the activation level of

the most active output unit is compared against the second most

active output unit. If this difference exceeds a threshold, the

response associated with the most active output unit is declared as

the model’s response on that trial, and the number of cycles since

the beginning of the trial recorded as the RT. Otherwise, the net

inputs are calculated again and a new cycle begins. In this way,

activation gradually propagates through the network until a re-

Figure 1. Model architecture. Only connections between units representing the letter ‘A’ are shown, for simplicity; analogous connections existed
for representations of ‘B’ and ‘C’.
doi:10.1371/journal.pone.0059852.g001
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sponse threshold is met. If the response threshold has not been met

after 500 cycles, the trial is ended and an error recorded (without

recording RT).

A fundamental feature of the model is interactive competition

between the PM and ongoing pathways. On a nontarget trial, the

relevant input unit (i.e. the unit representing the upper-case letter)

will send activation to one of the ongoing response units, leading to

a build-up of activation at the output layer. Seeing as nontarget

stimuli do not lead to significant activation of the target detection

units (because the two input units, sending activation to different

target matching units, do not provide sufficient activation to

counteract the negative bias applied to these units), the ongoing

response unit will generally reach the response threshold, rather

than the PM response unit. On a PM target trial, the two pathways

will compete. Activation will be sent from the input units directly

to the relevant ongoing output unit. In addition, activation will be

sent from the input units, via the target matching units, to the PM

response unit. Thus activation will build up in both the PM output

unit and one of the ongoing output units. Due to the lateral

inhibition between these units, the ongoing and PM output units

will tend to inhibit each other. Thus, small differences in the

relative input contributing to the ongoing and PM response units

(including the noise added to the activation levels on each cycle)

will have the effect of tipping the model’s output towards a PM or

ongoing response, in a competitive manner.

Performance of the Model
1. Effect of monitoring level. In order to test performance

of the model, 100,000 simulated trials were run of each of the 12

possible ongoing trials and 200,000 simulations of the six possible

PM target trials, so that equal numbers of target and nontarget

trials were run. This was using the standard parameter settings

detailed in the Appendix. We refer to this as the ‘standard

monitoring’ settings. Due to the large number of trials, all

differences between conditions in the model’s performance were

highly significant (generally p,102100); we therefore omit

significance testing in the results reported below. Two additional

simulations were conducted, identical to the standard monitoring

settings, but with the activation level of the monitoring unit set to 1

and zero. These settings are referred to as the ‘high monitoring’

and ‘no monitoring’ settings respectively. Results from these

simulations are presented in Figure 2.

There are three noteworthy features of Figure 2. First, the

model is able to perform the task adequately. Performance on

nontarget ongoing trials is near ceiling, and the model is able to

detect PM targets on at least a proportion of trials, even when

monitoring is set to zero. Further analysis indicated that on PM

miss trials, the correct ongoing response (e.g. Left rather than

Right for ‘A a’) was produced on over 99% of trials, indicating that

PM misses were associated with otherwise correct performance of

the ongoing task. Second, higher top-down monitoring levels were

associated with an increased proportion of hits on PM target trials.

Third, higher top-down monitoring levels were associated with

increased RT even on nontarget ongoing trials. Thus, the model

simulates the intention maintenance cost, and the relation between

this cost and accuracy of PM target detection, reported by Smith

[3]. These findings are readily accounted for in computational

terms, seeing as the monitoring unit sends direct input to the target

matching units. On PM target trials, this will boost activation

along the PM pathway, making it more likely that the PM output

unit will win competition against the ongoing output unit. On

nontarget trials, this boosting effect will lead to some activation

being sent to the PM output unit, extending the response

competition process between the ongoing and PM output unit

and causing longer RTs.

2. Effects of stimulus degradation. In a second analysis,

we investigated whether any other factors, alongside top-down

monitoring level, could affect the model’s PM target detection

rate. In order to do this, we ran an additional simulation identical

to the standard settings, except that the stimulus input level (i.e.

activation level to which activated stimulus input units are set) was

reduced from 1.0 to 0.9. This stimulates the effect of degraded

stimulus input. We predicted that this manipulation would

generally slow RTs, seeing as the contribution from the input

units to other units in the model would be reduced, so it should

take more cycles for the output units to reach the output threshold.

We also predicted that this manipulation might affect PM target

detection levels. Our reasoning was as follows. The pathway

leading directly from input to output units (commanding ongoing

responses) is direct. But the pathway leading from input to output

units via target detection units (commanding stimulus-evoked PM

responses) is indirect (i.e. involves intervening target detection

units). It is therefore possible that degrading the input representa-

tions will have more effect on the indirect PM pathway (with an

intervening set of units, and therefore an additional locus at which

noise is added) than the direct ongoing pathway, which may be

more robust to noise. As a result, competition between the ongoing

and PM pathways will be biased somewhat towards the ongoing

pathway, as a result of stimulus degradation.

Figure 2. Model performance. Mean response time, PM hit rate, and ongoing accuracy in ‘No monitoring’, ‘Standard monitoring’, and ‘High
monitoring’ settings.
doi:10.1371/journal.pone.0059852.g002
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Figure 3 shows that both of these predictions were substantiated.

Stimulus degradation led to both increased ongoing RTs and

decreased PM target detection. Thus, the model is able to capture

a positive relationship between ongoing RT and PM target

detection under some circumstances (manipulation of top-down

monitoring) and a negative relationship between ongoing RT and

PM target detection under others (degradation of stimulus input).

The model’s simulation of the intention maintenance cost, i.e. the

difference in ongoing RT between no-monitoring and standard-

monitoring settings, was comparable in the standard settings

(mean: 3.1 cycles) and the degraded input settings (mean: 3.4

cycles). The model’s behaviour is therefore compatible with

empirical data showing a positive relationship between the

intention maintenance cost and PM detection in some circum-

stances (e.g. [3]) but not others [5].

