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Surrogate endpoints offer the hope of smaller or shorter cancer trials. It is, however, important to realize they come at the cost of an 
unverifiable extrapolation that could lead to misleading conclusions. With cancer prevention, the focus is on hypothesis testing in 
small surrogate endpoint trials before deciding whether to proceed to a large prevention trial. However, it is not generally appreci-
ated that a small surrogate endpoint trial is highly sensitive to a deviation from the key Prentice criterion needed for the hypothesis-
testing extrapolation. With cancer treatment, the focus is on estimation using historical trials with both surrogate and true endpoints 
to predict treatment effect based on the surrogate endpoint in a new trial. Successively leaving out one historical trial and comput-
ing the predicted treatment effect in the left-out trial yields a standard error multiplier that summarizes the increased uncertainty 
in estimation extrapolation. If this increased uncertainty is acceptable, three additional extrapolation issues (biological mechanism, 
treatment following observation of the surrogate endpoint, and side effects following observation of the surrogate endpoint) need 
to be considered. In summary, when using surrogate endpoint analyses, an appreciation of the problems of extrapolation is crucial.
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A surrogate endpoint, such as a biomarker, is an endpoint observed 
sooner than a true endpoint, such as cancer or mortality, and is used 
to make conclusions about the effect of an intervention on true end-
point. Consequently, surrogate endpoints offer the hope of making 
results available sooner and at reduced costs. However, there is no 
free lunch. Surrogate endpoint analyses involve an extrapolation to 
an unobserved effect of intervention on the true endpoint, and no 
statistical approach can fully address the unknown nature of this 
extrapolation. A bewildering variety of statistical methods have been 
proposed for analyzing trials with surrogate endpoints (1–12), and it 
is easy to lose an appreciation of the extrapolation amid the math-
ematics. The focus here is on two simple methods for surrogate 
endpoint analysis that elucidate the potential cost of extrapolation.

Importantly, the type of surrogate endpoint analysis depends on 
the application, with considerable differences between cancer pre-
vention trials (13) and cancer treatment trials (14). Surrogate end-
points also play a role in double sampling trials, in which surrogate 
endpoints are observed in all trial participants and true endpoints 
are observed in a random sample of participants (15–20). In double 
sampling, the use of a random sampling to observe some true end-
points provides a firm basis for drawing conclusions without prob-
lems of extrapolation. In the situations discussed in this article, the 
investigators are more ambitious in drawing conclusions because 
they have no data on the true endpoint in the trial of interest and 
the validity of an extrapolation is a crucial consideration.

Cancer Prevention trials: Hypothesis-testing 
extrapolation
A typical definitive cancer prevention trial to study the effect 
of an intervention on the true endpoint of cancer incidence 

among healthy persons may require a sample size in the tens of 
thousands. Before committing time and resources to such a large 
trial, investigators seek preliminary evidence that the intervention 
to prevent cancer will likely be beneficial. A  frequent source of 
evidence is a small trial with a surrogate endpoint (21). The choice 
of surrogate endpoint for cancer incidence depends on the current 
understanding of cancer biology (22). Examples of candidate 
surrogate endpoints include measurements or indicators based 
on tumor-associated gene expression or function; circulating 
blood biomarkers, such as hormone levels or cellular morphology; 
markers of cell proliferation; and tissue changes, such as onset 
of adenomas (23). The biological link may or may not be solid. 
However, the focus here is on statistical issues. Because it is unusual 
to find any previous prevention trial that measures the surrogate 
endpoints of interest, there are no data for constructing a model to 
estimate the effect of an intervention on cancer incidence based on 
the surrogate endpoint. In this setting, surrogate endpoint analyses 
are based on what we call hypothesis-testing extrapolation—
namely, rejecting the null hypothesis that intervention has no effect 
on the surrogate endpoint implies rejecting the null hypothesis that 
intervention has no effect on true endpoint.

It is not uncommon for a surrogate endpoint trial for cancer 
prevention to be less than 1% the size of the corresponding pre-
vention trial with a true endpoint. For example, a trial that involved 
a surrogate endpoint of bronchial dysplasia had a sample size of 267 
(24), whereas a trial that involved a true endpoint of lung cancer 
incidence among healthy persons had a sample size of 70 000 (25). 
Because a small surrogate endpoint trial usually has adequate power 
to detect a specified reduction in a surrogate endpoint, investiga-
tors rarely question its relevance to a large prevention trial with a 
true endpoint. This may partly arise from the seductive assumption 
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that the underlying biology is fully understood. However, as dis-
cussed below, there is no free lunch when it comes to hypothesis-
testing extrapolation.

