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Abstract

Despite numerous technology advances, bioreactors are still mostly utilized as functional black-boxes where trial and error
eventually leads to the desirable cellular outcome. Investigators have applied various computational approaches to
understand the impact the internal dynamics of such devices has on overall cell growth, but such models cannot provide
a comprehensive perspective regarding the system dynamics, due to limitations inherent to the underlying approaches. In
this study, a novel multi-paradigm modeling platform capable of simulating the dynamic bidirectional relationship between
cells and their microenvironment is presented. Designing the modeling platform entailed combining and coupling fully an
agent-based modeling platform with a transport phenomena computational modeling framework. To demonstrate
capability, the platform was used to study the impact of bioreactor parameters on the overall cell population behavior and
vice versa. In order to achieve this, virtual bioreactors were constructed and seeded. The virtual cells, guided by a set of rules
involving the simulated mass transport inside the bioreactor, as well as cell-related probabilistic parameters, were capable of
displaying an array of behaviors such as proliferation, migration, chemotaxis and apoptosis. In this way the platform was
shown to capture not only the impact of bioreactor transport processes on cellular behavior but also the influence that
cellular activity wields on that very same local mass transport, thereby influencing overall cell growth. The platform was
validated by simulating cellular chemotaxis in a virtual direct visualization chamber and comparing the simulation with its
experimental analogue. The results presented in this paper are in agreement with published models of similar flavor. The
modeling platform can be used as a concept selection tool to optimize bioreactor design specifications.
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Introduction

The diseases of cellular deficiency [1] can be only treated if the lost

cell population is either regenerated or compensated using

autologous substitutes [2,3]. Given that certain adult human

tissues lose their capacity to regenerate [4], they rely exclusively, in

case of a critical injury, on functionally similar substitutes [4–7].

The principles of tissue engineering can be used to develop such

biological substitutes, with remarkably similar properties as those

of the host tissues, in vitro [4,6–9]. This requires recapitulation of

certain key developmental events ex vivo thereby necessitating tight

control over the artificial growth environment [3,7,10]. Bioreac-

tors, which have evolved significantly in both their complexity and

functionality over the last two decades, are devices that have been

successfully utilized towards this end [2,3,10]. Apart from their

primary design objective (which is to regulate the cellular

microenvironment to support cell viability, promote their 3D

organization and provide the cells with spatiotemporally con-

trolled signals) they also offer the user the possibility to seed cells

dynamically within 3D matrices, overcome the constraints in-

herent to static cultures and stimulate the developing constructs

physically [3,10].

Despite the technological advances that have been made in the

sector of regenerative medicine and bioreactor technology, there is

still a pressing need for safe and clinically efficacious autologous

substitutes [3]. Translating regenerative medicine from bench to

bed-side would not only require a good product but also robust,

controllable and cost-effective manufacturing bioprocesses that are

compliant with the evolving regulatory frameworks [3,11].

Bioreactors serve ideally towards this end as they are the key

element for the development of automated, standardized, trace-

able, cost-effective and safe manufacturing processes for engi-

neered tissues for clinical applications [3].

However, utilized primarily as black boxes, where trial and

error eventually leads to the desirable cellular outcome [3,12],

bioreactors have an enormous ground to cover for that eventuality

to be realized. Currently, the yields are qualitatively poor and the

process of cell growth is often not reproducible. The problem

stems from the fact that little is known about the impact of specific

bioreactor mass transport characteristics and features on the

expansion and growth of cells within the device. Investigators in

recent years have begun applying computational tools [12,13] to

study mass transport inside the bioreactor and how that may

influence cell dynamics, but this extremely complex interplay has

thus far proven elusive.

Analyses based on tackling directly the differential equations

governing transport have not only been successful in quantifying

mass transport and hydrodynamics inside the bioreactors; their use

has been extended to, given certain assumptions, studying cellular

dynamics as well [12,14]. Such models usually either assume

absence of neo-tissue within the interconnected pore space in
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a scaffold or cell attachment only along the surfaces of the scaffold

[12]. The differential approach models the cell population, the

surrounding extra-cellular framework and nutrients as distributed

continua [14]. The matrix in which the cells grow can be treated

as a porous medium [14] and one can utilize a wide variety of

available computational methods to quantify the distribution of

any number of substances being transported and diffusing inside it.

Whereas the continuum approach captures the transport phe-

nomena quite accurately, the fact that it investigates biological

phenomena at cell population level, disregarding entirely the cellular

heterogeneity – central to biological function [14,15] – and the

low-level system details [16], hinders detailed analysis of cellular

dynamics [11,17,18].

In order to understand the impact of cell level behavior on the

overall cell population discrete models can be employed [14–

16,18]. The cellular automata approach has been used extensively

to trace the microscopic details of cellular dynamics more directly

and accurately by attributing a set of evolution/transition rules to

the computational grids that can represent biological entities such

as the cell or the physical microenvironment [14,19]. The models

that have been tried using this approach usually assume a constant

supply of nutrients, which is not fully reflective of the actual

conditions even under carefully designed experiments [15,20].

Furthermore, the discrete models available in the literature,

despite capturing processes such as contact inhibition, persistent

random walk and cell division with marked accuracy, do not

consider the impact of chemotaxis and apoptosis on the overall

growth dynamics of a cellular colony [15,20]. More recently,

hybrid models, which are a combination of the continuum and

discrete approaches, have been utilized to study the impact of

transport phenomena on cellular dynamics [14,16,21,22]. Despite

being a significant advancement over both the continuum and

discrete approach, most of the limitations of the cellular automata

models apply to the hybrid models as well. Additionally, the fact

that these models are computation- and time- consuming makes it

difficult for them to be considered for three-dimensional systems.

Before exploring the relevant hybrid models it needs stating that

the hybrid approach itself is not novel and has been applied to

simulate a variety of non-biological phenomena. Examples include

coupled finite element-flux corrected transport method/finite

volume approach to predict electrostatic fields, electrohydrody-

namic flow, particle charging and turbulent motion, and their

mutual interaction in 3D models of a single wire-plate electrostatic

precipitator [23]; finite-element/finite-volume approach to model

flow and transport in heterogeneous porous media [24]; compu-

tational-fluid-dynamics (CFD)/agent-based modeling (ABM) ap-

proach to simulate a gas turbine engine [25]; finite-difference/

finite-element approach to model temperature increase in bi-

ological vascularized tissues produced by radio-frequency expo-

sure [26]; and discrete element method/compartment modeling to

analyze granular mixing [27] amongst others. Furthermore,

attempts have been made to study gas-liquid flow in bubble

column reactors [28] and gas-liquid-solid three phase flow using

a Lagrangian-Eulerian approach [29,30].