3. Intention superiority effect. Inspection of Figure 3

shows that PM miss trials had faster RTs than ongoing trials,

even though the model produces the same (i.e. ongoing) response

for both. The model therefore simulates the intention superiority

effect [6]. How can this be explained? The literature on this effect

posits two potential explanations. The first is that stimuli

associated with an active intention are represented at a higher

level of activation than other types of stimuli [7;21], or in

conjunction with distinctive motoric information [22], leading to

a speeding of RT when that stimulus is encountered. This cannot

explain the model’s simulation of the intention superiority effect,

seeing as PM target stimuli are represented in an identical manner

to other stimuli. PM target stimuli do lead to greater activation in

target matching units than nontargets; however, the effect of this

activity in the target matching units is to interfere with

representations of left or right ongoing responses, not to aid them.

An alternative explanation is that the intention superiority effect

reflects trials where top-down monitoring is absent or reduced,

leading to faster ongoing RTs than nontarget trials, a proportion

of which will be slowed by monitoring for PM targets [9]. Again,

this explanation cannot explain the model’s performance, seeing as

the monitoring unit was set to the same level on each time.

Although there was slight fluctuation of the monitoring unit’s

activation level on each cycle due to random noise, this had

a trivial effect on the model’s performance and the intention

superiority effect remained similar even when this noise was

removed. How else might the intention superiority effect be

explained? A clue comes from analysis of RT distributions, rather

than simply examining mean RT.

4. Response time distributions. An important character-

istic of the model is that noise is added to the activation level of

each unit on each cycle. This gives rise to variability from one trial

to the next, even when the stimulus is identical. We can therefore

plot the frequency distribution of ongoing, PM miss, and PM hit

RTs in Figure 4. Inspection of this figure suggests that these

distributions are positively skewed, as commonly observed for RTs

[23]. However, the right tail of the ongoing distribution seems

slightly overrepresented, compared with the PM miss distribution

(e.g. compare the small number of trials with RTs greater than 150

cycles in the ongoing distribution, versus the absence of such trials

in the PM miss distribution). What could explain the ‘‘missing’’

right tail of the PM miss distribution? We propose the following

explanation. As a result of random noise, on some trials the

ongoing pathway will be favoured, relative to the PM pathway; on

other trials the reverse will occur. Consider a trial on which noise

particularly slows down the build up of activation in the relevant

ongoing output unit. Of course, such trials will be associated with

relatively slow ongoing responses, seeing as it will take many cycles

until the activation level in the appropriate output unit reaches the

response threshold. These trials will therefore comprise the right

tail of the ongoing RT distribution. If a PM target has been

presented, it is quite likely that sufficient activation will have

accrued in the PM response unit to produce a PM response, before

sufficient activation in the (slowly accumulating) ongoing response

unit has accumulated for an ongoing response. This would

therefore be counted as a PM hit, and the trial would not be

included in the PM miss distribution. Conversely, those trials in

which activation builds up particularly quickly in the relevant

ongoing output unit will be likely to reach the response threshold

before sufficient activation has accumulated in the PM response

unit, and are therefore more likely to be included in the PM miss

distribution. In other words, those trials in which activation builds

up particularly quickly in the relevant ongoing response unit will

be likely to be included in both the ongoing and PM miss

distributions (i.e. when a nontarget and target stimulus are

presented, respectively). These trials will have relatively fast RTs.

However, those trials in which activation builds up slowly in the

relevant ongoing response unit (due to noise) will be likely to be

included in the ongoing distribution, but not the PM miss

Figure 3. Effects of stimulus degradation. Mean response time for PM miss, correct ongoing, and PM hit trials, alongside accuracy for ongoing
trials and PM hit rate. Results are shown separately for the model using its standard settings (blue bars) and degraded input settings (red bars).
doi:10.1371/journal.pone.0059852.g003
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distribution (because they will be more likely to receive a PM hit).

Thus, simply due to the effect of noise on the likelihood of a PM

hit or miss, trials with slow RTs are unlikely to make it into the PM

miss distribution, leading to a difference in mean RT between

ongoing and PM miss trials. Of course, this explanation need not

rule out additional explanations of the intention superiority effect,

such as those discussed above. It does however suggest that an

intention superiority effect could arise simply due to the effect of

noise on competition between PM and ongoing response path-

ways.

One prediction of this account would be that a similar

difference in the spread of the RT distributions should be seen

when comparing ongoing trials with PM hits. On PM target trials

where (due to noise) the PM response unit builds up activation

quickly, a PM hit response is likely to be made. But on trials where

activation in the PM response unit builds up slowly, an erroneous

ongoing (i.e. PM miss) response is more likely to be produced.

Thus, instead of being included in the right tail of the PM hit

distribution, these trials may instead be included in the PM miss

distribution. We would therefore expect that the PM hit

distribution should have a less prominent right tail than the

ongoing distribution (where trials in which evidence accumulates

slowly will still, eventually, make it into the right tail of the

distribution). Inspection of the PM hit distribution in Figure 4

shows this to be the case.

In order to quantify the spread of the ongoing, PM miss, and

PM hit distributions, the coefficient of variation (CV) was

calculated. CV is defined as the ratio of standard deviation to

mean; it can therefore be considered to be a measure of variance,

controlling for differences in mean RT between conditions

[24;25]. Thus, proportional slowing of a RT distribution will lead

to an increase in mean RT but no change in CV. In the model’s

simulated RT distributions, CV was ordered ongoing .PM miss

.PM hit.

We carried out additional analyses of the intention superiority

effect in the model’s no-monitoring and high-monitoring settings.

In the high-monitoring setting, the intention superiority effect was

enhanced (9.8 cycles, or 18.2% of mean ongoing RT; standard

settings: 3.8 cycles, 7.5% of mean ongoing RT) whereas in the no-

monitoring setting the intention superiority effect was in fact

slightly reversed (20.8 cycles, 1.6% of mean ongoing RT). This

suggests that in the no-monitoring settings, when PM hits were

rare (3%), the additional response competition on PM target trials

may have slowed ongoing responses, whereas in the conditions

where PM hits were more common the effects described above

played a greater role in determining the intention superiority

effect. Evidence for response competition on PM target trials

comes from paradigms where previously-relevant target stimuli

cause slowing of RT on subsequent trials [26;27]. The simulations

therefore suggest that under some conditions the intention

superiority effect may not be obtained, and also that at least in

some circumstances (e.g. when variability in PM hit rates is

determined by monitoring levels) the size of the intention

superiority effect should increase when PM hits are more

common.