The Prentice Criterion
The problem with drawing conclusions from a small surrogate 
endpoint trial for cancer prevention is that hypothesis-testing 
extrapolation can be misleading because of sensitivity to violations 
of a key assumption (13). A key assumption for hypothesis-testing 
extrapolation is the Prentice criterion—that the probability of true 
endpoint given the surrogate endpoint is the same in both rand-
omization groups. This criterion is named after Ross Prentice, who 
discussed requirements for hypothesis-testing extrapolation (26). 
In the case of a binary surrogate endpoint, the two requirements for 
valid hypothesis-testing extrapolation are 1) the Prentice criterion 
and 2) an association between the probabilities of true and surro-
gate endpoints within each randomization group (27). Sometimes 
an additional “requirement” is listed—namely, the probabilities 
of surrogate and true endpoints depend on the intervention, but 
this is not really a requirement but instead part of the statement of 
hypothesis-testing extrapolation

Insight into these requirements is provided by Figures 1 and 2, 
which display BK plots (28–30) in a modified form that is related 
to a plot for continuous surrogate and true endpoints that shows 
that a “perfect correlate does not a surrogate make” (31). The 
horizontal axis is the probability of the surrogate endpoint (at one 
level). The vertical axis is the probability of the true endpoint (at 
the corresponding level). Points are labeled as C for control group 
and E for experimental group. The diagonal lines connect the 
probabilities of true endpoint for the two levels of the surrogate 
endpoints. The first requirement, the Prentice criterion, translates 
into identical diagonal lines for each randomization group, as in 
Figure 1. The second requirement says the diagonal lines are, in 

fact, not flat. The additional mistaken “requirement” says points C 
and E are distinct.

To understand the graphical implications of these requirements 
for hypothesis-testing extrapolation, it is necessary to explain the 
relationship between corresponding points on the vertical and 
horizontal axes. Point C on the vertical axis (the probability of true 
endpoint in the control group) is graphically computed by connect-
ing a vertical line from point C on the horizontal axis (the prob-
ability of surrogate endpoint in the control group) to the diagonal 
line for the control group and drawing a horizontal line to the left. 
A similar algorithm applies for computing point E on the vertical 
axis from point E on the horizontal axis. If the requirements for 
hypothesis-testing extrapolation hold (a single diagonal line), then 
the true result (the difference between vertical points E and C) is 
proportional to the surrogate result (the difference between hori-
zontal points E and C). Consequently, hypothesis-testing extrapo-
lation holds because any surrogate result greater than zero implies 
a true result greater than zero.

Deviation From the Prentice Criterion: Sensitivity 
of Extrapolation
A deviation from the Prentice criterion can be specified as a differ-
ence in the probabilities of true endpoint given surrogate endpoint 
between the two randomization groups. In Figure 2, this deviation 
translates into different slopes for the diagonal lines for the two 
groups. The point “assumed E” is the probability of true endpoint 
in the experimental group if investigators incorrectly assumed 
the Prentice criterion held and believed the diagonal line for the 
experimental group coincided with the diagonal line for the control 
group. The left side of Figure 2 shows a slope of 1 for the control 
group, which corresponds to a large surrogate endpoint trial with 
the same size as the true endpoint trial. A small deviation of −0.07 
in the Prentice criterion gives a slope of 0.993 for the experimen-
tal group. Because point assumed E is close to point E, hypothesis-
testing extrapolation approximately holds. The right side of Figure 2 
shows a slope of 0.100 for control group (note that the scale of the 
horizontal axis differs from that of the left side), which corresponds 
to a small surrogate endpoint trial about one-tenth the size of the 
true endpoint trial. The same small deviation of −0.07 in the Prentice 
criterion gives a slope of 0.093 for the experimental group. Because 
the point assumed E is far from point E (in fact on the opposite side 
of C), hypothesis-testing extrapolation can be seriously misleading.

