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Abstract

Predicting the molecular complexity of a genomic sequencing library has emerged as a critical but 

difficult problem in modern applications of genome sequencing. Available methods to determine 

either how deeply to sequence, or predict the benefits of additional sequencing, are almost 

completely lacking. We introduce an empirical Bayesian method to implicitly model any source of 

bias and accurately characterize the molecular complexity of a DNA sample or library in almost 

any sequencing application.

Modern DNA sequencing experiments often interrogate hundreds of millions or even 

billions of reads, possibly to achieve deep coverage or to observe very rare molecules. Low 

complexity DNA sequencing libraries are problematic in such experiments: many sequenced 

reads will correspond to the same original molecules and deeper sequencing either provides 

redundant data that is discarded, or introduces biases in downstream analyses. When 

sequencing depth appears insufficient, investigators may be presented with the decision to 

sequence more deeply from an existing library or to generate another. Perhaps this situation 

has been anticipated during experimental design, and investigators can select from several 

libraries or samples for deep sequencing based on preliminary “shallow” surveys. The 

underlying question is how much new information will be gained from additional 

sequencing? The Lander-Waterman model1 was essential to understanding traditional 

sequencing experiments but does not account for the various biases typical in applications of 

high-throughput sequencing.

We present a new empirical Bayes method for understanding the molecular complexity of 

sequencing libraries or samples based on data from very shallow sequencing runs. We 

define complexity as the expected number of distinct molecules sequenced in a given set of 

reads produced in a sequencing experiment2. This function, which we call the complexity 

curve, efficiently summarizes new information to be obtained from additional sequencing 

and is generally robust to variation between sequencing runs (Supplementary Note). 

Importantly, our method also applies to understanding the complexity of molecular species 

in a sample (e.g. RNA from different isoforms) and since we require no specific 
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assumptions about the sources of biases, out method is applicable in a surprising variety of 

contexts (Supplementary Note).

Consider a sequencing experiment as sampling at random from a DNA library. The distinct 

molecules in the library have different probabilities of being sequenced, and we assume 

those probabilities will change very little if the same library is sequenced again. Our goal is 

to accurately estimate the number of previously unsequenced molecules that would be 

observed if some amount of additional reads were generated.

We borrow methodology from capture-recapture statistics, which has dealt with analogous 

statistical questions of estimating the sizes of animal populations or the diversity of animal 

species3. The specific model we borrow is the classic Poisson non-parametric empirical 

Bayes model4. Based on the initial sequencing experiment, we identify unique molecules by 

some unique molecular identifier5 and obtain the frequency of each unique observation (e.g. 

each genomic position, transcript, allele, etc.). These frequencies are used to estimate the 

expected number of molecules that would be observed once, twice, and so on, in an 

experiment of the same size from the same library. The formula for the expected number of 

unique observations in a larger sequencing experiment then takes the form of an alternating 

power series with the estimated expectations as coefficients (full derivation provided in 

Online Methods).

The power series is extremely accurate for small extrapolations but major problems are 

encountered when attempting to extrapolate past twice the size of the initial experiment6. At 

that point the estimates show extreme variation depending on the number of terms included 

in the sum. Technically the series is said to diverge and therefore cannot be used directly to 

make inferences about properties of experiments more than twice as large as the initial 

experiment. Methods traditionally applied to help these series converge in practice, 

including Euler’s series transformation7, are not sufficient when data is on the scale 

produced in high-throughput sequencing experiments or for long range predictions.

We investigated a technique called rational function approximation, which is commonly 

used in theoretical physics8. Rational functions are ratios of polynomials and when used to 

approximate a power series, they often have a vastly increased radius of convergence. 

Algorithms to fit a rational function approximation essentially rearrange the information in 

the coefficients of the original power series, under the constraint that the resulting rational 

function closely approximates the power series. The convergence properties of rational 

function approximations are known to be especially good for a class of functions that 

includes the Good-Turing power series (discussion in Supplementary Note). By combining 

the Good-Turing power series with rational function approximations we developed an 

algorithm that can make optimal use of information from the initial sample and accurately 

predict the properties of sequencing data sets several orders of magnitude larger than the 

initial “shallow” sequencing run. We implemented our methods as a command line software 

package licensed under GPL and available from Supplementary Software or http://

smithlab.usc.edu/software.
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We illustrate the concepts of library complexity by means of a toy example, which also 

shows how naive analysis can lead to incorrect predictions (Fig. 1a-d). In the example two 

hypothetical libraries have complexity curves that initially appear linear (Fig. 1c), but 

eventually cross (Fig. 1d). Such extreme behavior can actually arise in practice. We used a 

small sample of reads (i.e. the initial sample) from human and chimp sperm BS-seq 

experiments9 (Supplementary Table 1) and produced complexity curves for the libraries 