Experiment 1

We have now seen that the model reproduces several empirical

findings reported in the PM literature. It is able to perform the task

adequately. Ongoing RT slows when the model is monitoring for

PM targets, and the PM interference effect can be correlated with

PM detection rate in some circumstances but not others. The

model has also made two novel predictions. First, the model

predicts that PM hit rate might be decreased, and ongoing RT

increased, when stimuli are degraded. Second, the model predicts

that ongoing RT distributions should have a greater coefficient of

variation than either PM hit or PM miss distributions. We

therefore conducted an empirical study to test these predictions.

Methods
This research was approved by the UCL Division of Psychology

and Language Sciences ethics committee. All participants pro-

vided written informed consent before taking part. 26 participants

(17 female) took part in the study, in return for £5 or course credit.

Their mean age was 25 years (standard deviation: 6.5). Two

participants did not respond to any PM targets (making it unclear

whether they had understood the task instructions) and a third

made PM responses to fewer than 4% of targets, too few for an

analysis of PM hit RT distributions. These three participants were

excluded, alongside one further participant who fell asleep during

the experiment, leading to a final sample of 22 participants.

Participants were tested individually, sitting approximately

50 cm from a laptop computer in a quiet testing room. Example

stimuli are presented in Figure 5. Pairs of letters (A, B, or C, one

upper-case and one lower-case) were presented in white Arial font

(size 60) on a black background, with a fixation cross in the centre

of the screen. In half of the blocks, stimuli were degraded by

placing 85000 white pixels in randomly selected positions over

a 400 by 300-pixel rectangle in the centre of the display (i.e. 71%

of pixels in this rectangle). At the beginning of the experiment, the

ongoing task was described to participants and they performed two

blocks of 100 trials to familiarize themselves with the task (with

Figure 4. Response time distributions for the model’s simulation of correct ongoing, PMmiss, and PM hit trials. Coefficient of variation
(CV), i.e. standard deviation divided by mean, is also shown.
doi:10.1371/journal.pone.0059852.g004
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standard stimuli). Participants made their responses using the

leftmost and rightmost of three adjacent keys on the keyboard.

The PM instructions were then explained: participants were

instructed to press the middle button if they noticed that the same

letter was presented on both sides of the screen. Without any

further practice, the experiment then began. Participants per-

formed 10 blocks of 100 trials, alternating between standard and

degraded stimuli for each block (with the stimuli for the first block

counterbalanced between participants). PM targets were presented

on a randomly selected 8% of trials. On each trial, the stimulus

was presented and remained on screen until a button was pressed.

The screen was then blanked for a variable delay (100–300 ms)

after which the next stimulus was presented.

Results and Discussion

The first trial of each block was excluded from the analysis.

Only correct ongoing trials are included in the analysis of ongoing

RTs (as in the model simulations above). Mean RTs and accuracy

levels (i.e. proportion correct for ongoing trials and proportion of

hits for PM target trials) are shown in Figure 6. RTs were analysed

in a 362 ANOVA with factors Trialtype (PM miss, ongoing, PM

hit) and Noise (noise, no-noise). There were significant main effects

of Trialtype (F(2,20) = 85, p,.001, g2
p= .90) and Noise

(F(1,21) = 101, p,.001, g2
p = .83), but no significant Trialtype x

Noise interaction (F(2,20) = 1.47, p = .25). Follow-up tests showed

that PM miss trials had significantly faster RTs than ongoing trials

(F(1,21) = 53, p,.001, g2
p = .72), and PM hit trials had signifi-

cantly slower RTs than ongoing trials (F(1,21) = 90, p,.001,

g2
p = .81). Furthermore, analysis of accuracy indicated that there

were fewer PM hits in the noise than the no-noise condition

(48.0% vs 52.4%; F(1,21) = 7.1, p = .01, g2
p= .25). There was also

a trend towards higher ongoing accuracy in the noise than the no-

noise condition (97.8% vs. 97.5%; F(1, 21) = 3.9, p = .06,

g2
p= .16). Analysis of individual differences in PM hit rates

showed that participants with higher hit rates also tended to have

a larger intention superiority effect (r = .62, p = .002). Thus, the

behavioural results were consistent with the following features of

the model’s performance: 1) slower RTs for noise than no-noise

conditions; 2) faster RT for PM miss than ongoing (i.e. intention

superiority effect); 3) slower RT for PM hit than ongoing; 4) lower

PM hit rate for noise than no-noise conditions; 5) greater intention

superiority effect associated with increased PM hit rate. We are not

proposing that degrading stimuli will always lead to a decrease in

PM target detection, across all event-related PM paradigms. For

example, in some situations, degrading stimuli might cause the

feature distinguishing targets versus nontargets to become more

salient. However, the present results indicate a situation where

a single manipulation can lead to both slowed ongoing RTs and

decreased PM target detection, consistent with the model’s

performance.

RT distributions. We next examined the model’s predic-

tions concerning RT distributions. Figure 7 illustrates the average

RT distribution for ongoing, PM miss, and PM hit trials. These

data were generated using Ratcliff’s [28] method for generating

group RT distributions, using 10 bins and collapsing over noise

and no-noise conditions to maximize power. As in the model’s

stimulations, the ongoing condition is least symmetrical of the

three, with a long right tail. Coefficient of variation (CV) was

calculated for the ongoing, PM miss, and PM hit distributions to

test the model’s prediction of greater CV for ongoing trials than

PM hit trials, with an intermediate CV for PM miss trials. The

same pattern was seen in the empirical data (Figure 7), albeit with

lower CV than the model across all conditions. CV was compared

between conditions using Wilcoxon signed rank tests (due to

significant deviation from the normal distribution). CV for

ongoing trials was significantly greater than for PM hit trials

(p,.001) and also PM miss trials (p = .0495). However, it should

be noted that by virtue of PM trials being relatively rare, ongoing

and PM trials had very different sample sizes. Seeing as CV may

be influenced by sample size, an unbiased estimate of CV for the

ongoing condition was calculated as follows. For each participant,

a random sample of trials from the ongoing condition was

obtained, equal to the number of PM hit trials. The CV for this

ongoing distribution, matched in sample size to the PM hit

distribution, was then calculated. This procedure was repeated

100,000 times to obtain a mean unbiased CV for the ongoing

condition. An analogous procedure was used to calculate an

unbiased ongoing CV for comparison against the PM miss

distribution. Again, in these analyses CV was significantly greater

for ongoing than PM hit trials (p,.001) and marginally

significantly greater for ongoing than PM miss trials (p = .077).

