
Introduction

The terms osteoinduction, osteoconduction and osseointe-
gration are frequently, but not always correctly, used
terms in many orthopaedic papers. To give but one exam-
ple of incorrect terminology, arthroplasties are commonly
claimed to be osseointegrated based only on radiographic
evidence, despite the fact that the resolution of radiogra-
phy alone is too poor to determine whether an implant is
osseointegrated or not. The aim of this paper is to first
briefly explain and define these terms and then to look 
at them in some detail. Osteoinduction, osteoconduction
and osseointegration are now the subject of much discus-
sion, e.g. in connection with bone morphogenic proteins
(BMP), bone growth factors and direct bone anchorage,
respectively. Suggested definitions of the terms osteoin-
duction, osteoconduction and osseointegration read as fol-
lows:

Osteoinduction. This term means that primitive, undiffer-
entiated and pluripotent cells are somehow stimulated to
develop into the bone-forming cell lineage. One proposed
definition is the process by which osteogenesis is induced
[43].

Osteoconduction. This term means that bone grows on a
surface. An osteoconductive surface is one that permits
bone growth on its surface or down into pores, channels
or pipes. Wilson-Hench [43] has suggested that osteocon-
duction is the process by which bone is directed so as to
conform to a material’s surface. However, Glantz [18] has
pointed out that this way of looking at bone conduction is
somewhat restricted, since the original definition bears lit-
tle or no relation to biomaterials.

Osseointegration. This was first described by Brånemark
and co-workers [12]. The term was first defined in a paper
by Albrektsson et al. [4] as direct contact (at the light mi-
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croscope level) between living bone and implant. Osseoin-
tegration is also histologically defined in Dorland’s Illus-
trated Medical Dictionary as the direct anchorage of an
implant by the formation of bony tissue around the im-
plant without the growth of fibrous tissue at the bone–im-
plant interface. Since the histological definitions have
some shortcomings, mainly that they have a limited clini-
cal application, another more biomechanically oriented de-
finition of osseointegration has been suggested: “A process
whereby clinically asymptomatic rigid fixation of alloplas-
tic materials is achieved, and maintained, in bone during
functional loading” [46]. The rigid fixation of an implant
in orthopaedic praxis can be determined using radio-stereo-
photogrammetic (RSA) techniques and, at least in cranio-
facial implantology, resonance frequency analysis (RFA)
[28].

Osteoinduction and its importance for bone healing

In addition to the differentiated bone cells, i.e. osteoblasts,
osteoclasts and osteocytes, bone and adjacent tissues con-
tain a number of less differentiated cells. These undiffer-
entiated cells are of utmost importance for proper bone
healing or anchorage of an implant, since they can be re-
cruited to form osteoprogenitor cells [45] and, with time,
develop into differentiated bone cells (Fig.1). With the cor-
rect stimulus (the inductive agent), an undifferentiated mes-
enchymal cell can be transformed into a preosteoblast, a
process which constitutes bone induction. The classical pa-
pers describing bone induction at various host sites were
published a long time ago [20, 25, 40]. These authors used
gall bladder epithelium, alcohol extracts of bone and trans-
plants to muscles or the anterior chamber of the eye, re-

spectively, to demonstrate heterotopic bone formation. The
safest way to demonstrate whether a particular agent is os-
teoinductive or not is still to inject it into a heterotopic bed
such as a muscle pouch and to analyse any potential bone
formation (Fig.2). Inductive agents naturally function in
bone surroundings too, but it is difficult to differentiate
between bone induction and bone conduction in an ortho-
topic site.

More modern research into osteoinduction dates back
to Urist’s experiment in the mid-1960s [39]. Demineralised
bone was used as an osteoinductive agent. Later, Urist et
al. [41] isolated a soluble glycoprotein called BMP as the
inductive agent. The BMP belong to the transforming
growth factor (TGF)-β-family of growth factors. There are
at least 15 different BMP [34], of which BMP-2 and
BMP-7 seem to be particularly interesting. To date, a great
number of research projects involving various types of
BMP are being conducted (for reviews, see [24, 34]). BMP
are naturally released in response to trauma or at bone re-
modelling and are the only known inducive agents [26].
However, physical stimuli such as stress or types of elec-
trical signals otherwise applied have been regarded as, di-
rectly or indirectly, influencing bone induction [10, 13,
14, 44].

