
Introduction

Intervertebral discs are characterized by their abundant
extracellular matrix and low cell density, coupled with an
absence of blood vessels, lymphatics, and nerves in all but
the most peripheral annulus layers. In many respects, this
absence leaves the disc prone to degeneration, because the
cells have a large extracellular matrix to maintain without
nociceptive feedback to limit and detect damage, and no
source of repair through the vasculature.

Intervertebral discs are not uniform in composition, but
consist of two clearly distinct regions. The outer annulus
fibrosus is a fibrocartilage, and contains concentric lamel-
lae rich in collagen, whereas the inner nucleus pulposus is
a less structured gelatinous substance rich in proteogly-
cans. Degeneration and age-related changes in both the
biochemical composition and structure of each compo-
nent of the intervertebral disc have been widely reported
[5, 14, 37, 40, 49]. As discs degenerate, the nucleus pul-
posus becomes more consolidated and fibrous, and is less
clearly demarcated from the annulus fibrosus. Focal de-
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fects appear in the cartilage endplate, and there is a decrease
in the number of layers of the annulus with an increase in
thickness and spacing of the collagen fibrils [38]. Degen-
eration causes decreased hydration, especially in the nu-
cleus [5]. Water content in the nucleus pulposus drops
from about 90% of the tissue wet-weight in the infant to
less than 70% in the elderly [5, 21]. In the annulus fibro-
sus, the water content remains relatively constant with age,
accounting for approximately 60–70% of the tissue wet-
weight [5, 21].

Collagen represents about 15–20% of the nucleus, and
65–70% of the annulus dry-weight [5, 17, 18]. At least
seven distinct collagen types have been identified in the
intervertebral disc, types I, II, III, V, VI, IX and XI. The
annulus fibrosus of the intervertebral disc has been re-
ported to contain all these collagen types, whereas the nu-
cleus pulposus contains only types I, II, VI and IX colla-
gen [1, 6, 7, 8, 17, 18, 62]. In addition, type X collagen
has been shown to be present in discs with histomorpho-
logical alterations consistent with disc degeneration [3,
11]. Types I and II collagen constitute about 80% of the
collagens in the intervertebral disc [5, 17]. Although the
other collagen types identified in the disc account for a
smaller proportion of the total collagen, they may make a
very significant contribution to the overall function of the
tissue. Recent work has shown that type II collagen degra-
dation in the human lumbar intervertebral disc is in-
creased with age and degeneration, and in parallel, the cell
synthetic capacity is strongly suppressed with aging and
degeneration [5, 20].

The trends in molecular abundance observed for colla-
gen are reversed for proteoglycans, which represent ap-
proximately 50% of the dry-weight in the nucleus, but
only 10–20% in the annulus [5, 17, 18]. The ability of the
discs to resist compressive forces is largely due to their
high content of the proteoglycan aggrecan and its ability
to interact with hyaluronan [23, 25, 44]. Versican, another
proteoglycan with the ability to interact with hyaluronan,
has also been shown to be present within the interverte-
bral disc [58]. In addition to aggregating proteoglycans,
the discs also contain decorin, biglycan, fibromodulin and
lumican [29, 53, 57], which belong to the family of leucine-
rich repeat proteoglycans. Ageing and degeneration of the
discs are accompanied by a marked decrease in proteogly-
can content in the nucleus and major alterations in proteo-
glycan structure [5, 12, 37].

The process of disc degeneration involves the destruc-
tion of structural proteins, including collagens and proteo-
glycans, within the extracellular matrix. It is generally
agreed that proteinases play a major role in this process.
One group of proteinases thought to be involved in the de-
struction of the disc matrix includes members of the matrix
metalloproteinases (MMPs) [13, 19, 41, 43, 46, 47], par-
ticularly the collagenases and gelatinases. Once activated,
collagenases can degrade types I and II collagen by cleav-
age in their helical domains, thus making these collagens

susceptible to further enzymatic degradation by gelatinases.
A second group of proteinases involved in matrix degra-
dation includes members of the ADAM family [55], par-
ticularly those members with thrombospondin repeat mo-
tifs (ADAMTS) [59]. Two members of this subfamily are
of particular importance because of their ability to specif-
ically degrade aggrecan – aggrecanase-1 (ADAMTS4)
and aggrecanase-2 (ADAMTS5). It has been shown that
aggrecan cleavage products due to degradation by both the
matrix metalloproteinases and aggrecanases are present in
the intervertebral disc, suggesting that these enzymes are
active in this tissue [56]. Unlike most other connective tis-
sue cell types, little is known about the ability of disc cells
to produce the different metalloproteinases. The only pro-
teinase extracted directly from intervertebral disc appears
to be a serine proteinase rather than a metalloproteinase,
and it has properties similar to plasmin [15, 39]. However,
human disc in organ culture has been shown to synthesize
stromelysin (MMP3), which can become activated within
the matrix [34]. MMP1, 2, 3, 7, 8 and 9 have also been
shown to be present in degenerated human discs, suggest-
ing a role for these metalloproteinases in disc degenera-
tion [16, 52].