Thus, the model’s predictions were confirmed. Compared with

ongoing trials, CV was reduced on both PM hit trials (associated

with significantly slower mean RT) and PM miss trials (associated

with significantly faster mean RT). Finally, the unbiased analyses

were repeated, separately for the standard and degraded stimuli.

Figure 5. Schematic illustration of experimental stimuli in standard input and degraded input conditions.
doi:10.1371/journal.pone.0059852.g005
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With standard stimuli, the CV for ongoing trials (.24) was

significantly greater than the CV for PM hits (.18; p = .006) and

PM misses (.20; p= .016). With degraded stimuli, the CV for

ongoing trials (.24) was significantly greater than the CV for PM

hits (.17; p,.001). The comparison against the CV for PM misses

(.23) was not significant (p = .10), although the trend was in the

predicted direction.

Experiment 2

A central feature of the model’s architecture is competition

between the ongoing and PM input-output pathways so that on

each trial either an ongoing or a PM response is made, but not

both. The competitive interactions between these two pathways

underlie the model’s novel predictions concerning response time

distributions across different experimental conditions, as well as

phenomena such as the intention superiority effect. Experiment 1,

like many empirical studies of PM, also used a task in which

participants were instructed to make either an ongoing or PM

response on each trial, but not both. However, other studies have

used a task in which participants are instructed to make PM

responses in addition to ongoing responses on each trial, rather

than instead of them (see [29] for discussion). To simulate this

situation, the model would need to be modified. One simple way

of doing this would be to make the ongoing and PM input-output

pathways entirely separate, without lateral inhibition between

response units and separate response thresholds for the two types

of response. In this case, the model’s explanations of the intention

superiority effect and differential response time distributions

between ongoing, PM miss, and PM hit trials would no longer

apply. The purpose of this experiment was therefore to directly

compare these two experimental paradigms. After [29] we refer to

these as the ‘‘task switching’’ condition (where participants should

make an ongoing or a PM response, but not both) and the ‘‘dual

task’’ condition (where PM responses should be made in addition

to ongoing responses). We investigated whether these experimental

paradigms would modulate the following three effects that, in the

model, are dependent on competitive interactions between

ongoing and PM pathways: 1) intention superiority effect; 2)

greater CV of ongoing than PM miss RT distribution; 3) greater

CV of ongoing than PM hit RT distribution.

Figure 6. Empirical data.Mean response times are shown for PM miss, correct ongoing, and PM hit trials, alongside accuracy for ongoing trials and
PM hit rate. Results are shown separately for the standard stimulus condition (blue bars) and degraded stimulus condition (red bars). Error bars
indicate 95% confidence intervals for the within-subjects comparison between standard stimulus and degraded stimulus conditions, using Loftus and
Masson’s [49] method. See Fig. 3 for equivalent data from the model.
doi:10.1371/journal.pone.0059852.g006

Figure 7. Response time distributions for correct ongoing, PM miss, and PM hit trials. Distributions have been averaged over participants
using Ratcliff’s [28] method, with 10 bins. Coefficient of variation (CV), i.e. standard deviation divided by mean, is also shown. As in the model’s
simulations (Fig. 4), CV is greatest for ongoing trials, intermediate for PM miss trials, and least for PM hit trials.
doi:10.1371/journal.pone.0059852.g007
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Methods
This research was approved by the UCL Division of Psychology

and Language Sciences ethics committee. All participants pro-

vided written informed consent before taking part. 44 participants

were recruited to take part in the study (26 female; mean age: 28,

SD: 8). Two participants failed to make any PM responses, making

it unclear whether they had understood task instructions, and one

participant performed at chance level (48%) on the ongoing task.

These three participants were excluded, along with an additional

participant whose data were excluded due to technical problems,

leaving a final sample of 40 participants. These participants were

divided randomly into equally-sized task switching and dual task

groups.

Participants were tested individually, sitting approximately

50 cm from a laptop computer in a quiet testing room. The task

and procedure were identical to Experiment 1 with the following

exceptions. First, stimuli were never visually degraded in

Experiment 2. Second, stimuli were always presented for a fixed

duration of 650 ms, after which a blank screen was presented for

a random response-stimulus interval between 200–400 ms. Thus,

stimulus presentation was identical between the two participant

groups rather than being affected by responses produced on each

trial. Participants first performed 75 practice trials of the ongoing

task alone. The PM instructions were then explained. Participants

in the task switching group were instructed to make a PM response

instead of an ongoing response if they detected a target.

Participants in the dual task group were instructed to make an

ongoing response on every trial and to make an additional PM

response if they detected a target. They were told that they could

make the two responses in either order, but that they had to press

the PM button before the onset of the next trial. After a further 75

practice trials, participants performed 10 blocks of 225 experi-

mental trials.

Results

Table 1 shows a summary of results. In the dual task group, any

target trial in which the PM button was pressed was counted as

a PM hit. In the task switching group only the first button pressed

on each trial was considered in order to calculate PM accuracy.

Thus, the definition of a PM hit differed between the two groups in

accordance with the instructions that they were given. Results

from the task switching group conformed with the predictions

from the model. PM miss RTs were faster than ongoing RTs, i.e.

there was an intention superiority effect (F(1,19) = 41, p,.001,

g2
p= .69). As in Experiment 1, Wilcoxon tests were used to

compare unbiased estimates of CV between the conditions.