Osteoinduction, i.e. the recruitment of immature cells
and the stimulation of these cells to develop into pre-
osteoblasts, is a basic biological mechanism that occurs
regularly, e.g. in fracture healing and implant incorpora-
tion. Even if pre-existing osteoblasts (i.e. before the in-
jury) may help to form new bone, it is generally agreed
that such pre-existing cells only contribute a minor por-
tion of the new bone needed in a fracture-healing situation
[16, 17]. According to Frost [16, 17] (Fig.3), the inevitable
bone, marrow and soft tissue injury triggers the subsequent
repair by sensitising different types of surviving cells. Si-
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Fig.1 At the time of injury, adequate cells for bone repair are both
undifferentiated and differentiated bone cells. The majority of newly
formed bone depends on the undifferentiated cells that are induced
to become preosteoblasts

Fig.2 The best way to demonstrate whether a specific agent is os-
teoinductive is to inject it into a soft tissue pouch, where bone for-
mation does not occur under normal conditions. BMP-7 induced
bone formation 19 days after injection into a subcutaneous site in
a rat. Toluidine blue. Bar, 100 µm



multaneously, the injury releases local, biochemical and
biophysical messengers that help cells to respond and that
guide them to respond in the proper manner. Some of these
messengers guide the differentiation and organisation of
cells, while others provide mitogens. This initial part of the
healing response thus includes osteoinduction, a process
that starts immediately after the injury and is very active
during the first week thereafter, even though the action of
the newly recruited preosteoblasts is not obvious until sev-
eral weeks later, in the callus stage.

Osteoconduction and its importance for bone healing

Bone growth on an implant surface depends on the action
of differentiated bone cells. These cells may originate ei-
ther in pre-existing preosteoblasts/osteoblasts that are ac-
tivated by trauma or in cells recruited from primitive mes-
enchymal cells by osteoinduction [16, 17]. In the practical
situation, therefore, osteoconduction (Fig.4) depends to a
fairly large extent on previous osteoinduction. The debate
concerning whether or not a particular biomaterial acts as
an osteoinductor may be slightly academic, since the in-
jury at placement is sufficient to recruit previously undif-
ferentiated bone cells.

Various types of bone growth factors are necessary for
bone formation. Furthermore, bone growth, including bone
conduction, does not occur without a proper blood supply.
Albrektsson [1] studied bone conduction and remodelling
in vivo and came to the conclusion that so-called full vas-
cularisation was necessary for bone formation. It is there-
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Fig.3 According to Frost’s
theory, injury triggers off a
healing response by the release
of growth factors and sensitis-
ing of cells. This is a primitive
healing response with stimula-
tion of many different types of
cells

Fig.4 In biomaterials science, osteoconduction means growth of
bone on the surface of a foreign material, as seen in the lower part
of this titanium screw implant (arrows). Distance between thread
peaks, 600 µm



fore not surprising that the principal action of many growth
factors is both mitogenic and angiogenic [37]. Growth fac-
tors that regulate bone tissue in one way or another include
insulin-like growth factor (IGF I, II), fibroblast growth
factor (FGF), TGF-β and platelet-derived growth factor
(PDGF). The IGF are also called somatomedins. The growth
factors are small proteins that serve as signalling agents
for cells [37] (see the paper by Lind, this volume, for a
more detailed discussion of various growth factors).

However, in the case of implants, bone conduction is
not only dependent on conditions for bone repair, but also
on the biomaterial used and its reactions. Bone conduction
is not possible on certain materials such as copper and sil-
ver [3]. However, bone conduction is seen with biomate-
rials not regarded as ideal from the point of view of bio-
compatibility, such as stainless steel [22] and obviously
materials of high biocompatibility such as commercially
pure (c.p.) titanium. Bone conduction on implants may be
quantified. There is a significant difference in the amount
of bone that grows on seemingly similar materials such as
c.p. titanium and titanium 6-aluminum 4-vanadium [23].
However, the clinical implications of this difference remain
unknown.

Osseointegration of implants

Brånemark, who introduced this term, suggested the
spelling “osseointegration” instead of “osteointegration”,
and the original spelling is preferred in this paper. Os-
seointegration is not an isolated phenomenon, but instead
depends on previous osteoinduction and osteoconduction.
Thus materials that are too toxic to allow osteoconduction
will not be osseointegrated either. However, many materi-
als show at least some bone attachment, which has inspired
bone pathologists to regard osseointegration as a simple
foreign body reaction [15], whereas more clinically oriented
scientists have rejected such a view. Osseointegrated im-
plants have undergone a real breakthrough in oral and
craniofacial implantology, yielding excellent functional re-
sults, in contrast to alternatively anchored implants, which
have generally shown very poor success rates [6, 12, 35,
36]. Even if initial osseointegration is dependent on bone
induction and conduction, the term implies that the bone
anchorage is maintained over time. Cylindrical implant
designs (without threads), rough plasma-sprayed surfaces
and overloading represent factors that may lead to sec-
ondary failure of osseointegration [2, 4].