The impact of a small deviation from the Prentice criterion is 
quantified by the relative error, which is the error in the estimated 
effect of intervention on the true endpoint (the distance between 
assumed E and E on the vertical axis) as a percentage of the true result 
investigators hope to detect. Based on previous calculations that 
involved a sample size of 73 300 for a trial with a true endpoint, a very 
small deviation in the Prentice criterion of −0.002 is consistent with 
a relative error of −0.8%, −8%, and −80% for a trial with a surrogate 
endpoint of size of 73 300, 7100, and 496, respectively (14). In other 
words, with a small trial of size 496, the relative error is an important 
concern. With an intermediate-sized trial of 7100, the relative error 
is only a moderate concern. With a large trial of 73 300, the relative 
error is a minor concern, but this defeats the purpose of using the 
surrogate endpoint. Although the focus of this discussion has been on 
the Prentice criterion with a binary surrogate endpoint, qualitatively 
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Figure 1. A BK plot showing the Prentice criterion. The Prentice criterion 
corresponds to a single diagonal line. C = control; E = experimental.
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similar results are obtained with a Prentice criterion for the mean of a 
continuous surrogate endpoint and for a related criterion that involves 
a principal stratification model with binary surrogate endpoint (32).

The low tolerance for a small deviation from the Prentice cri-
terion is the fundamental problem with small sample sizes for sur-
rogate endpoint trials. As an analogy, suppose you are tossing two 
coins, a small coin weighing 1 g and a large coin weighing 100 g. It 
is a rainy day, and mud weighing 0.2 g sticks to one side of each coin 
when it lands on the ground. In subsequent tosses, this extra mud 
has a larger effect on the probability of heads with the small coin 
than with the large coin.

A Practical Recommendation
Hypothesis testing from a small surrogate endpoint trial is a major 
component in making decisions about implementing a definitive 
trial with an endpoint of cancer incidence. The above results lead 
to the following recommendation. Before jumping directly from 
a statistically significant result in a small surrogate endpoint trial 
to implementation of a large prevention trial with a true endpoint 
of cancer incidence, a moderately sized surrogate endpoint trial 
should be implemented to reduce the possibility of misleading 
hypothesis-testing extrapolation. Implementing the moderately 
sized surrogate endpoint trial would require finding a surrogate 
endpoint that occurs less often than the surrogate endpoint in the 
initial small surrogate endpoint trial. However, even if the mod-
erately sized surrogate endpoint trial yields a promising result, 
other types of evidence, such as any results from mechanistic stud-
ies, experimental studies in animals, or observational studies in 
humans, should also factor into the decision of whether to launch 
a large prevention trial. Also a larger deviation from the Prentice 
criterion than specified in this example could render the results 
from even a moderately sized surrogate endpoint trial misleading.

Cancer treatment trials: estimation 
extrapolation
Surrogate endpoints play a different role in cancer treatment trials 
than in cancer prevention trials. With treatment trials, the main 
purpose of using the surrogate endpoint is usually to shorten the 
duration of the trial, sometimes with an eye toward drug approval. 
Unlike with prevention trials, data are typically available from one 

or more historical trials with the same surrogate and true endpoints 
as in the new trial. The goal is to predict the effect of treatment 
on true endpoint in a new trial based on the surrogate endpoints 
in the new trial and a prediction model that relates surrogate and 
true endpoints derived from historical trials, a procedure we call 
estimation extrapolation. The focus here is on one relatively simple 
method that highlights the extrapolation.

The Prediction Model
A major challenge in formulating a prediction model is labeling 
control and experimental groups. A problem is that an experimental 
treatment in one historical trial may be a control treatment in another 
historical trial (33). Also, there may be more than two randomization 
groups in a trial (14). The following two-part strategy addresses this 
challenge. First, the randomization group with smallest (largest) esti-
mated probability of the favorable surrogate endpoint is labeled as 
the control (experimental) group (14). This procedure assumes that 
the treatment effect for the surrogate endpoint is in the same direc-
tion as the treatment effect for the true endpoint. Second, the predic-
tion model specifies the Prentice criterion—namely, the true result is 
proportional to the surrogate result—so that if mislabeling changes 
the sign of both results, the model is unchanged (33). Importantly, 
the rationale for using the Prentice criterion differs between estima-
tion extrapolation and hypothesis-testing extrapolation.

Uncertainty With the Prediction Model: The Standard 
Error Multiplier
The standard error multiplier quantifies the uncertainty associated 
with the prediction model based on a successive leave-one-out 
analysis that mimics estimation extrapolation using past data 
(14). Computation of the standard error multiplier involves 
the following steps. Successively, one historical trial is removed 
from the analysis, the prediction is model is fit to data from the 
remaining historical trials, and the prediction model is applied to 
the surrogate endpoints in the left-out trial to compute a model 
result. The extrapolation error for the left-out trial is the difference 
between the model result and the true result. The predicted result 
for the left-out trial equals the model result plus the mean of 
the extrapolation errors. The variance of the predicted result for 
the left-out trial equals the variance of the model result plus the 
variance of the extrapolation error. The standard error multiplier 
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Figure 2. BK plots showing deviations from the Prentice criterion. The deviations from the Prentice criterion correspond to different diagonal lines. 
C = control; E = experimental.
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is the average, over historical trials, of the standard errors of the 
predicted result divided by the standard error of the true result.