Ongoing trials had significantly greater CV than both PM hits

(p,.001) and PM misses (p = .04). Thus, the task switching group

replicated the findings of Experiment 1, further confirming the

predictions of the model. However, if anything, the dual task

group showed a ‘‘intention inferiority effect’’, i.e. slower RTs for

PM miss than ongoing trials (F(1,19) = 3.5, p = .08, g2
p= .16). One

participant in the dual task group showed an ‘‘intention inferiority

effect’’ of 220 ms, more than 8 standard deviations from the rest of

the group, and was therefore excluded as an outlier in this analysis.

Even with this participant included in the analysis, the RT

difference between ongoing and PM miss trials was still not

significant (p = .08). Direct comparison indicated a significant

difference between the intention superiority effects of the two

groups (F(1,38) = 9.7, p = .004, g2
p= .21). This difference between

the groups is illustrated in Figure 8. Furthermore, in the dual task

group the CV findings were reversed: ongoing CV was signifi-

cantly lower than both PM hit CV (p= .001) and PM miss CV

(p= .01). Mann-Whitney U tests showed a significant difference

between the two groups in both CV differences (p,.002). Thus,

although the performance of the task switching group was similar

to the performance of the model (which implements a task

switching version of the task), participants performing a non-

competitive version of the task did not perform in the manner

predicted by the model. Analysis of individual differences in PM

hit rates showed that the intention superiority effect was not

significantly correlated with the hit rate in either group (task

switching: r = .11, p= .64; dual task: r =2.23, p= .35). Compar-

ison of these correlation coefficients with Experiment 1 showed

that this correlation was significantly lower than the previous

experiment in the dual task group (p = .004) and marginally-

significantly so in the task switching group (p= .07).

Discussion

This experiment arose from the consideration that our model

depends on competition between the ongoing and PM pathways in

order to produce three effects: 1) intention superiority effect; 2)

greater CV of ongoing than PM miss RT distribution; 3) greater

CV of ongoing than PM hit RT distribution. If these phenomena

were to be found regardless of whether the task was performed in

a competitive or noncompetitive manner, this would cast doubt on

the generalizability of the model’s predictions. However, we found

that the intention superiority effect was eliminated and the CV

effects were reversed when participants performed a noncompet-

itive version of the task. This provides further evidence for the

importance of competition for the findings simulated by the

model. As discussed in the Introduction, it is likely that some of the

phenomena reported in the PM literature (e.g. intention superi-

ority effect, intention maintenance cost) result from multiple

causes, only some of which are simulated in the model. We

therefore do not propose that these phenomena should only ever

be seen in situations simulated by the model. However, the finding

that the three phenomena investigated in this experiment were

either abolished or reversed in conditions dissimilar to those

simulated by the model lends further support to its utility in

understanding at least some of the origins of empirical phenomena

reported in the PM literature. These findings also underline the

Table 1. Results of Experiment 2, presented separately for
the task switching and dual task groups, along with statistical
comparisons between the two groups.

Mean Comparison

Task
switching Dual task

PM hit rate 31% 71% t(38) = 7.8, p,.001

PM hit RT 601 msec 690 msec t(38) = 5.2, p,.001

PM hit CV 0.13 0.29 Mann-Whitney U test, p,.001

PM false alarm
rate

0.47% 0.99% t(38) = 2.2, p = .03

Ongoing RT 460 msec 432 msec t(38) = 1.5, p = .15

Ongoing accuracy 93% 91% t(38) = 1.1, p = .30

Ongoing CV 0.18 0.19 Mann-Whitney U test, p = .50

PM miss RT 445 msec 454 msec t(38) = 0.4, p = .72

PM miss CV 0.17 0.23 Mann-Whitney U, p = .003

doi:10.1371/journal.pone.0059852.t001
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importance of considering the generalizability of phenomena

across diverse empirical approaches for the study of PM.

Unlike Experiment 1, the intention superiority effect was not

correlated with the PM hit rate in either group in this experiment.

This is perhaps surprising, at least in the task switching group.

How might this discrepancy be explained? One possibility is that

this result simply reflects noise, seeing as the direct comparison

between Experiment 1 and the task switching group was only

marginally significant. However, an alternative account might be

as follows. In Experiment 1, the stimulus on each trial remained on

the screen until the response was made. Thus participants could

choose to delay their ongoing response as long as they liked if they

wanted to ensure that they did not miss PM targets. In this case,

considerable variance in PM hit rates might be explained by

individual differences in PM monitoring, associated with perceived

priority of PM versus ongoing task demands or the conscientious-

ness with which participants performed the task. The simulations

above showed that manipulating PM hit rates by adjusting the

monitoring level led to a correlation between PM hit rates and the

intention superiority effect. However, in Experiment 2, stimuli

were presented for a fixed period of 650 msec, so that stimulus

presentation times could be equalized between the two groups and

in order to avoid ceiling effects in PM performance. Correspond-

ingly, ongoing RTs were considerably shorter in this experiment,

and PM hit rates were lower in the task switching group

(comparable to the instructions for Experiment 1). Thus, in the

present experiment, relatively little variance in PM hit rates might

be explained by individual differences in PM monitoring, seeing as

participants could not choose to delay their ongoing responses

indefinitely in order to ensure accurate PM responding. In this

experiment, variance in PM hit rates might be more readily

explained in terms of intrinsic capacity limitations, which might

not be expected to correlate with the intention superiority effect.

This interpretation might underlie the difference between Exper-

iment 1 and Experiment 2, although in the absence of direct

empirical evidence it remains a speculative suggestion at present.

Simulation of Intention Encoding
The simulations considered above involve a model whereby the

identity of target stimuli (i.e. repeated letters) is hard-coded into

the connection weights. In this section, we consider how this model

might be extended to simulate a situation in which the identity of

PM targets can be dynamically updated, i.e. where the model can

encode the identity of new target stimuli from one trial to the next.