Mechanisms that may contribute to the age-related and/
or degenerative changes of the disc include reduction in nu-
trient supply, diminished cell viability, loss of notochordal
cells, cell senescence, cell apoptosis and genetic factors,
which lead to biochemical alterations in the composition
and structure of the extracellular matrix [2, 9, 10, 22, 24,
26, 48, 50, 51]. In addition, alterations in intervertebral
disc structure are associated with, or aggravated by, me-
chanical factors [27, 28, 30, 31, 32, 36, 42, 45].

The degenerative disorders of the lumbar spine that re-
quire surgical intervention include herniated discs, spinal
stenosis, degenerative spondylolisthesis, degenerative sco-
liosis, and degenerative disc disease. Among these, it is
the treatment of idiopathic low back pain associated with
lumbar degenerative disc disease that is the most contro-
versial, and remains a challenge for the orthopaedic sur-
geon. Although, surgical procedures involving vertebral
fusion produce a relatively good short-term clinical result
in relieving pain, they alter the biomechanics of the spine
and can lead to further degeneration of the discs at adja-
cent levels. In fact, the failure rate for lumbar fusions is
estimated to be in the 20–40% range [60], and there is
clinical and radiological evidence that spinal fusion leads
to accelerated degeneration of the adjacent motion segment
[33, 54].

Biological approach to repair disc damage

In general, surgical procedures try to remove rather than
repair the problems associated with the degenerate inter-
vertebral disc. Repair is, however, the ideal therapeutic
approach, as it restores the normal structure and function
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of the intervertebral disc. We believe that future treatments
will be able to effect biological repair of the damaged tis-
sue by restoring it to a tissue of similar functional compe-
tence to the healthy native one. These are the dreams of
all investigators involved in tissue engineering research,
which extend from the “simple” injection of cells into the
defect, to the futuristic aspiration of implanting an in-vitro-
generated intact motion segment.

However, unless one is a true optimist, only two bio-
logical approaches to the treatment of disc degeneration
are likely to become clinically available within the next
10 years. At the earlier stage of disc degeneration, injec-
tion of inhibitors of proteolytic enzymes or biological fac-
tors that stimulate cell metabolic activity (i.e. growth fac-
tors) can be foreseen, in order to slow down the degener-
ative process. Alternatively, when disc degeneration is con-
fined to the nucleus, it is not unreasonable to propose that
implantation or injection of a biomatrix embedded with
cells will have the potential to restore functionality, and to
retard further disc degeneration. In both cases, several
problems need to be addressed before the two potential
treatment modalities can be turned into clinical realities.

Our attempt to initiate biological repair of disc degen-
eration is based on the second of the above described ap-
proaches, namely the supplementation of the degenerated
nucleus pulposus with cells seeded or embedded within a
biomatrix. In principle, two types of biomatrices can be
envisaged as scaffolds for use in disc repair. The first in-
volves a preformed matrix into which isolated disc cells
can be seeded, the composite maintained in vitro to attain
an optimal composition, and the product then implanted
into the degenerate disc. A second approach is to use a sol-
uble polymer to which cells can be added and the mixture
then injected into the disc where the scaffold can poly-
merize in situ. The advantages of the second approach are
that the polymerized construct will conform precisely to
the disc defect and that its clinical application is more
straightforward, avoiding extensive surgical disruption of
the annulus. However, the latter system is not readily
compatible with prior in vitro culture of the construct, and
requires that the cells produce an appropriate extracellular
matrix in the nutritionally deprived disc milieu.

Our initial work focused on selecting a biomatrix that
was able to support disc cell viability and phenotype, and
allow the accumulation of an extracellular matrix rich in
proteoglycans. Two biomatrices were selected: a collagen-
hyaluronan scaffold from Orquest Inc. (Mountain View,
Calif., USA), and a chitosan gel developed by Biosyntech
(Laval, Quebec, Canada).