Chung et al (2006) [5] developed a mathematical model to

explain tissue growth inside a scaffold by treating the cell-scaffold

construct as a porous medium, also incorporating cell diffusion to

account for cell random walks. Galban and Locke (1999a, 1999b)

[31,32] adopted a similar approach and utilized species continuity

equations and the volume average method to model in vitro growth

of cartilage tissues. Both these modeling efforts produced in-

teresting results and valuable insight – within the limitations of

continuum models of course. Lemon and King (2006) [33] utilized

a multiphase model to capture the growth of biological tissue

inside a rigid scaffold. The model, based on the mixture theory

where each tissue component – cells, water and a solid scaffold

material – was treated as a continuum on the macroscale,

accounted for cell division as well as apoptosis. Although it dealt

very elegantly with the mechanical aspects of the system, necrosis

was not considered in the model. Moreover, mitosis was

considered to be proportional to the volume fraction of nutrients,

cells and water; whereas apoptosis was considered to be pro-

portional to the volume fraction of cells – thereby disregarding the

dependence of such behavior on cellular and spatial heterogeneity.

Similarly, Flaibani et al (2010) [34] modeled the spatiotemporal

evolution of cell heterogeneity in a porous scaffold by solving the

relevant PDEs, (discretised using the finite volume approach). The

model considered perfusion conditions. These models can capture

the population level behavior quite adequately, yet involve

assumptions that lead to ignoring of important behavior such as

cell migration, apoptosis, necrosis, chemotaxis, variations in the

spatiotemporal microenvironment. Thus, a comprehensive picture

of the synergistic dynamic interplay that exists in biological as well

as tissue engineering systems remains a challenge.

On the other hand, Cheng et al (2006) [15] used the discrete

approach to model the dynamic process of tissue growth in a 3D

environment. Their model was an improvement over a 2D model

developed by Lee et al (1995) [20]. The model considered

a population of cells executing persistent random walks on the

computational grids, cell-cell collisions and proliferation until

confluence. The model assumed constant nutrient and growth

factor concentration in space and time and did not consider cell

death (apoptosis or necrosis) and chemotaxis. In a more recent

model, Cheng et al (2009) [16] utilized the continuum-discrete

approach to model the complex interplay that exists between cell

populations and mass transport dynamics. Cell interactions were

modeled using the discrete CA approach whereas diffusion and

consumption of nutrients were based on a transient PDE

approach. The dependence of cell division and cell migration on

nutrient concentration, which is not to be confused with

chemotaxis, was also accounted for. As migration speed was

proportional to nutrient concentration, lower nutrient concentra-

tion meant lower migration speed. Although the latest model

presented by Cheng et al (2009) [16] remains one of the most

complete in the literature, it too did not consider chemotaxis and

necrosis. Galbusera et al (2008) [22] adopted a similar strategy to

create a software framework for computational modeling of tissue

engineering experiments. Cell population in this framework is

modeled using the ‘discrete cells in a continuum space’ (Galbusera

et al., 2008) approach [22]. The finite element approach was used

to model the cell environment. The group presents a 3D

microscopic model but only a 2D macroscopic model. Michae-

lis-Menten kinetics were used to calculate oxygen consumption by

the cells (which makes oxygen consumption a population behav-

ior). Furthermore, the model considers necrosis, due to lack of

oxygen, occurring when the oxygen concentration falls to less than

50% of the initial value. The model did not consider chemotaxis.

Despite their focus on microorganisms, hybrid models de-

veloped by Lapin et al deserve a mention due to the ease of

extension of the models to animal cells. Lapin et al modeled

microorganism population behavior in bioreactors by opting for

an individual-based approach [35–37] whereby the dynamic

behavior of the system as a whole can be traced to the behavior of

individual organisms. Their initial model [35,37] focused on

simulating temporal and spatial behavior of a population of

oscillating yeast cells based on glucose concentration fields in

a bioreactor. In order to achieve this, computational fluid

dynamics (CFD) – modeling the turbulent flow fields in the
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bioreactor – was coupled with Eulerian-Lagrangian representation

of the system, where the extracellular environment was based on

the Euler approach and the distributed biophase was characterized

by a discrete cell ensemble (Lagrange) approach. The model

considers cell migration by superimposing random movement due

to turbulent dispersion on the convective flow. The cell in this

instance, however, does not mean a ‘real’ living cell, rather

a computational element that represents a large collective of real

cells. In its advanced form [36,37] the model was extended to

simulate E. coli population dynamics in a stirred-tank bioreactor

with non-ideal mixing. In particular, Lapin et al modeled glucose

uptake by the bacteria, which depends on a combination of the

extracellular glucose as well as intracellular metabolite concentra-

tions. The investigators observed distinct differences in cell

viability at various scales of operation. The novelty of the model

lies in its strategy to trace population behavior by considering the

individual cell response as a result of key reactions of the central

metabolism, which we feel is a more mature, if computationally

expensive, way of approaching biological complexity. Certain

assumptions of this model are worth highlighting here: firstly, the

Lagrangian representation of the model is pseudo-discrete. Each

computational element represents a population of physical cells. It

can be argued that this makes the simulation computationally

economical but has the disadvantage of ignoring various in-

dividual-level details. Furthermore, like others previously dis-

cussed, the models do not consider proliferation, chemotaxis, or

apoptosis – features particularly important in tissue engineering

bioreactors (the focus of our work).

A modeling approach that has been gaining interest amongst

biologists and mathematicians alike is the agent-based modeling

(ABM). Drawing on different fields such as computer science,

artificial intelligence, complex systems, and the social sciences

[18,19,38]; ABM belongs to a class of discrete mathematical

approaches in which a system is modeled as a collection of

autonomous decision making entities that possess the capacity to

detect local information and act at each of several discrete time steps

based on a set of logical and/or mathematical rules attributed to

them [19,39]. Although quite similar in flavor to the cellular

automata (CA) approach, ABM differs from CA in that ABM

employs mobile agents, is characterized by asynchronous agent

behavior – i.e. allowing agents to update their states independently

of each other – and allows the user to incorporate stochastic

elements in the rule-set attributed to the agents [19]. Furthermore,

the CA approach, which can be described as a fixed grid of

interacting finite-state machines, lacks internal memory, which

leads to a combinatorial explosion of stages when considering even

trivial communication [17]. As a result, when it comes down to

representing complex systems, the agent-based approach appears

to offer certain advantages over the cellular automata approach.