The situation we consider is similar to the paradigm investigated in

an fMRI study reported by Gilbert et al. [30]. In this study,

participants viewed a series of stimuli as part of an ongoing task,

some of which were surrounded by a coloured border. When this

occurred, participants memorized the stimulus so that they could

make a PM response if they encountered that stimulus on

a subsequent trial, rather than perform the ongoing task (see [31]

for a related approach). Gilbert et al. [30] investigated the

correlation between patterns of brain activity on the trial when

a cue was encoded versus the trial when it was repeated (i.e. PM

target trial). They found that this correlation was higher for PM

hits than PM misses. In other words, successful PM performance

was associated with enhanced correlation between encoding- and

retrieval-related brain activity. Here, we investigate whether

a model that incorporates both PM encoding and PM detection

produces a similar pattern of results.

For this simulation, we only considered a single PM target

stimulus, rather than the multiple PM target stimuli in the earlier

Figure 8. Mean response times for ongoing and PM miss trials in the two groups. The task switching group shows a significant intention
superiority effect (i.e. faster responses for PM miss than ongoing trials) but there is no significant difference in the dual task group. Error bars indicate
95% confidence intervals for the within-subjects comparison between the two conditions for each group, using Loftus and Masson’s [49] method.
doi:10.1371/journal.pone.0059852.g008
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simulations (‘‘A a’’, ‘‘B B’’, etc.). Thus we removed two of the

target detection units so that there was only a single target

detector. Furthermore we removed the hard-wired connections

from stimulus input units to the target detecting unit. Apart from

this, the architecture and connection weights of the model were

left unchanged. In order to encode a PM target, a stimulus was

presented at the stimulus input units (i.e. two units had their

activation levels set to 1). Furthermore, noise was applied to each

stimulus input unit to simulate variability between perceptual

processing and contextual factors from one trial to the next. This

was achieved by adding a random number drawn from a Gaussian

distribution (mean: 0, standard deviation: 0.15) to each stimulus

input unit. Note that activation of the stimulus input units could

just as well represent internal simulation of a target stimulus (e.g.

visual imagery of that stimulus, which is known to yield patterns of

brain activity in low-level visual cortex akin to actually viewing

a particular stimulus) rather than perception of that stimulus (see

[30], p. 103, for further discussion of this point). The target

detector unit also had its activation level set to 1. Following this,

Hebbian learning was applied between each of the stimulus input

units and the target detection unit, i.e. the connection weight from

each stimulus input unit to the target detection unit was set to the

product of the two activation levels (seeing as this product was not

scaled, this corresponds to a learning rate of 1). The model was

then run as before, with 100 repetitions of each possible stimulus

apart from the PM target, which was presented an equivalent

number of times as all of the other stimuli summed together.

During this testing phase, the stimulus input units selected on each

trial had random noise added in the same manner as the encoding

phase, to simulate variability in perceptual processing and

contextual factors. This procedure was repeated 1000 times, with

a randomly selected target stimulus each time, in order to assess

the model’s performance. In order to assess encoding-retrieval

similarity of representations, the correlation coefficient was

obtained between activation levels of the stimulus input units on

each stimulus encoding trial and its associated target trials.

Three features of the model’s behaviour are of note. First, the

model performs the task adequately (PM hit rate: 62%; PM false

alarm rate: 0.7%; ongoing accuracy: 99%). Second, the model

continues to simulate the intention superiority effect (ongoing RT:

54.0 cycles; PM miss RT: 47.2 cycles), and also the CV for

ongoing trials (0.55) was greater than the CV for PM hits (0.39) or

PM misses (0.45). Thus, the model consistently simulates the

phenomena described in the earlier simulations. Third, as in the

fMRI data reported by Gilbert et al. [30] the similarity (i.e.

correlation coefficient) between encoding-related and target-re-

lated patterns of activation was higher for PM hits than PM misses

(hits: r = .887; miss: r = .869). The computational explanation for

this is straightforward: as a simple byproduct of the Hebbian

learning algorithm, the closer the match between the original

presentation of a stimulus and its subsequent presentations, the

greater the activation sent to the PM response node. Thus the

present modelling framework suggests a simple manner in which

the encoding of PM targets could be simulated, and as a natural

consequence of this approach it reproduces an effect observed in

a neuroimaging investigation of PM. This mirrors a behavioural

effect whereby PM performance is boosted when the PM target

episode matches the encoding episode more closely, including

contextual factors such as the typeface in which items are

presented or the room in which participants are seated [32;33;34].

The simulation above describes a simple method whereby the

model can activate a new intention. But what about deactivating

intentions? In order to investigate this, an additional simulation

was conducted whereby instead of zeroing the connection weights

after an intention was no longer relevant, the monitoring level was

set to zero and a post-PM block was run. This simulates the

persistence of a prior memory trace, even when it is no longer

relevant to the task. All other features of the model’s operation

were left unchanged. In this simulation, PM ‘‘hits’’ (i.e. errors of

commission) occurred on 9.4% of trials (versus a false alarm rate to

nontarget items of 0.1%). Ongoing RTs to previous targets were

slower (55.8 cycles) than non-target stimuli (53.1 cycles). When

connection weights between stimulus input units and the target

detection unit were additionally reduced by 50% in the post-PM

block, to simulate a decay of the representations of previous

targets, this strongly reduced the likelihood of errors of commission

(0.2% of trials, versus 0.05% false alarm rate). Nevertheless, RTs

to previous targets remained slower (54.7 cycles) than non-target

stimuli (53.0 cycles). Thus response competition, caused by

associative links that were not strong enough to reliably yield

PM responses, nevertheless slowed RTs. This simulates the pattern

of results seen in recent studies of intention deactivation, where

previous targets slow ongoing responses, in the context of

occasional errors of commission [27;35]. Note that this slowing

could also be considered an ‘‘intention inferiority effect’’, under-

lining the importance of the model’s ability to simulate both

speeded PM miss RTs (versus ongoing RTs) and slowed PM miss

RTs in different circumstances.