The ultrastructure of the bone–titanium interface in os-
seointegration demonstrates an amorphous layer from 20–
40 to 500 nm thick. Some investigators [5] have described
collagen and calcified tissue in this zone, whereas others
[32] have failed to verify these findings. This zone is too
narrow to be seen at the light microscope level of resolu-
tion. At the light microscope level, direct bone contact,
osteogenesis and bone resorption occur simultaneously

[31] (Fig.5). From a purely biomechanical viewpoint,
Skalak and Zhao [33] have demonstrated that when a hole
slightly smaller than the implant diameter is prepared for
implant placement, force-fitting stress increases installa-
tion torque and initial stability can be induced at a similar
magnitude as seen with roughened implants.

Oral implants retrieved from patients despite remain-
ing stability have shown that there does not seem to be
100% bone attachment. Implants retrieved after clinical
function for up to 17 years showed an average of 70–80%
bone contact with an absolute minimum of 60% [7]. Func-
tioning osseointegrated implants demonstrate interfacial
bone density similar to that of the bone in which the im-
plant was implanted [38]. Even if long-term functioning
osseointegrated implants show what seems to be similar
bone tissue reactions, osseointegration might be able to be
achieved more rapidly than otherwise observed. Such po-
tentially accelerated osseointegration has been indicated
by results from experiments with hydroxyapatite coating
[19], using intermediary roughened implants [42], after hy-
perbaric oxygen treatment [30] or by using anodised c.p.
titanium with artificially enhanced oxide layers [9]. Ac-
celeration of osseointegration may depend on the removal
of negative tissue conditions or optimisation of the bioma-
terial rather than on an actual increase in the rate of bone
response.

Much less attention has been paid to the possibility of
establishing osseointegration in orthopaedic surgery than
in oral and craniofacial surgery. The original notion that
polymerised bone cement may be histologically osseoin-
tegrated has not been confirmed in more recent investiga-
tions [29]. Histological sections to reveal true bone-to-im-
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Fig.5 Simultaneous bone formation and resorption at the inter-
face between bone (B) and a commercially pure titanium (c.p. Ti)
implant. There are three cavities arranged in a horizontal line in the
middle of the figure. In the left cavity, red dominates, i.e. positive
staining for acid phosphatase meaning active bone resorption. In
the middle cavity, blue dominates, i.e. positive staining for alkaline
phosphatase, meaning active bone formation. In the right cavity,
there is red and blue staining, i.e. both bone formation and resorp-
tion. Bar, 100 µm
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plant contact need to be quite thin (of the order of 10–
20 µm) to really reveal osseointegration. Thicker sections
have a shadow effect [21] that make it impossible to state
whether or not true direct bone contact has been achieved.
Apart from poor resolution, this is the reason why com-
mon radiographs are of little value in the diagnosis of os-
seointegration. The question is whether it is really possi-
ble to establish osseointegration of conventional orthopaedic
arthroplasties with the combined use of less biocompati-
ble materials, interfacial heat due to curing bone cement,
drilling or reaming without a cooling agent and too rapid

loading. It is known that interfacial implant movement of
more than 150 µm will inevitably lead to soft tissue for-
mation instead of bone, for instance [11]. Even if one- or
two-point bone contact can be demonstrated, this need not
represent actual osseointegration of the entire implant.

Screw-type implants inserted using a modified mini-
mally traumatising technique have been convincingly os-
seointegrated, e.g. in hip arthroplasties [8] and interpha-
langeal implants [27] or vertebral screws (Fig.6). How-
ever, whether or not osseointegration will become as im-
portant a type of anchorage in orthopaedics as in oral and
craniofacial implantology will depend on the reported long-
term clinical results of this type of anchorage.

Conclusion

Osteoinduction, osteoconduction and osseointegration are
interrelated, but not identical phenomena. Osteoinduction
is part of normal bone healing and is responsible for the
majority of newly formed bone, e.g. after a fracture or the
insertion of an implant. The implant itself may be osteoin-
ductive, but this is not a prerequisite for bone induction.
Osteoconduction is a term now usually used in conjunc-
tion with implants. Osteoconduction and osseointegration
both depend not only on biological factors, but also on the
response to a foreign material. The osteoconductive re-
sponse may be rather short lived, but successful osseoin-
tegration maintains its bone anchorage over a long period.

Fig.6 Hydroxyapatite-coated vertebral screw in a goat. Osseoin-
tegration is evident. Bar, 1000 µm (Courtesy of Dr. B. Sandén,
Uppsala University)
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