A design tool capable of predicting the impact a bioreactor’s

design specifications, such as its flow-rate, inlet/outlet position,

geometry, and a given cell’s biological properties, such as its

nutrient consumption or metabolic rate, can have on the growth

(and differentiation) dynamics of the overall cell population will

therefore not only be immensely helpful in optimizing bioreactor

design and construction, but may help uncover the governing

dynamics that regulate development. In this study a multi-

paradigm ‘transport-agent’ model, capable of predicting, based

on a set of logical, algebraic, stochastic and differential rules, the

impact of bioreactor mass transport and hydrodynamics on the

growth dynamics of cells in a virtual bioreactor is presented. The

novelty of the platform is that in addition to capturing cell

dynamics as a result of interactions between individual cells (a feat

previously achieved by published CA and agent-based models), it

also considers the impact that local transport has on the cells and

how the cells might be able to indirectly alter their local

environment due to behavior like cell division, cell aggregation

or extra-cellular matrix synthesis or digestion. The platform can

therefore capture dynamic reciprocity [40,41]; an emergent phenom-

enon.

To achieve this, we have pursued the tight coupling of two

mature modeling platforms; first, the Flexible Large-scale Agent

Modeling Framework (FLAME) [17,42–45], an agent-based

system, with a computational multi-physics transport phenomena

platform (CFD-ACE+, ESI Group, Paris, France). FLAME

captures the rules that govern cell growth and proliferation

whereas CFD-ACE+ is employed to simulate bioreactor hydro-

dynamics, mass transport processes and other biomechanical

effects (for example, shear or strain triggered cellular responses).

The platform considers cellular behavior in 3D. Through the

platform we wanted to test the hypothesis that bioreactor

geometries, bioreactor variables and initial conditions are crucial

to cell development and that the integrated framework could be

used to capture that and optimize bioreactor design. In this paper,

various bioreactor variables are tested virtually. The results of the

in virtuo experiment deploying the integrated model are presented

and discussed. The bioreactor models considered were relatively

simple, although the platform has the capability to deal with

geometries, perfusion/stimuli characteristics and cellular popula-

tions of arbitrary complexity.

Methods

Quantifying cell population dynamics as well as the biophysi-

cochemical microenvironment are the important aspects of

modeling tissue engineering systems [22]. As discussed above,

the impact of spatial and cell-population heterogeneity can be best

modeled using the discrete approach whereas the continuum

approach remains the most accurate way of capturing the bulk

phenomena. The modeling platform was therefore composed of

two integrated and communicating elements that can simulate the

various biological processes which work synergistically to produce

behavior of staggering complexity. A brief description of each of

the two components is therefore essential.

2.1 Agent-Based Modelling
When the number of individuals to be modeled in a process is

relatively small (roughly 105–106), emergent phenomena are the

primary interest and spatial considerations are important (as

individual entities can be localized in space), an agent-based

approach can be utilized [43]. As defined by Wooldridge [46], ‘‘an

agent is an encapsulated computer system that is situated in some environment

and that is capable of flexible, autonomous action in that environment in order

to meet its design objectives’’. Therefore, by definition, an agent

possesses well defined boundaries, has the ability to sense its

environment and act on its environment, can control its internal

state as well as behavior, have particular goals to achieve, can act

in the anticipation of future goals, and respond in timely fashion to

changes that affect its environment [46]: features that in principle

make an agent very similar to a cell.

The agent-based approach decomposes the problem in terms of

autonomous entities. These autonomous entities engage in flexible,

high-level interactions, a feature that attributes to the system

multiple loci of control. Decision-making is therefore limited to the

agents’ actual situation as opposed to some external entity’s

perception of this situation [46]. The fact that agent interactions

are flexible allows the user to attribute to the components the

ability to make decisions about the nature and scope of their
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interactions at run-time, thereby bypassing the need to specify

every possible inter-agent link (an impossibility given the nature of

any biological system’s complexity) [46].

The agent-based paradigm possesses structures that can

represent and manage organizational relationships, such as roles,

norms and social laws [46]. Furthermore, the presence of

interaction protocols (to form new groupings and disband

unwanted ones) [46] coupled with the ease with which collectives,

such as teams, could be modeled enables the agent-oriented mind-

set to provide suitable abstractions [46] necessary to model

complex, especially biological, systems. And finally, the fact that

ABM can conduct an organizational updating [46] during run

time (in case an agent is destroyed) makes the agent-based

philosophy more suitable to address the dynamic nature of

biological systems.

Chavali et al (2008) [19] listed desirable framework capabilities

that are important to address key challenges in immunology. They

can be extended to frameworks that are being developed to

capture cellular behavior. Such frameworks must simulate non-

linear and dynamic behavior, cell-cell and cell-environment

interactions and cell population behavior as a function of

population heterogeneity; attribute the cells with features such as

memory (to keep track of various prior interactions) and

adaptability (based on the external environment); and permit

visualization of the resulting phenomena that emerges from the

combined interactions between the cells considered in the model

[19]. An agent-based method, in particular the Flexible Large-

scale Agent-based Modeling Environment (FLAME), provides the

investigator the ability to do precisely that.

Moreover, FLAME allows simulation of large numbers of

agents to be run on parallel computers [17,42]. The platform was

developed at the University of Sheffield for the Epitheliome project

and has been used to model the emergent behavior of biological as

well as economic systems [18,42]. The FLAME framework, which

enables creation of agent-based models that can be run on high-

performance computers, is based on the logical communicating

extended finite state machine (X-machine) theory [17,47]. Agents

are modeled as communicating stream X-machines, an attribute

that allows them to interact with each other. This modeling

mechanism provides a sensible way of dealing with problems

associated with state explosion, which afflict many efforts at

modeling complex biological systems [17,43,45]. Furthermore,

being inherently hierarchical, an X-machine is able to link

different modeling paradigms; an attribute that is critical to the

success of this platform [43]. For more information on FLAME,

the interested reader is directed to http://www.flame.ac.uk/.

2.2 Transport Phenomena
The hydrodynamics inside the bioreactor as well as the mass

transport were quantified by solving the governing transport

equations (i.e., conservation of mass, momentum and species)

using the finite-volume method. In this methodology, the

computational domain is divided into a set of control volumes

(CVs) by means of a grid. The finite volume method, by using the

integral form of the general transport equation, preserves its

conservative nature. The generalized transport equation for

a conserved quantity W is shown below as equation 1. This

equation, by appropriately assigning parameters and source terms,

effectively accounts for the conservation of mass, momentum,

species and reaction of species. In the equation r is the fluid

density and U the velocity vector. On the left hand side of the

equation: the first term accounts for the transient nature of the

process, the second for convection and the third for diffusive

processes. The term on the right hand of the equation,

a generalized source term, accounts for variable-specific mechan-

isms; such as the pressure gradient in the momentum equation

manifestation of the general transport equation, or the chemical

reaction as far as the species conservative equation is concerned, or

the secretion or consumption of a molecule by the cells, when

continuity is considered.