General Discussion

In this article we have presented a computational model of

event-based PM with the following core features: 1) competing,

interactive pathways governing ongoing and PM responding; 2)

two mechanisms underlying PM responding: direct triggering of

PM responses by spreading activation from input representations,

and assistance from a top-down control mechanism; 3) a graded

continuum between controlled top-down monitoring for PM

targets versus pure bottom-up triggering, rather than an all-or-

nothing mechanism. The model fits a wide body of empirical

results: slowing of ongoing responses and increased PM accuracy

as a result of top-down monitoring for PM targets; correlation

between ongoing RT and PM accuracy in some circumstances but

not others; and the intention superiority effect (i.e. faster PM miss

than ongoing RT). The model also made novel predictions that

were confirmed in two empirical studies. PM accuracy was

reduced (and ongoing RT increased) when visual stimuli were

degraded. Furthermore, the model predicted that ongoing trials

should differ from PM miss and PM hit trials in the shape of RT

distributions; analogous effects were found in the empirical data.

Finally, the model predicted that these RT distribution effects and

the intention superiority effect should be modulated by the use of

experimental paradigms in which PM responses either accompany

or replace ongoing responses. This prediction was also confirmed

empirically.

Of course, the model does not provide an account of all

empirical phenomena that have been reported in the PM

literature; nor, for those phenomena it does simulate, does it

necessarily provide an exhaustive account. In particular, the

simulations reported above rely heavily on competitive interac-

tions between ongoing and PM pathways. Yet some of the

phenomena simulated by the model, including the intention

superiority effect and the intention maintenance cost, have been

reported in noncompetitive situations where PM responses

accompany rather than replace ongoing responses [3;6]. This

suggests that the model simulates a subset of the cognitive

processes contributing to PM performance, and that extra

principles must also be considered to account for PM performance
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across all experimental paradigms. We have already considered in

the Introduction some of the alternative, non-exclusive accounts

that have been considered for the intention superiority effect. We

also note that a variety of different paradigms have been used to

investigate the intention superiority effect, often involving memory

for script based activities (e.g. [7]) which may involve rather

different mechanisms. Regarding the intention maintenance cost,

other phenomena that might be considered are response-threshold

shifts [36] and additional performance costs associated with

monitoring/checking the environment for PM cues that need not

apply on ongoing-only trials [3;37], alongside the model’s

simulation of greater response competition engendered by PM

conditions. Furthermore, PM targets were presented relatively

frequently (8% of trials) in the empirical work presented here. It is

unclear how well the model’s predictions would generalize to

paradigms with less frequent target presentation. The present work

suggests that processes underlying PM performance can be

multifaceted, depending on the precise nature of the experimental

task. One corollary of this conclusion is that different processes

might well account for identical patterns (e.g. intention superiority

effect) across different PM tasks.

It should also be noted that in the present work the model

parameters were set by hand, and we have not attempted to

systematically explore the parameter space. It is therefore possible

that the model might produce alternative patterns of behaviour if

different parameter settings were used. Seeing as there are multiple

free parameters in the model, it is a complex question how to set

upper and lower bounds for those parameters and then explore the

multi-dimensional parameter space in a computationally tractable

manner (see [38] for discussion). Here, rather than attempting

such an enterprise, we have taken the approach of validating the

model via the generation and verification of novel predictions,

along with showing that it can reproduce previously-reported

patterns of results.

Although these considerations make it clear that the model does

not provide an exhaustive account of phenomena associated with

PM, Experiment 2 showed that some of these phenomena were

significantly modulated by subtle changes in the experimental

paradigm used for assessing PM, as predicted by the model. This

underlines the importance of explicit computational accounts that

can help to link specific experimental paradigms to underlying

principles. Given the clear differences between the task switching

and dual task groups tested in Experiment 2, it seems unlikely that

a single computational explanation will account for behavioural

data across all of the diverse experimental paradigms that have

been used to test PM. However, the successful novel predictions

made by the model demonstrate its utility for understanding

underlying processes involved in at least some PM paradigms. It is

an interesting question how far everyday PM situations should be

considered in terms of the task switching versus dual task

operationalizations examined in Experiment 2. While in many

everyday PM tasks the intended behaviour can be produced in

addition to ongoing activities, other situations require the intended

behaviour to replace the ongoing activity. These situations include

any circumstance in which the intended and ongoing behaviours

are mutually incompatible, for example stopping at a shop to buy

milk on the way home, instead of continuing one’s journey.

The finding in the model and in participants performing

a competitive version of the task that PM hit trials had a lower

coefficient of variation (CV) than ongoing trials is of particular

theoretical interest. Previous studies have suggested that conditions

involving executive function, or controlled processing, lead to an

increase in CV, relative to conditions involving more automatic

processing. For example, Segalowitz and Segalowitz [24] showed

that both RT and CV increased in a second-language lexical

decision task for participants with relatively little practice.

Additionally, Segalowitz et al. [25] showed, in a task switching

paradigm [39], that trials following a switch of task had slower

RTs and increased CV. By contrast, at least in the competitive

version of the task, PM hit trials (which may be thought to involve

control processes such as inhibition of the ongoing response, and

monitoring for target events) had slower RTs but reduced CV, in

comparison with ongoing trials. Thus, competitive PM paradigms

seem to constitute an exception to the rule that tasks involving

relatively controlled processing lead to increased CV. This can be

explained by the hypothesis that on those trials where participants

have difficulty producing a PM response (e.g. due to noise), instead

of producing a very slow response, they may actually produce a PM

miss response instead. Such trials will therefore not be included as

a PM hit, leading to a narrowing of the PM hit distribution.

Consistent with this explanation, PM hit trials had increased CV,

relative to ongoing trials, in the dual task condition.

Comparison with Theoretical Accounts of PM
We believe that the present model corresponds most readily

with the multiprocess framework put forward by McDaniel and

Einstein [13]. Consistent with this account, PM responses in the

model can arise either from direct environmental triggering, or as

a result of the influence from top-down monitoring. Even when

this top-down monitoring system was switched off (i.e. set to zero),

the model still made accurate PM responses on a small proportion

of trials. Thus, bottom-up triggering was sufficient to enable PM

responding on at least some trials, consistent with Scullin et al.’s

[11] suggestion that certain circumstances can permit appropriate

PM responding in the absence of strategic monitoring.