The first scaffold, composed of collagen and hyaluro-
nan, was chosen because it mimicked the matrix by which
disc cells are normally surrounded in their native environ-
ment [35]. Cells were isolated from the nucleus pulposus
of coccygeal discs from mature bovine tails, and then im-
bibed by surface tension into the dry biomolecular scaf-
fold consisting of cross-linked type I collagen and hyaluro-

nic acid in a 9:1 ratio [61]. The cell-seeded matrices were
maintained in culture on an orbital shaker in the presence
of fetal calf serum (FCS) or a variety of growth factors
(TGF-β1, bFGF and IGF-1). FCS was able to induce pro-
teoglycan synthesis and produce a matrix that exhibited
Safranin O staining. TGF-β1 produced similar levels of
proteoglycan as FCS, whereas proteoglycan levels were
reduced with either bFGF or IGF-1 (Fig.1). Combinations
of the growth factors did not greatly influence the effect
of TGF-β1 alone. In contrast, cell division was stimulated
to the greatest extent by the presence of IGF-1. It was also
shown that by day 20 of culture the matrices not only con-
tained aggrecan, but also the members of the small leucine-
rich repeat proteoglycan family (decorin, biglycan, fibro-
modulin and lumican), as are found in normal disc, and
that both type I and II collagen were being synthesized.
However, while all the proteoglycans of a normal disc were
present, it was evident that the construct was not able to
retain the majority of the proteoglycans that the cells syn-
thesized (Table 1). This resulted in a tissue that was bio-
mechanically unable to counteract the compressive loads
to which the disc is normally subjected. In future work in
this area it will be important to establish conditions under
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Fig.1 Safranin O staining of nucleus pulposus cells seeded into
collagen-hyaluronan scaffolds after 20 days of culture. Cells were
stimulated with 10 ng/ml of TGF-β1 or 10 ng/ml of bFGF during
the 20 days of culture

Table 1 Percentage of proteoglycans (PG) retained within the
scaffolds and percentage of the total proteoglycans synthesized
(medium + scaffolds) in vitro, compared to native mature bovine
nucleus pulposus (NP) tissue. Disc cells were cultured in the pres-
ence of 10 ng/ml TGF-β1

Scaffolds Results

% PG retained % PG synthesized 
within the scaffold in vitro vs native 

NP tissue
Collagen-hyaluronan 25% 5%
Chitosan gel 75% 35%



which proteoglycan retention occurs efficiently, either by
modifying the composition/structure of the scaffold or by
treatment with more appropriate growth factors or biome-
chanical stimulation.

In a second approach, we used a chitosan-based poly-
mer, which can be maintained as a soluble polymer at room
temperature, and induced to gel at body temperature. Such
a system might allow disc cells to be injected with the sol-
uble polymer, which can then polymerize and entrap the
cells in vivo (Fig.2). Using identical experimental condi-
tions to those described above for the collagen-hyaluro-
nan scaffold, we found that the chitosan-based polymer
was superior to the collagen-hyaluronan matrix, in both
the synthesis and retention of proteoglycans (Table 1). This
suggests that, at least in vitro, it should be feasible to gen-
erate a tissue with appropriate biochemical and mechani-
cal properties similar to native nucleus pulposus. Thus,
the disc cells can maintain their phenotype when cultured
in a chitosan-based polymer, and over time are capable of
producing a matrix with a proteoglycan content approach-
ing that found in vivo [4].

Nevertheless, an important issue still requires to be ad-
dressed: the source of clinically useful cells. It is difficult
to imagine that healthy nucleus cells could be obtained
from the degenerated tissue that needs to be replaced. Two
possible alternatives are conceivable: allogenic donor disc
cells and/or autologous stem cells. While one can envis-
age the use of cells harvested from a donor, because of the
immunologically privileged status of the nucleus pulpo-
sus, ethical considerations and the potential for spreading
infectious diseases make the allogenic option less attrac-
tive. The use of stem cells as a source for generating nu-
cleus pulposus cells would be the ideal choice, though at
present there are no defined culture conditions where this
differentiation process occurs. In addition, there are no
well-defined cellular markers that can be used to identify
disc cells and clearly distinguish them from other chon-
drocyte-like cells.

Furthermore, replacement of degenerate nucleus pul-
posus with a tissue engineered in vitro does not remove
the reasons why the native tissue has degenerated. Indeed,
one is attempting to repair without resolving the issue of
what caused the original damage. So, what are the uniden-
tified causes that lead to disc degeneration? Lack of an ap-
propriate nutritional supply, and mechanical imbalance with
excessive loading are possible explanatory mechanisms,
together with genetic predisposition. Thus, more funda-
mental research investigating the possible mechanisms
that lead to disc degeneration needs to be strongly sup-
ported by the scientific and industrial communities, if one
is to be able to both initiate repair and prevent or retard
subsequent degeneration.

Irrespective of these unresolved issues, our work does
support the feasibility of generating a functional bioengi-
neered disc matrix, and should provide optimism that bio-
logical therapy for disc degeneration may be a clinical re-
ality in the not too distant future.
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