L
Lt

rWð Þz+: rUWð Þ{+: CW+Wð Þ~SW ð1Þ

Equation 1 was solved in its full transient form. As a suitable

abstraction, oxygen was assumed to be the limiting scalar,

although the platform can consider multiple scalars and, if

necessary, can capture any reactions that may exist between these

scalars. Consumption of oxygen was modeled by representing the

cells, or more appropriately the agents, as proliferating sinks –

covered by the term on the right in equation 1. It must be noted

here that this equation is easily extended, in a Darcian sense, to

account for porous media, by incorporating local porosity and

permeability terms (i.e. local void fractions and resistances) at

every computational cell.

Converting the integral of (1) over the CV into a surface integral

yields equation (2), where S represents any of the faces on the CV,

whereas nS is the unit vector normal to that surface. The

convective and diffusive terms are determined using suitable

second order accurate interpolation schemes [48].

ð

CV

L
Lt

rWð ÞdVz
Xsurface

faces

ð

S

½rUW{CW+W�:nsdS~
ð

V

SW ð2Þ

Pressure and velocity fields were coupled using the SIMPLEC

algorithm [49] and an algebraic multigrid (AGM) solver was

employed [50] as the iterative equation solver. The AGM solver

uses a hierarchy of grids, from fine to coarse, and back to fine, to

solve the resulting set of pseudo-linear equations: After obtaining

the residual on the fine grid, iterations are performed on the coarse

grid to obtain corrections (imposing fine-grid residual as the source

term). The AGM solver works by interpolating the corrections to

the fine-grid and updating the fine grid solution, and repeating the

entire procedure until the residual is reduced to the desired level.

This way, errors of multiple wavelengths are improved upon

simultaneously.

The numerical procedures described above were implemented

in CFD-ACE+ in this study. This is a multi-physics proprietary

computational tool that allows easily the interfacing with external

modules, thus incorporating additional physics (for example, the

effect of electrical or magnetic fields, temperature or deformable

substrates on cells). Integrating FLAME with CFD-ACE+ provides

an efficient multi-paradigm modeling framework that was used to

set up a multi-scale model displaying cellular dynamics inside

a virtual bioreactor. Figure 1 shows the exchange of information

between the agent-based model and the transport model that is at

the heart of the platform presented in this paper.

2.3 Model Features
2.3.1 oxygen transport and consumption. The cells were

assumed to be seeded in a porous scaffold inside a bioreactor and

were supported by the influx of oxygenated medium. Two virtual

bioreactors, enclosing a porous scaffold, of different geometries but

same volume were constructed. The two bioreactor geometries

can be seen in Figures 2, 3 (geometry A) and 4, 5 (geometry B), and

Bioreactor Multi-Paradigm Modeling
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the dimensions of the bioreactors are listed in Table 1. Bioreactor

construction was followed by a grid independence analysis, which

was conducted on one of the bioreactors (geometry A). The

bioreactor was assigned structured (50,000; 100,000; 200,000 and

400,000 elements) as well as unstructured (100,000 and 400,000

elements) grids. The results indicated no appreciable difference

between a bioreactor with a 100,000 element structured grid and

a bioreactor with a 400,000 element unstructured grid. As a result,

to strike a balance between result accuracy and computational

time, the bioreactors were solved using 100,000 elements

structured grids. Furthermore, the scaffolds were assigned constant

isotropic porosity and permeability (75% and 10210 m2 re-

spectively) and tested for medium inlet velocities of 0.01 m/s and

0.001 m/s. Please refer to Table 2 for a description of different test

cases.

Concentration gradient of oxygen is known to affect tissue-

growth rate in bio-artificial scaffolds [16]. Therefore, the model

was designed to study cell growth in a continuous medium

perfusion system with oxygen being the limiting nutrient. After the

bioreactor-scaffold complex was suffused with virtual cells,

oxygenated medium was pumped in at the velocities (and

corresponding flow rates) listed in Table 2. Oxygen transport

inside the bioreactor occurred by convective as well as diffusive

processes. The diffusivity of oxygen in the medium was taken as

1025 m2/hr [14]. The medium supplied to the bioreactors was

assumed to be carrying oxygen at a concentration of 0.21 mol/m3

[14]. Oxygen consumption was modeled using cells as pro-

liferating and migrating non-zero sinks consuming oxygen at

3.39 mol kg m23 s21 [14]. In the agent-based component this

amounts to oxygen consumption by each cell at a rate of 12.2 mol

m23 hr21.

Oxygen (or any other substance) consumption (or secretion),

modeled as an individual-level event, was accounted by the source

term represented as SW in (1). The equation was implemented as

migrating non-zero sinks. Generally speaking, the source term can

be represented by equation 3, which displays the dependence of

SW on existing scalar concentration.

SW~SczSpWp ð3Þ

Equation 3 involves a constant as well as a linear dependence of

the source term on scalar concentration. In cases where the

relationship is non-linear, it must be linearized [51]. Equation 3

was applied to control volumes with cells in them (as derived from

the agent-based module of the platform) and with appropriate

summations in the case of multiple cells within a single control

volume.

Oxygen concentration in this model is assumed to vary based on

the bioreactor hydrodynamics, mass transport and cell pro-

liferation. Dirichlet and Neumann boundary conditions were

applied as needed. Oxygen transport and consumption, in sync

with cellular proliferation and migration, was calculated for

periods of four to six days depending on the case and the fate of

the cells in the virtual bioreactors.

2.3.2 Cell population dynamics. The platform is designed

to incorporate a variety of behaviors displayed by cells: migration,

Figure 1. Flow of Information in the modeling framework. The figure shows the communication between the transport-phenomena and
agent-based modules that is at the heart of the modeling platform. Information relevant to bioreactor hydrodynamics and mass transport is
communicated from the transport-phenomena module to the agent-based module where cells, modeled as agents, detect the local concentrations
(and other continuum variables) and act based on the rules attributed to them. The cellular information is then relayed back to the transport-
phenomena module to complete the circuit.
doi:10.1371/journal.pone.0059671.g001

Table 1. Bioreactor Variables.