Computation of the standard error multiplier requires surrogate 
and true endpoints that are binary, which importantly includes an 
indicator of survival to a prespecified time. A surrogate or true result 
that is the difference in estimated survival to a clinically meaningful 
prespecified time is an attractive alternative to the commonly used 
hazard ratio, and it provides a more easily understood outcome for 
both clinician and patient. The main objection to the former is the 
need to specify a time for the analysis. However, without a strong 
assumption of proportional hazards, the hazard ratio depends on 
the duration of follow-up (34), so it also depends on a prespecified 
time. Because an absolute difference is more clinically relevant than 
a ratio (35–38), the difference in estimated survival at specified time 
can be a more appealing measure than the hazard ratio.

The standard error multiplier has been computed for the fol-
lowing datasets: 1) 10 historical, randomized trials for early colon 
cancer where the surrogate endpoint was survival to 3 years with-
out cancer recurrence and the true endpoint was overall survival 
to 5 years (14,39); 2) 10 randomized trials for advanced colorectal 
cancer where the surrogate endpoint was survival to 6 months with-
out cancer progression and the true endpoint was overall survival 
to 12 months (14,40,41); and 3) 27 randomized trials for advanced 
colorectal cancer, some of which are the same as in the second exam-
ple, where the surrogate endpoint was tumor status assessed after 
3–6 months, and the true endpoint was overall survival to 12 months 
(3,42). For these three examples, the standard error multipliers were 
1.36, 1.33, and 1.25, respectively (14). Using the original labels for 
control and treatment groups (for a sensitivity analysis), the standard 
error multipliers were similar—namely, 1.30, 1.33, and 1.23, respec-
tively. Detailed calculations for the second example are presented in 
the Supplementary Material (available online).

Simple Recommendation: Addressing Four Questions
Before planning a new trial with only a surrogate endpoint and 
drawing conclusions based on estimation extrapolation, it is neces-
sary to address the following four questions.

Question 1: Does the increased uncertainty associated with esti-
mation extrapolation in historical trials (as summarized by the 
standard error multiplier) outweigh the advantage of drawing 
conclusions sooner than with a true endpoint trial?

If the answer to Question 1 is “no,” there is no point in imple-
menting a new surrogate endpoint trial because confidence intervals 
will likely be too wide to be informative. If the answer to Question 
1 is “yes,” then the following three additional questions, that reframe 
known issues in surrogate endpoint analysis (43), need to be addressed:

Question 2: Would the biological mechanism in which treat-
ment affects surrogate and true endpoints likely be similar in 
the new trial as in some of the historical trials?

Question 3: Would patient management following the surrogate 
endpoint likely be similar in the new trial as in some of the 
historical trials?

Question 4: Would no serious detrimental side effects likely arise 
in the new trial between the time of observation of the sur-
rogate endpoint and the time of observation of true endpoint?

If the answers to Questions 2, 3, and 4 are all “yes,” then a sur-
rogate endpoint trial could reasonably be used to rule in a promis-
ing treatment. Of course, this is a tall order, particularly Questions 
2 and 4, which could involve many unknowns. If the answers to 
Questions 2 and 3 are “yes,” a surrogate endpoint trial could be 
reasonably used to rule out an unpromising treatment without the 
need to consider Question 4.  The detrimental consequences of 
incorrectly answering these questions is greatly lessened if estima-
tion extrapolation is applied to a preliminary randomized trial with 
a surrogate endpoint, which is used to decide whether or not to 
implement a trial with a definitive true endpoint.

Conclusions
For clinicians and clinical trialists contemplating the use of a surro-
gate endpoint trial, the key point is not to lose sight of the fact that the 
analysis is fundamentally an extrapolation. In the cancer prevention 
setting, the reliance on hypothesis-testing extrapolation is particularly 
risky with a small surrogate endpoint trial. In the cancer treatment 
setting, a useful first step is to quantify the uncertainty of estimation 
extrapolation based on a leave-one-out analysis of previous historical 
trials. Subsequently, other extrapolations issues need to be addressed.
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