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Abstract
Purpose of review—Renal ischemia-reperfusion injury (IRI) is a common cause of acute
kidney injury (AKI). Alterations in renal medullary blood flow (MBF) contribute to the
pathogenesis of renal IRI. Here we review recent insights into the mechanisms of altered MBF in
the pathogenesis of IRI.

Recent findings—Although cortical blood flow fully recovers following 30–45 minutes of
bilateral IRI, recent studies have indicated that there is a prolonged secondary fall in MBF that is
associated with a long term decline in renal function. Recent findings indicate that angiopoeitin-1,
atrial natriuretic peptide, heme oxygenase-1, and the gasotransmitters, carbon monoxide and
hydrogen sulfide, may limit the severity of IRI by preserving MBF. Additional studies have also
suggested a role for cytochrome P450 derived 20-HETE in the post-ischemic fall in MBF.

Summary—Impaired MBF contributes to the pathogenesis of renal IRI. Measurement of renal
MBF provides valuable insight into the underlying mechanisms of many renoprotective pathways.
Identification of molecules that preserve renal MBF in IRI may lead to new therapies for AKI.
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INTRODUCTION
Acute kidney injury (AKI) is a common complication of acute illness and significantly
increases morbidity, mortality, and resource utilization. (1, 2) Renal ischemia-reperfusion
injury (IRI) is a common cause of AKI in many clinical settings. (3, 4) IRI results from
multiple factors affecting both the renal tubular epithelium and renal microvasculature. (5–
7) Ischemia markedly reduces intracellular ATP concentration and initiates cellular injury
which is exacerbated upon reperfusion by an increase in oxidative stress and inflammation.
(5, 6) Alterations in renal blood flow (RBF) following IRI can result from microvascular
injury, impaired renal vascular reactivity, and as a consequence of impaired red blood cell
trafficking in the peritubular capillaries due to the infiltration of inflammatory cells and
increased parenchymal pressure. (5, 8–11) Indeed, sustained reductions in renal blood flow
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are seen following severe prolonged IRI (>45min) in numerous experimental studies and in
patients with post-ischemic renal failure following kidney transplantation. (12–16). With
shorter periods of ischemia and less severe IRI, whole kidney, cortical and inner medullary
blood flow typically fully recovers following reperfusion, however, outer medullary blood
flow remains compromised for prolonged periods.

The post-ischemic fall in outer medullary blood flow (MBF) may be a critical event in
extending renal tissue injury following reperfusion. (10, 17–19) Several studies in rat
models of IRI highlight the role of prolonged post-ischemic impairment in MBF in the
pathogenesis of IRI. Vetterlein et al. demonstrated a marked reduction in medullary plasma
flow one hour after of reperfusion utilizing fluorescent tracers. (10) Using laser-Doppler
flowmetry (LDF), Olof et al. and Conesa et al. observed marked and sustained reductions in
outer MBF following reperfusion. (17, 18) As illustrated in figure 1, we recently found that
while cortical blood flow returns to baseline levels, there is a persistent impairment in outer
MBF upon reperfusion in rats exposed to 30 minutes of renal ischemia. (19) The prolonged
reductions in outer MBF can exacerbate tubular epithelial cell injury, particularly in the S3
segment of the proximal tubule which subsists in the hypoxic microenvironment of the renal
outer medulla. (6, 7, 20) Given the importance of these hemodynamic changes in the
pathogenesis of IRI, the identification of mediators that contribute to the reduction in renal
outer MBF and identification of compounds that can prevent this deficit is a logical step in
the development of new therapies for AKI. (21) In this review we will highlight findings of
recent studies (summarized in Table 1) that shed new light on the mechanisms of altered
MBF following IRI.

20-HETE
Arachidonic acid (AA) is released from membrane phospholipids in the renal outer medulla
in response to ischemia and can be metabolized to 20-hydroxyeicosatetraenoic acid (20–
HETE) by cytochrome p450 ω-hydroxylase. (22, 23) In the kidney, 20-HETE modulates
vascular tone, renal blood flow, and tubular sodium transport. (23) 20-HETE increases
vascular responsiveness to vasoconstrictors and would be expected to reduce tissue blood
flow and exacerbate IRI. Indeed, 20-HETE has been shown to promote ischemic injury in
the heart and brain. (24, 25) However, in the kidney 20-HETE was shown to increase MBF
in a dose dependent manner in rats. (26) Two recent studies have addressed the effect of 20-
HETE on renal IRI and the post-ischemic fall in MBF in rats.