Bioreactor Variables

Geometries 2

Scalar Oxygen

Initial Concentration14 0.21 mol m23

Scalar Diffusivity in the Media14 1025 m2/h

Scaffold Porosity 75%

Scaffold Permeability 10210 m2

Medium Density 1000 kg/m3

Medium Viscosity 0.001 kg/m-s

Medium Inlet Velocity 0.001 m/s, 0.01 m/s

Bioreactor Dimensions Length 1 mm

Width 1 mm

Depth 0.2 mm

The table lists various volume, boundary, and initial conditions applied to
compute mass transport inside the bioreactors. The dynamic relationship
between cell proliferation and mass transport of oxygen was investigated in
two bioreactors of same volume but different geometries (shown in figures 2
and 4). Oxygenated medium was introduced at two different velocities:
0.001 m/s and 0.01 m/s.
doi:10.1371/journal.pone.0059671.t001
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Figure 2. Case 1 results. Temporal evolution of cell population and nutrient concentration inside a 3D scaffold bioreactor (geometry A) with
a medium inlet velocity of 0.001 m/s. The top-left port on the bioreactor serves as the inlet whereas the bottom-right port serves as the outlet. The
final frame captures cell distribution at the end of 4 (physical) days – the time interval between snapshots (left to right) is 12.5 hours. The initial cell
density was 100.
doi:10.1371/journal.pone.0059671.g002
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proliferation, differentiation, chemotaxis, apoptosis, necrosis and

other processes as needed. The agent-based component considers

each virtual cell to be an agent governed by a set of logic rules that

is capable of displaying migration, proliferation, chemotaxis and

apoptosis. Differentiation was not considered in the cases tested in

this paper. The biological rules governing the virtual cells, listed in

Table 3, are controlled by constants, for example cell cycle, as well

as variables – which in turn emerge from the transport phenomena

component – such as oxygen concentration gradients. The cells

were assumed to be non-deformable spheres of radius 10 mm each

and capable of consuming oxygen at a rate of 12.2 mol

m23hr21cell21 when available. Initial cell placement inside the

bioreactor-scaffold complex was random.

The cells could migrate by choosing either a persistent random

walk or chemotaxis. The cells displayed persistent random walk

[15,16,20] if the local oxygen concentration .0.0672 mol/m3. If,

however, the local oxygen concentration dropped below

0.0672 mol/m3, the cells began to display chemotaxis in a bid

to move to an oxygen-rich region. This value is equal to 0.3% of

the initial oxygen concentration, and was decided upon after

reviewing the work of Liu et al (2007) [52] who reported induction

of hypoxia at oxygen concentration of 0.3% in HCT 116 colon

carcinoma cells. The cells were assumed to divide until confluence

or until the point where there was not enough oxygen available to

them. Confluence, or the point where the bioreactor is completely

filled with cells, was achieved when each cell was bonded to at least

four other cells. The cells divided based on a division probability

assigned to them: 64% of the cells divided by eighteen hours, 32%

by twenty four hours and the remaining 4% by thirty hours [53].

The daughter cell is positioned at a random orientation relating to

the coordinates of the parent cell, and in the immediate vicinity of

the parent cell.

Another advancement this platform has to offer is that it takes

into account cell apoptosis that may occur due to cells

experiencing hypoxia in oxygen deficient areas created in the

bioreactor due to cell growth or other factors such as low medium

inlet rate or deficient mixing. If the local oxygen concentration

dropped below 0.0672 mol/m3, the cells began to express

apoptotic proteins. If a cell stayed under the hypoxic condition

for more than 15 hours, it died of hypoxia-induced apoptosis. The

cells were assumed to exert a repulsive force on each other in case

of contact, which was taken from a model developed by Tao et al

(2007) [44]. Although the nature of mechanical forces that cells

exert on each other is quite complex, the physical forces were

resolved using constants instead of variables as our primary

objective was to display the platform’s capability to handle such

occurrences and to accommodate any such sub-model when

available. Please refer to Table 3 for relevant parameters.

2.3.3 Cell migration. The extracellular environment and

cell type affect and dynamically modulate [16] a cell’s speed and

its persistent time [15], with prostate cancer cells displaying speeds

of 8–15 mm/hr in 3D collagen matrices and melanoma cells 20–

40 mm/hr in 3D collagen matrices modified with RGD proteins

[15,54,55]. The scaffold in our case was assumed to have no

restraining effect on cell migration. Therefore, despite their

presence in a porous scaffold, the cells could move freely in all

(three-dimensional) directions. A migration speed was assigned to

each cell. As long as the cell displayed persistent random walk, it

could acquire a maximum speed of 10 mm/hr. The cell continued

moving in a particular direction for two hours after which, based

on the availability of space, the cell assumed a new randomly

chosen direction, in agreement with [14–16,20,53]. If, while

migrating, a cell came in contact with another cell or the

bioreactor boundary, it stopped for an hour, in agreement with

[14–16,20,53], before changing its direction and continuing

migrating in a randomly chosen direction. The cells stopped

moving prior to dividing and, along with the daughter cell,

remained at rest for about an hour after division [20]. While

displaying chemotaxis, the speed and direction attributed to the

cells were based on the local concentration gradients. Under

chemotaxis the cells were assumed to display a set migration speed

of 20 mm/hr. If, while performing chemotaxis, a cell ended up in

a region rich in oxygen, it went back to displaying the persistent

random walk; if not, then the cell moved under the influence of the

concentration gradient until it either ended up in an oxygen rich

area or it died.

Apoptotic trigger was initiated if the local oxygen concentration

dropped below 0.0672 mol/m3. If a cell remained in an oxygen-

deficient region for more than 7 hours, it changed its state (and its

color in the visualization platform used to analyze the results of the

simulations) indicating that the apoptotic mechanism, physically

represented by formation of apoptotic proteins in the cells that

lead to cell death, has been triggered. If the cell, in chemotaxis

mode at this point, was successfully able to relocate to an oxygen

rich region it survived; otherwise if it remained in a hypoxic

environment for more than 15 hours since the start of the

apoptotic mechanism, it died. The time advancement of the

system was organized around computing cycles, usually referred to

as iterations in agent-based modeling. Since this term has a different

meaning in transport phenomena implicit solvers, we shall refrain

from using the term – it suffices to say that each computing cycle

or iteration was set to 15 minutes and we have found this to be

a value that captures the fine features of the system, while leading

to reasonable computational time requirements. Table 4 sum-

marizes the rules used in the study.

2.4 Experimental Validation
The ability to capture cellular chemotaxis is a novel feature of

the platform. An understanding of the detailed mechanism of

chemotaxis finds relevance in, among other sectors, cancer

research [56–58] and cancer drug design [59]. Typically, the

assays utilized to investigate chemotaxis are based on the two-well

design. Briefly, two wells – one containing a control or buffer

substance, and the other the chemoattractant – are connected to

each other. Cells are seeded between the wells where they can

sense the developing gradient and display an appropriate

migration response [60]. Direct visualization assays allow the user

to observe cell migration in real-time with the aid of time-lapse

microscopy, and are considered the gold standard assay for

investigating chemotaxis [60,61]. Therefore, in order to experi-

mentally validate the platform we simulated cellular chemotaxis in

a direct visualization chamber. To achieve this a virtual analogue

of the Insall Chamber [60] was created. The Insall chamber is

a direct visualization chamber developed by Muinonen-Martin et al

Figure 3. Case 2 results. Temporal evolution of cell population and nutrient concentration inside a bioreactor (geometry A) with a medium inlet
velocity of 0.01 m/s. The final frame captures cell distribution at the end of 4 (physical) days – the time interval between snapshots (left to right) is
12.5 hours. The initial cell density was 100. The concentration contours can be observed to change continuously throughout the simulation. This is in
contrast with physical systems with no cells inside where such behavior would not be possible after the flow becomes stationary beyond initial
transients. This demonstrates the platform’s ability capture dynamic reciprocity.
doi:10.1371/journal.pone.0059671.g003
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Figure 4. Case 3 results. The figure shows temporal evolution of cell population and nutrient concentration inside a bioreactor (geometry B) with
a medium inlet velocity of 0.001 m/s. The top right end of the bioreactor serves as the inlet whereas the entire left as well as bottom ends of the
bioreactor serve as outlet. The initial cell density was 5. The time interval between snapshots (left to right) is 20 hours. The final frame captures cell
distribution at the end of 6 (physical) days.
doi:10.1371/journal.pone.0059671.g004
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[60] to study chemotaxis using high numerical aperture (NA) oil