(Fig. 1e). Both complexity curves appear linear through the initial experiment (5 million (M) 

reads) and the curve for the chimp library has a lower trajectory, and on that basis a naive 

analysis might predict this library to saturate first. However, the complexity curves cross 

after deeper sequencing (at 22 M reads), with the chimp library showing greater yield of 

distinct observations. Based on the initial sample of 5 M reads, we estimated the complexity 

of these two libraries using the rational function approximation (RF), as well as Euler’s 

transform (ET) and a zero-truncated negative binomial (ZTNB). The ZTNB is the natural 

next step when counts data are not Poisson, and the ET is the traditional method for 

improving convergence of the Good-Turing series. Initially the ET method gave accurate 

estimates, but these estimates diverge and are useless after 40 M reads. The ZTNB estimates 

show a substantial downward bias (more than 35% error for both libraries) and do not 

predict that the complexity curves cross, indicating that this distribution is not sufficiently 

flexible to account for the biases in the libraries. The RF method estimates the complexity of 

both libraries almost perfectly, and in the case of the chimp library this amounts to 

extrapolating 60x the size of the initial sample, incurring only 4% error for the human 

library and well under 1% error for the chimp library.

In sequencing applications to identify genomic intervals, for example protein binding sites in 

ChIP-seq or expressed exons in RNA-seq, the number of distinct molecules in the library 

might be secondary to the number of distinct genomic intervals identified through some 

post-processing of mapped reads. To demonstrate the broad applicability of our method 

(further discussed in Supplementary Note), we investigated how well our method could 

predict the number of non-overlapping genomic windows identified in a ChIP-seq 

experiment (1 kb) and an RNA-seq experiment (300 bp), in both cases using an initial 

experiment size of 5 M reads. These non-overlapping windows represent a proxy for some 

more sophisticated method of identifying binding sites or exons. For the ChIP-seq 

experiment (CTCF; mouse B-cells10), saturation of distinct reads was not reached even after 

sequencing 90 M (Fig. 2a), while the number of identified windows saturated after 

approximately 25 M reads (Fig. 2b). The RF predicted this saturation correctly (Fig. 2b) and 

estimated the complexity in terms of distinct reads with very high accuracy (Fig. 2a). The 

ZTNB over-estimated the saturation of identified windows at 4 M, more than possible in the 

mouse genome, while significantly under-estimating the yield of distinct reads. The RNA-

seq experiment (Human adipose-derived mesenchymal stem cells11) did not saturate for 

either distinct reads (Fig. 2c) or identified windows (Fig. 2d), suggesting additional 

sequencing from this library would yield more information. Only the RF accurately 

predicted absence of saturation for both windows and reads, showing significantly lower 

relative error than the ZTNB at 200 M sequenced reads.

Sequencing data will always be subject to some amount of technical variation between 

sequencing instruments or even between runs on the same machine. We applied our method 
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to data from a single library sequenced on different instruments (slightly differing 

sequencing technologies), and comparisons of the complexity estimates are within the range 

expected due to stochastic noise (Supplementary Fig. 1). For such run-to-run variation to 

impact the library complexity estimates, the variation must be dramatic and would likely be 

caused by detectable sequencing error at levels sufficient to warrant discarding the run.

As the cost, throughput, and read lengths of sequencing technologies improve, the 

usefulness of methods for understanding molecular complexity in a DNA sample will 

increase. The approach we have described, based on rational function approximation to the 

power series of Good & Toulmin, can be applied to an immense diversity of sequencing 

applications (Supplementary Note). As the age of clinical sequencing approaches, 

significant resources will be dedicated to refining quality control, protocol optimization and 

automation; methods for evaluating libraries will be essential to controlling costs and 

interpreting the results of sequencing that potentially could inform clinical decisions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Two hypothetical libraries containing 10 million (M) distinct molecules. (a) In library 1, half 

of the molecules (5 M) exist at the same level making up 99 % of the library. (b) In library 

2, ten thousand molecule represents half the material in the library. (c) Based on a shallow 

sequencing run (1 M reads), library 1 appears to contain a greater diversity of molecules. (d) 

After additional sequencing, library 2 yields more distinct observations. (e) Such situations 

do occur in practice. Initial observed complexity from 5 M reads for two BS-seq libraries 

indicates the Human Sperm is the more complex library. Observed library complexity 

curves cross after additional sequencing, with the Chimp Sperm library yielding more 

distinct reads. Estimates using Rational Function (RF) and Euler’s transform (ET) fit to 

initial experiments predict crossing (though ET becomes unstable), while zero-truncated 

negative binomial (ZTNB) does not.
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Figure 2. 
Library complexity can be estimated both in terms of distinct molecules sequenced and in 

terms of distinct loci identified. (a) A ChIP-seq library (CTCF; mouse B-Cells) yields 

additional molecules after sequencing 100 million (M) reads; the RF remains accurate while 

the ZTNB loses accuracy. (b) In the same library, the number of mapped distinct genomic 1 

kb windows saturates after 25 M reads. The rational function approximation (RF) is accurate 

and forecasts saturation, while the zero-truncated Negative Binomial (ZTNB) significantly 

overestimates. (c) An RNA-seq (Human adipose-derived mesenchymal stem (ADS) cells) 

library continues to yield additional molecules after 200 M reads; the RF remains accurate 

while the ZTNB predicts saturation. (d) In the same library, reads continued mapping to new 

300 bp windows after 200 M reads. ZTNB incorrectly predicts saturation, while RF does 

not.
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