Regner et al. demonstrated that inhibition of 20-HETE synthesis with HET0016 exacerbated
renal IRI and that systemic administration of a stable 20-HETE analog, 5,14–20-HEDGE,
mitigated renal IRI and prevented the post-ischemic decrease in renal outer MBF in rats.
(19) 5,14–20-HEDGE also inhibited sodium transport and enhanced natriuresis in normal
rats. These authors concluded that the 20-HETE analog mitigated IRI by preventing post-
ischemic medullary hypoxia through a concurrent increase in renal MBF and a decrease in
tubular transport and oxygen demand. (19) In a subsequent study, Hoff et al. demonstrated a
ten-fold increase in 20-HETE levels in rat kidneys exposed to 45 minutes of ischemia. (27)
They reported that bolus administration of the 20-HETE synthesis inhibitor, HET0016 or a
20-HETE antagonist, 6,15–20-HEDE, directly into the renal artery of a uninephrectomized
rat attenuated the severity of renal IRI. 6,15–20-HEDE significantly improved medullary
oxygenation and hastened the recovery of renal outer MBF. (27) However, 6,15–20-HEDE
treatment did not fully return outer MBF to baseline levels, suggesting that the salutary
effect of this compound on medullary oxygenation occurred via changes in oxygen
utilization.

The reason for the divergent results remain to be determined but could be due to differences
in the experimental design of these studies. (28) Regner et al. administered 5,14–20-HEDGE
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subcutaneously at a high dose that produced elevated blood levels for several hours whereas
Hoff et al. administered a much smaller dose of 6,15–20-HEDE by bolus injection directly
into the renal artery that likely produced high first-pass blood levels but much lower
systemic levels following redistribution. (19, 27, 28) In addition, Regner et al. used a model
of 30 minutes bilateral ischemia, whereas Hoff et al. performed 45 minutes warm ischemia
on the remaining kidney following uninephrectomy. (19, 27, 28) This experimental
difference appears to be critical in interpreting the divergent hemodynamic findings in these
two studies since uninephrectomy has been shown to rapidly alter renal hemodynamics by
increasing both cortical and medullary blood flow in the remaining kidney. (29) These
studies clearly indicate a role for 20-HETE in the regulation of medullary blood flow and
oxygenation following IRI, but further studies are needed to clarify the therapeutic potential
of 20-HETE agonists and/or antagonists in renal IRI and to determine their mechanism of
action.

HEME OXYGENASE-1
Heme oxygenase-1 (HO-1) converts heme into biliverdin and carbon monoxide while
simultaneously releasing iron. (30) HO-1 is induced in the kidney following a number
cellular stressors and plays a protective role in animal models of AKI, including IRI. (30)
HO-1 is highly expressed in the renal medulla and inhibitors of HO-1 significantly decrease
renal MBF. (31) In a porcine model of warm renal ischemia, HO-1 mRNA expression was
positively correlated with total RBF during reperfusion. (32) In contrast, in HO-1 knockout
mice exposed to 15 minutes of renal ischemia and 4 hour reperfusion there was a significant
reduction in GFR but no change in total RBF compared to control mice. (33) Salom et al.
reported that induction of HO-1 with CoCl2 decreased the severity of renal dysfunction in
rats exposed to 45 minutes of renal ischemia. (34) Induction of HO-1 significantly decreased
the post-ischemic fall in MBF as measured by LDF. This beneficial effect associated with a
decrease in peroxynitrite formation during the ischemic period suggesting a role for reduced
NO scavenging by reactive oxygen species rather than increased formation of carbon
monoxide. (34) However, CoCl2 is also a potent inducer of hypoxia inducible factor-1 alpha
which alters the expression of many genes that may contribute to the renoprotective effect of
CoCl2. (35) Thus, further investigation is needed to identify the mediator of protective effect
of HO-1 or CoCl2 in renal IRI and whether the mechanism is due in part, to preservation of
renal MBF upon reperfusion.