immersion lenses, which was not possible with other visualization

chambers. The Insall chamber consists of an inside well containing

the control and an outside well (enclosing the inner well)

containing the chemoattractant. The investigators analyzed

chemotaxis of MV3 melanoma cells based on linear concentration

gradients of Fetal Bovine Serum (FBS). Details regarding the

chamber and the experiment can be found here [60].

A virtual Insall chamber was constructed, based on the exact

dimensions and specifications of the experimental setup, as

obtained directly via private communication [62,63] with the

developers. To ensure consistency between the simulation and

experiment, diffusion of FBS was modeled in the half of chamber

containing the 0.5 mm bridge as shown in Figure 6. The geometry

was discretized using structured grids (approximately 150,000 cells

ensured grid independence). The diffusivity of FBS considered in

the model was derived from the Svedberg [64] equation and

calculated to be 8.705610211 m2/s. Virtual MV3 melanoma cells

were modeled as spheres chemotacting at a speed of 8 mm/hr after

sensing a critical FBS concentration (10% of the initial FBS

concentration in the outer well). In the absence of the gradient, or

in case the local gradient ,10% FBS, cells migrated by displaying

the persistent random walk. Cellular migration coupled to FBS

transport in the virtual Insall chamber was modeled for a period of

25 physical hours. As a control, MV3 melanoma cell migration

was modeled in the absence of FBS. Statistical significance was

determined by conducting paired two-tailed test, where p,0.05

was interpreted as significant.

Figure 5. Different boundary conditions lead to different
output. The figure shows temporal evolution of cell population and
nutrient concentration in the same bioreactor set at different medium
inlet velocities; 0.001 m/s (top) and 0.01 m/s (bottom). The bioreactor
on the right ends up with considerably higher number of cells and
a distinct growth pattern. This displays the dynamic nature of the
system and the dependence of the spatiotemporal evolution of the
system on processes such as chemotaxis and apoptosis. The frames
were recorded at 5.5 days.
doi:10.1371/journal.pone.0059671.g005

Table 2. Test Cases.

Case
Bioreactor
Geometry Initial Cell Density Medium Inlet Velocity (m/s) Flow Rate (L/s) Relevant Figures/Videos

Case 1 A 100 0.001 0.02 Fig 2/S2

Case 2 A 100 0.01 0.2 Fig 3/S3

Case 3 B 5 0.001 0.002 Fig 4/Fig 5/S4

Case 4 B 5 0.01 0.02 Fig 5/S5

The table lists various test cases simulated for the purposes of this investigation and relevant parameters, such as medium flow rate, and relevant figures and
supplementary material.
doi:10.1371/journal.pone.0059671.t002

Table 3. Cellular Variables and Rules.

Cellular Variables

Persistence Time14216, 20, 53 2 hours

Post Collision, pre-Division Stationary Phase20 1 hour

Cell Cycle & Division Probability of Cell Population53 18 hours (64%)

24 hours (32%)

32 hours (4%)

Maximum Random Speed 10 mm/hr

Cell speed during Chemotaxis 20 mm/hr

Oxygen Consumption Rate14 3.39 mol kg m23 s21

Chemotaxis Ensues at Scalar Concentration52 0.0672 mol m23

Hypoxia-induced Apoptosis 15 hours

Cell Density in Bioreactors 100, 5

The table lists parameters pertinent to the cells as well as rules the cells
followed during the computation. For example, under normoxic condition cells
displayed persistent random walk changing direction once every two hours.
Cells would only stop if it is in contact with another cell or about to undergo
mitosis. Furthermore, chemotaxis ensues if a cell experiences local oxygen
concentration of less than 0.0672 mol m23. Failure to move to a normoxic
region within 15 hours since the inception of chemotaxis leads to hypoxia-
induced apoptosis.
doi:10.1371/journal.pone.0059671.t003
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Table 4. Rules.

Behavior Rule

Proliferation Cell proliferation occurs until confluence as per assigned probabilities (Table 2)

Migration Migration occurs either via persistent random walk (under normoxic conditions) or chemotaxis (under hypoxic conditions)

If local oxygen concentration .0.0672 mol/m3, cells display persistent random walk

Cell speed during persistent random walk = 10 mm/hr

If local oxygen concentration ,0.0672 mol/m3, chemotaxis begins

Chemotaxis speed = 20 mm/hr

Apoptosis If a cell experiences hypoxia for more than 15 hours, it dies of hypoxia-induced apoptosis

If, while performing chemotaxis, a cell ends up in a region rich in oxygen, it goes back to display persistent random walk

The table summarizes the rules used to simulate cellular dynamics.
doi:10.1371/journal.pone.0059671.t004

Figure 6. Experimental Validation of the platform. The figure shows migration response of MV3 melanoma cells based on FBS concentration
gradient. The cells, displaying persistent random walk in the absence of FBS gradient, resort to chemotaxis on sensing FBS concentration. These
results, when compared to similarly acquired ones but in the absence of the chemoattractant, confirm the capability of the simulation platform to
capture such behaviors. The time interval between snapshots (left to right) is 1 hour. The final frame captures cell distribution at the end of 25
(physical) hours.
doi:10.1371/journal.pone.0059671.g006
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Results

The integrated platform was used to create virtual bioreactors

seeded with cells. Figure 2 shows the oxygen concentration

contour plot as well as cell distribution inside one of the two

different types of bioreactors we tested, at different time instances.

The bioreactor is a rectangular prism in shape with two ports: one

serving as an inlet (top left) and the other as an outlet (bottom

right). Initially, the bioreactor was seeded with one hundred cells.