One of the ways in which the model is currently somewhat

limited is in the use of localist stimulus representations, with each

unit representing both the identity and the location of a stimulus.

A more sophisticated model might make use of distributed

representations of different stimulus features. In this case,

attentional biases towards stimulus features that are relevant for

the ongoing task might have the effect of reducing activation

related to features that are irrelevant to the ongoing task. This

might help to capture the contrast between bottom-up triggering

of PM responses by ‘focal’ versus ‘non-focal’ PM cues [13], where

the feature that defines PM targets either overlaps or fails to

overlap with an ongoing-task-relevant stimulus feature.

In contrast with the multiprocess framework, Smith [3] has

argued that strategic monitoring is always required for PM

responding. This framework has been elaborated in a multinomial

mathematical model by Smith & Bayen [20] (see also [36;40;41]).

It should be noted that the present modelling framework might be

consistent with the hypothesis that PM always requires strategic

monitoring, if different parameter settings were adopted. For

example, if the connection strengths from the target monitoring

unit to the PM response unit were weakened, the model might

never be able to make a PM response purely on the basis of

bottom-up triggering, and would therefore require top-down

control from the monitoring unit. However, we see the model as

differing from the framework presented by Smith and Bayen [20]

in two fundamental respects. First, in the present model, top-down

control is graded along a continuum. By contrast, in Smith and

Bayen’s model, top-down control is either engaged or not, in

a binary stochastic manner. Second, Smith and Bayen’s model

implements a two-stage process: on each trial, the model either is

monitoring for a PM target or not. If it is monitoring and a PM

target is presented, a PM response will always be made (subject to

accurate retrospective memory for the target identity); otherwise
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a PM response will never be made. There is therefore no direct

interaction between PM and ongoing pathways; the model’s

preparedness for an ongoing response has no influence on PM

performance. However, in the present model, interactive compe-

tition between the PM and ongoing pathways plays a fundamental

role in its simulation of the intention superiority effect, and the

differing RT distributions between ongoing and PM conditions. In

the absence of interactive competition between ongoing and PM

response pathways, it is difficult to see how the distinction between

RT distributions on ongoing and PM trials could be simulated. We

therefore suggest that Smith and Bayen’s model can play a helpful

role in simulating certain patterns of behaviour, but does not

capture phenomena resulting from interactive competition

between processing related to ongoing and PM task demands.

Relationship with Brain Mechanisms Underlying PM
While it may be oversimplistic to identify individual elements of

the model with specific brain regions, we wish to point out one

potential relationship between the present modelling results and

data from neuroimaging. One feature of the monitoring unit in

our model is that it is connected equally to all units representing

potential PM targets. It might therefore be considered to play

a ‘‘content-free’’ role in PM, in the sense that the monitoring unit

itself does not represent any specific PM target stimulus, or

a specific PM response. These elements are represented elsewhere

in the model. The role of the monitoring unit is simply to up-

regulate all processing related to PM, without requiring any

detailed representation of potential PM targets or responses. This

content-free role may be compared with the role of rostrolateral

prefrontal cortex (RLPFC) suggested in a functional MRI study by

Gilbert [42]. Previous neuroimaging investigations of PM have

consistently reported increased activation in RLPFC, correspond-

ing to lateral aspects of Brodmann Area 10, when participants

anticipate and/or encounter PM targets [43;44;45;46]. Gilbert

[42] showed, in a modified PM paradigm, that the content of

delayed intentions could be decoded from patterns of brain activity

in medial frontal and posterior brain regions. However, although

RLPFC showed strong activity while participants maintained

delayed intentions, the content of those intentions could not be

decoded from RLPFC itself. Furthermore, RLPFC increased its

functional coupling with intention-representing brain regions

while intentions were stored. In this respect, the role of RLPFC

in PM might be considered to be analogous to the monitoring unit

in the present study: interacting with representations stored

elsewhere, so that appropriate targets may be detected and

responses produced, rather than itself representing specific PM

cues and responses.

The finding in Gilbert [42] that functional coupling between

RLPFC and intention-representing brain regions was increased

during intention storage would be trivially simple to simulate in the

present modelling framework. If activation of the monitoring unit

were to fluctuate over time during intention storage (cf. [9]), this

would lead to a correlation between activation in the monitoring

unit and the target detection units to which it is directly connected.

By contrast there would be no correlation between activation in

the monitoring unit and target detection units if the monitoring

level were set to zero.

The present simulations also captured an additional phenom-

enon consistent with neuroimaging data, namely a greater

correlation between encoding- and retrieval-related activity for

hits than misses [30]. Note that in both the empirical and the

computational data a similar analysis was conducted: calculation

of the correlation coefficient between two vectors of activation

levels, with each vector representing a specific trial or condition.

This approach, in the context of neuroimaging, has previously

been referred to as ‘representational similarity analysis’ [47].

However, the same technique is just as applicable to the type of

model investigated here: a similar conclusion is drawn regardless

of whether the analysis is conducted over a vector of parameter

estimates across a set of voxels [30] or across a vector of activation

levels across a set of processing units (present simulations).

Connectionist computational models can be difficult to connect

with results from neuroimaging, seeing as such models do not

always make anatomical predictions suitable for testing with such

techniques [48]. However, representational similarity analysis

provides an approach that allows us to bring together behaviour,

computational modelling, and functional neuroimaging within

a single framework.

Conclusions
The present results lend support to the hypothesis that event-

based PM depends on the interplay between bottom-up triggering

of appropriate responses by environmental cues, and top-down

monitoring. The results also suggest that an important de-

terminant of behaviour in at least some PM paradigms may be

interactive competition between processing pathways supporting

ongoing versus PM responses. We hope that this relatively simple

modelling framework may serve as a bridge to link cognitive-level

theories of the processes underlying PM with neuroscientific

investigations of its underlying brain mechanisms.
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