GASOTRANSMITTERS
Gasotransmitters are gaseous molecules that modulate a variety of intracellular signaling
pathways. (36) Nitric oxide (NO) is the best characterized of these paracrine factors and
plays a key role in the regulation of renal medullary perfusion by promoting dilatation of
vasa recta capillaries and antagonizing the effects of vasoconstrictors. (37–39) From this
standpoint, NO would be expected to have a beneficial effect in renal IRI. However, NO
produced in response to ischemia can combine with superoxide to produce peroxynitrite
leading to an increase in oxidative stress and exacerbation of renal injury. (6, 40) Therefore,
the impact of NO in renal IRI is dependent upon a number of factors including the temporal
and spatial distribution of NO production and the type of nitric oxide synthase (NOS)
activated following ischemia. The role of NO and NOS in the pathogenesis of renal IRI and
AKI is very complex and has be extensively reviewed elsewhere. (41–44)}

In contrast to NO, much less is known about the role of the other gasotransmitters, hydrogen
sulfide (H2S) and carbon monoxide (CO), in the control of MBF and the pathogenesis of
renal IRI. H2S is enzymatically synthesized from L-cysteine or L-homocysteine and has
been shown to activate ATP-sensitive potassium channels (KATP) in numerous cell types.
(45) H2S is produced in the kidney through substrate dependent metabolism of L-cysteine
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and infusion of H2S donors into the renal artery of rats increases total RBF, GFR, and urine
sodium excretion. (46) Tripatara et al. demonstrated that IRI increases the production of H2S
in the kidney and that endogenous and exogenous H2S decreased the severity of renal
dysfunction following IRI in rats. (47). Hosgood et al. subsequently demonstrated that H2S
infusion improved total RBF and renal function in a porcine model of 25 minutes of warm
ischemia and 18 hours of cold storage. (48) Whether the protective effect of H2S in renal IRI
is mediated by an improvement in MBF remains to be studied. However, one would expect
to find that H2S should produce a medullary vasodilation since KATPchannels are expressed
by pericytes in the vasa recta. (45)

CO is produced from the metabolism of heme by heme oxygenase. The protective effect of
HO-1 in models of renal injury appears to be mediated, in part, through the vasodilator
actions of CO. (30, 49) Furthermore, the effect of HO-1 on MBF may be a result of CO
mediated activation of guanylate cyclase. (31) Notably, CO donor compounds protected
against renal IRI in mice, even in the presence of a heme oxygenase inhibitor, indicating that
CO-mediated protection from IRI may be independent of HO-1 activity. (50) The influence
of CO on renal hemodyamics following IRI has been explored in various models of IRI. In a
rat model of kidney transplantation, exposure of recipient rats to inhaled CO (250 ppm)
significantly decreased tubular injury and inflammation. This was associated with a
significant increase in renal cortical blood flow upon reperfusion. (51) Hosgood et al.
demonstrated that administration of the carbon monoxide releasing molecule, CORM-3
preserved renal function and improved total RBF in a porcine model of 10 minutes of warm
renal ischemia and 16 hours of cold storage. (52) However, it remains to be determined
whether the protective effect of CO in renal IRI is mediated by preservation of post-
ischemic MBF.

ATRIAL NATRIURETIC PEPTIDE
Atrial natriuretic peptide (ANP) is secreted by cardiomyocytes following volume expansion
and elevations in end diastolic filling pressure. Infusion of ANP increases GFR and MBF in
rats. (53) Chujo et al. recently reported that MBF was significantly higher following IRI in
rats treated with ANP as compared to vehicle treated controls. (54) This improvement in
outer MBF in the ANP treated rats was associated with improvements in renal function and
reduced tubular injury 24 and 48 hours following ischemia. (54) ANP, like NO, is a potent
activator of guanylyl cyclase and suggests that strategies to increase cGMP, like NO, ANP
or phosphodiesterase 5 inhibitors, might be useful in the treatment of ischemic AKI. Recent
clinical trials using ANP for treatment or prevention of AKI have had mixed results
depending on the treatment strategy and patient population. In this regard, it appears that
low dose ANP therapy may decrease the need for renal replacement therapy in patients with
post-operative AKI. (55)

ANGIOPOIETIN-1
Angiopoietin-1 (Ang1) is a key regulator of vascular development during embryogenesis
and contributes to the vascular adaptation to injury and stress. (56) Cartilage oligomeric
matrix protein-Ang1 (COMP-Ang1) is an engineered form of Ang1 with improved solubility
and potency compared to native Ang1. (57) Jung et al. recently reported on the effects of
adenovirus overexpression of COMP-Ang1 on renal injury and renal hemodynamics in mice
exposed to 22 minutes of bilateral renal ischemia. (58) In comparison to vehicle treated
controls, renal function in the COMP-Ang1 overexpressing mice was significantly improved
1, 2, and 3 days following reperfusion. Renal MBF was significantly higher in the COMP-
Ang1 overexpressing mice at 2 hours and 2 days following ischemia. Most notably, COMP-
Ang1 had long term benefits and was associated with a decrease in renal tubulointerstitial
fibrosis 30 days after IRI. (58)