The figures capture the interplay between cell population

dynamics and the overall mass transport at various time steps –

the final step was recorded at 4 physical days. The migration of

cells from the relatively deoxygenated region (bottom right) of the

bioreactor to top left can be observed. The dynamic nature of the

relationship is best evident by the change in oxygen concentration

close to the inlet port – it decreases in intensity in the subsequent

time frames, corresponding to a decrease in concentration due to

cellular proliferation and resulting increased consumption. Cell

division in the region close to the inlet port was initially higher as

compared to the rest of the reactor. This propensity of cells to

divide closer to the inlet port where oxygen concentration is

relatively high is behavior one would normally expect in reality. It

must be stressed that this feature was not explicitly coded in the

model but, it seems, emerged from the integration of the rule-set

with underlying transport phenomena. Widespread proliferation is

observed towards the end of the simulation as oxygen concentra-

tion exceeds the threshold value throughout the bioreactor. An

interesting observation remains the preference the cells show in

aligning themselves to the contour curves; thus resulting in an

emergent banded distribution pattern – most evident in the

second, third and fourth time frames.

Figure 3 shows the temporal evolution of cell population and

nutrient concentration in a bioreactor (same as Figure 2) but with

a medium inlet velocity (0.01 m/s), an order of magnitude higher

than Case 1. As was the case in Figure 2, the cells tend to migrate

away from the oxygen deficient region: chemotaxis. The top left

region remains an area of high cell division during the initial

stages. An important observation is the constant translation of the

oxygen concentration contours, which can be better observed in

Video S3. It is of interest to note that the banding pattern is

significantly less pronounced in this case, and of a different shape

than that observed in the previous virtual experiment most

probably due to higher oxygen concentration relative to Case I.

This behavior merits further investigation as it resonates, albeit

modestly, with self-organization observed in biological systems.

Questions such as: did lower oxygen availability in Case 1 cause

the stressed cells to organize themselves in that manner; if so, can

this be extrapolated to other cells, does such behavior lead to more

efficient use of resources; what kind of structure would have

evolved if cells were assigned more specific rules that govern

colony formation, what would be the functionality of such

structure; remain a matter of speculation until investigated more

rigorously both computationally as well as empirically.

The probable cause behind the emergence of this distribution

pattern is connected with the oxygen concentration, and related

thresholds. The region close to the curve where patterning is

observed is normoxic, whereas the region beyond the curve (closer

to the outlet) is hypoxic. As a result cells migrate towards the curve

under the influence of the concentration gradient and start

behaving randomly as soon as they reach the normoxic region. In

effect, the continuous supply of oxygen on one hand and the very

random and unpredictable consumption on the other lead to

a non-intuitive pattern formation, which spatially does not

correspond to where the pure transport solution of the system

would place the oxygen threshold iso-contour. Part of this

emergent effect comes from the randomness inherent in cell

(and agent) migration, but the most significant portion comes from

the interplay of these two profoundly different mechanisms that

such a hybrid methodology is well-positioned to capture. It must

be noted that no matter which threshold is selected (within

reasonable and biologically meaningful limits) the pattern forma-

tion is persistent in structure (of course varying slightly in exact

position and formation) and thus clearly a feature of the coupled

system. We found this very interesting and exciting emergent

theme in many of the simulations we conducted. Such behavior

can be exploited to create multiple mono-layers of defined

thicknesses or bi-layers where cells towards the more deprived

region of the bioreactor can act as an interface (as in a bone-

cartilage hybrid structure).

Figure 4 examines a different bioreactor setup. The top right

end of the bioreactor serves as the inlet whereas the entire left as

well as bottom ends of the bioreactor serve as the outlet. The

medium inlet velocity in this case was 0.001 m/s. The bioreactor

was randomly seeded with 5 cells. The simulation was run for

a total of 6 physical days. By the second frame (17.5 hours), most

of the cells in the deoxygenated region have died – a result of

hypoxia-induced apoptosis. The cluster of cells formed by the final

frame is a result of the single cell that was able to move and begin

proliferating in the oxygen rich zone. When the medium inlet

velocity was increased to 0.01 m/s (images not shown but

supplementary video provided, Video S5), more cells survived

which in turn aided in the colonization of the bioreactor. In

comparison (Figure 5), the bioreactor with the higher inlet velocity

by the final frame ends up with considerably higher number of

cells and a distinct growth pattern (resembling the banding

arrangement observed in the first case) – once again displaying not

only the dynamic nature of the system but the dependence of the

spatiotemporal evolution of the system on processes such as

chemotaxis and apoptosis. It must be noted that, in some frames,

a few cells still appear ‘red’ despite the local oxygen concentration

being higher than the threshold. This is not connected with the

simulation itself, but it is rather a visualization effect, utilized to

highlight the hypoxic history of the relevant cells. The cells are

no longer hypoxic and continue to grow as any other normoxic

cell.

Figure 6 shows the evolution of FBS concentration gradient

across the bridge and the cells’ migration response to the gradient

over a period of 25 hours. Cell chemotaxis can be easily observed

with the increase in FBS gradient towards the inner chamber.

However, few cells that have not committed to chemotaxing can

be observed at the end of the simulation on the left hand side of

the bridge, but that is because these cells have not yet sensed the

critical FBS concentration (10% of the initial concentration in the

outer well). Qualitatively, the computational results (refer to Video

S6) met expectations and were in very good agreement with the

experiment conducted by Muinonen-Martin et al [60], where the

melanoma cells were observed to migrate towards the outer well in

a comparable manner. A highly significant statistical analysis

(p=1.14610269), also in agreement with its experimental coun-

terpart, further supported the evidence for gradient directed

migration of the MV3 melanoma cells inside the virtual chamber.

The importance of the cellular microenvironment to tissue

development was hypothesized as early as 1817 but it took almost

a century to confirm this hypothesis when certain regions of

amphibian embryos were observed to direct the development of

adjacent groups of cells to specific tissue types [41]. Dynamic

reciprocity [40] takes this behavior a step further and suggests that

there exists a dynamic bi-directional relationship between cells and
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their microenvironment, which is responsible for the overall

development of the cellular system. Basically, ‘‘the ECM affects the

cell which in turn responds by synthetic and degradative processes causing the

composition and the structure of ECM to change which in turn influences the

cell and so forth’’ [40]. In this paper, we presented a methodology

that allows for the rigorous study of this interplay, expanded to

include the local transport processes as a part of this synergistic

interaction. After all, cellular proliferation does affect the local

concentration gradients as well as flow profiles, thereby influencing

the overall cell growth. In addition to devices such as bioreactors,

the amended concept remains applicable to biological systems

such as tumor, uterus or compromised tissue. The level of

complexity associated with the process makes it quite difficult to be

captured by numerical models. The lack of relevant biological data

in addition to the complexity of such systems is a reason why

comprehensive models for such systems have not been presented

yet. However, investigators in the last decade have made

significant progress in that direction as discussed in the In-

troduction.

The modeling platform presented in this manuscript was

created keeping bioreactors in mind where the concentration

profiles, shear stress and flow profiles etc. influenced initially by the

geometry of the bioreactor and later by cellular proliferation play

a crucial role in the synthesis of the autologous substitutes required

for regenerative medicine. The modeling platform is composed of

two working elements: continuum – transport phenomena

capturing – and discrete – cellular behavior capturing – elements.

Whereas the discrete layer helps the cells to detect the spatial

information relevant for processes such as differentiation to occur

[65,66], the continuum layer helps the platform to model the

dynamic transport processes that change continuously based on

factors such as the number of cells, formation of ECM by the cell

colonies or scaffold/ECM degradation. The biggest advantage of

the platform, however, remains that it can capture emergent

phenomena – a benefit extending from the agent-based side of the

platform. As such, the platform can not only help explain non-

intuitive observations but has the potential to reveal processes and

mechanisms not expected to emerge a priori, like the cell band

formations shown in the previous section.

A case in point is the 2D test case (video provided, Video S1)

where the platform is able to capture the dynamic nature of the

system. Secondly, cell alignment normal to the oxygen gradient

was not a part of the rule-set attributed to the cells but emerged

from it. A question that suggests itself at this point is whether such

behavior can be manipulated to our advantage. Thirdly, in

Figures 2 and 3 (and the corresponding videos, Videos S2 and S3)

– especially in Figure 3–, the concentration contours change

continuously, proving the effectiveness of the platform in capturing

dynamic reciprocity as defined above. A physical system with no

cells inside would not show such behavior after the flow becomes

stationary, beyond initial transients.

The agent-based modality of the platform relies on biological

rules and therefore the relevance and accuracy with which the

framework can simulate a biological system will depend upon the

validity of rules attributed to the agents. The simplest ways to

achieve this include recourse to the data-mining paradigm or

conducting statistical analyses on the data currently existing in the

literature. Such methods can assist in evaluating critical param-

eters of a process; for example: the minimum concentration of

a chemical that cells are sensitive to, the combination of growth

factors that will direct stem cells to a particular lineage, the

mechanical load cells must experience to differentiate into

a particular lineage etc. These methods, despite their utility,

might not by themselves, however, reveal the fundamental rules in

biology – that endeavor rests with experimental biologists. We feel

that targeted and quantitative experimental efforts, especially

guided by mathematical tools such as the ones presented here, will

assist in unearthing more rules that, in association with the

underlying stochastic biophysicochemical processes, govern the

dynamics of biological systems.

This modeling environment, which is under continuous

expansion and development, can already capture chemotaxis

and cell death (necrosis as well as apoptosis). Furthermore, it can

be readily used to model features such as secretion of autocrine or

paracrine molecules, production of metabolic waste products,

cellular polarity etc. The platform can assist in conducting

a quantitative as well as a qualitative analysis of how factors such

as shear stress, pressure, and availability of nutrients/soluble

factors can direct differentiation of cells in any physical system –

and can be therefore utilized as a design tool in the bioreactor

industry during the concept selection phase. The platform can also

quantify the electro-magnetic fields that may exist in a system.

This can help analyze further experiments such as the ones

conducted by Zhao et al (2006) [67], who investigated the impact

of electric signals of physiological strength in guiding cell migration

– known as galvanotaxis – and wound healing. Simulations in this

direction are currently underway in our lab. The next step involves

factoring in the de novo secretion/formation (and possibly

digestion/lysis) of extra-cellular matrix by cell colonies once they

aggregate beyond a certain number and attributing to the ECM

a unique set of properties based on the nature of cells secreting

these fibers.

The results presented in this paper are in agreement with those

from other models that were discussed above. Cheng et al (2009)

[16] suggested that the hydrodynamic conditions affect not only

the rate, but the pattern, of tissue growth as well, something we

demonstrate in this paper: the supplementary videos show that

migration speed, dependent on oxygen concentration, influences

growth. Furthermore, one can easily observe (Figure 5) the way

transport limitations affect spatial distribution of cells [16].

According to Cheng et al (2006) [15], by inducing a preferential

migration direction oxygen concentration gradients influence cell

migration. The platform captured that behavior evident in any of

the figures and supplementary videos. Furthermore, the impact of

bioreactor/scaffold geometry on cell proliferation can be also

observed.

We have developed a modeling platform that captures the cell-

level as well as population-level aspects of biological systems

lending the platform the capability to capture the dynamism that is

the signature of biology. Through the investigation reported here

we successfully tested the research hypothesis that differences in

initial and boundary conditions for the same volume can lead to

non-identical development of a cellular system and that our

platform is capable of capturing such variation. Furthermore, the

platform was validated by simulating cellular chemotaxis and

comparing the results with chemotaxis of MV3 melanoma cells

under FBS concentration gradient in the Insall chamber [60].

Future developments include capturing cell colonization, ECM

secretion by the colonies, and attributing the ECM with relevant

biophysical information (porosity, spatial heterogeneity, diffusivity

to certain molecules etc.).

Conclusions
A novel way of simulating biological phenomena in bioreactors,

especially dynamic reciprocity, was presented in this manuscript.

The computational platform developed composed of two elements

– agent-based and transport phenomena – is mature enough to

model differentiation, chemotaxis and apoptosis in addition to cell
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proliferation, collision and persistent random walk. Most of the

results discussed are in agreement with those obtained using

models of similar purpose [15,16,21,22]; in addition to showing

behavior that may be emergent. The validated platform can be

used as a design tool to test the impact of bioreactor geometries

and experimental parameters on cell proliferation and differenti-

ation in addition to supplementing the experimental techniques

employed in gathering biological data.

Supporting Information

Video S1 2D test case displaying the dynamic nature of
the system. The video shows proliferating cells that are being fed
via medium entering the system from left hand side of the

construct. Continuous cell proliferation causes a drop in the

concentration of nutrient medium inducing chemotaxis in the

affected population. As the supply is unable to meet the demand,

cells end up undergoing hypoxia-induced apoptosis.

(AVI)

Video S2 Case 1 Video. The video shows results of test case 1

(discussed in the paper).

(AVI)

Video S3 Case 2 Video. The video shows results of test case 2

(discussed in the paper). Notice especially the continuously

changing concentration contours.

(AVI)

Video S4 Case 3 Video. The video shows results of test case 3

(discussed in the paper).

(AVI)

Video S5 Case 4 Video. The video shows results of test case 4.

Similar to case 3 in its geometry, the medium flow rate used for

this simulation is an order of magnitude higher in comparison.

The difference in boundary conditions leads to distinct cell

dynamics, which results in the formation of two different cell

colonies.

(AVI)

Video S6 Simulating chemotaxis in Insall Chamber. The
video shows results of the validation experiment conducted using

the virtual Insall Chamber (discussed in the paper).

(AVI)
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