Regner and Roman Page 4

Curr Opin Nephrol Hypertens. Author manuscript; available in PMC 2013 March 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



LONG-TERM EFFECTS OF IRI ON RENAL MBF
Recovery of renal function following AKI in humans is often incomplete and many patients
develop long term complications. (59, 60) Several experimental studies have highlighted the
importance of renal microvascular injury in the pathogenesis of chronic kidney disease and
hypertension following IRI. Basile et al. evaluated the long-term effects of bilateral renal
ischemia in rats. (61) They reported that renal function and tubular morphology fully
recovered to control levels within 2 weeks. However, the rats developed proteinuria and
tubulointerstitial fibrosis several months after the initial injury. (61) Notably, these
abnormalities were preceded by a 30 to 50% reduction in the density of vasa recta capillaries
in the outer medulla of the kidney as early as 4 weeks after ischemia. (61) In a subsequent
study, this group demonstrated that IRI in rats leads to decreased GFR and RBF, impaired
autoregulation of MBF, relative renal medullary hypoxia and sodium sensitive hypertension
5 weeks after ischemia. (62) These findings highlight the importance of injury to the vasa
recta capillaries and the fall in MBF during recovery from ischemic injury and may explain
the increased risk for the development of microalbuminuria, hypertension, and chronic
kidney disease in patients with AKI. (59, 60, 63)

CONCLUSION
Sustained alterations in RBF are well described following renal IRI. This perturbation in
RBF is primarily due to regional hypoperfusion in the renal outer medulla. Identification and
characterization of mediators that can mitigate microvascular injury and preserve MBF
following IRI may lead to therapies for AKI. Assessment of MBF is essential in determining
the mechanism of action of putative renoprotective agents in IRI.
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SUMMARY

• Renal ischemia-reperfusion injury is a common cause of acute kidney injury.

• Ischemic renal injury is associated with prolonged reductions in renal medullary
blood flow following reperfusion.

• Reduced medullary blood flow promotes tubular necrosis and fibrosis in the
outer medulla.

• Nitric oxide, carbon monoxide, atrial natriuretic peptide and eicosanoids help
preserve medullary blood flow and reduce ischemic renal injury.
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Figure 1. Effect of renal ischemia-reperfusion injury on regional blood flow in the kidney
Sprague-Dawley rats underwent 30 minutes renal ischemia and 180 minutes of reperfusion.
Cortical blood flow (CBF) and outer medullary blood flow (MBF) were measured by laser-
Doppler flowmetry. CBF and MBF decreased dramatically during the ischemic period and
CBF rapidly recovered to baseline levels following reperfusion. In contrast, a transient
improvement in MBF was seen immediately after reperfusion followed by a gradual decline
to approximately 50% of baseline that was sustained for the 3 hour period of the experiment.
Adapted from Regner et al. (19)
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Table 1

Summary of recent studies examining the regulation of renal MBF following IRI.

Pathway Renal IRI Model Results Reference

20-HETE 30 min bilateral warm ischemia in rats 20-HETE analogue preserved post-ischemic MBF and
mitigated renal injury

19

45 min warm ischemia after uninephrectomy in rats 20-HETE inhibitor improve post-ischemic MBF and
mitigated renal injury

27

HO-1 45 min of warm ischemia in rats Induction of HO-1 decreased the post-ischemic fall in
MBF and severity of renal dysfunction

34

H2S 45 min bilateral warm ischemia in rats Endogenous and exogenous H2S decreased renal injury
and improved renal function

45

Porcine model of 25 min of warm ischemia and 18
hrs cold storage

H2S infusion improved total RBF and renal function 46

CO Porcine model of 10 min renal ischemia and 16 hrs of
cold storage

Administration of CO releasing molecule-3 (CORM-3)
preserved renal function and improved total RBF

50

ANP Porcine model of 10 min warm ischemia and 18 hrs
cold storage

ANP treatment improved MBF and renal function and
reduced tubular injury

52

Ang1 22 min of bilateral warm ischemia in mice Adenovirus overexpression of COMP-Ang1 improved
post-ischemic MBF and renal function

56

IRI, ischemia-reperfusion injury; MBF, medullary blood flow; min, minute; 20-HETE, 20-hydroxyeicostetraenoic acid; HO-1, heme oxygenase-1;
H2S, hydrogen sulfide; hrs, hours; RBF, renal blood flow; CO, carbon monoxide; ANP; atrial natriuretic peptide; Ang1, angiopoietin-1; COMP-

Ang1, cartilage oligomeric matrix protein-Ang1.
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