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Abstract: Aims: Epidemiological evidence shows that diabetes is associated with a reduced risk of prostate cancer. 
The objective of this study was to identify genes that may contribute to both type 2 diabetes and prostate cancer 
outcomes and the biological pathways these diseases may share. Methods: The Atherosclerosis Risk in Communi-
ties (ARIC) Study is a population-based prospective cohort study in four U.S. communities that included a baseline 
examination in 1987-89 and three follow-up exams at three year intervals. Participants were 45-64 years old at 
baseline. We conducted a genomewide association (GWA) study of incident type 2 diabetes in males, summarized 
variation across genetic loci into a polygenic risk score, and determined if that diabetes risk score was also associ-
ated with incident prostate cancer in the same study population. Secondarily we conducted a separate GWA study 
of prostate cancer, performed a pathway analysis of both type 2 diabetes and prostate cancer, and qualitatively 
determined if any of the biochemical pathways identified were shared between the two outcomes. Results: We found 
that the polygenic risk score for type 2 diabetes was not statistically significantly associated with prostate cancer. 
The pathway analysis also found no overlap between pathways associated with type 2 diabetes and prostate cancer. 
However, it did find that the growth hormone signaling pathway was statistically significantly associated with type 2 
diabetes (p=0.0001). Conclusion: The inability of this study to find an association between type 2 diabetes polygenic 
risk scores with prostate cancer or biological pathways in common suggests that shared genetic variants may not 
contribute significantly to explaining shared etiology.

Keywords: Type 2 diabetes, prostate cancer, polygenic risk score, pathway analysis

Introduction

Epidemiological evidence shows that diabetes 
is associated with a reduced risk of prostate 
cancer [1, 2]. Many of the mechanisms hypoth-
esized to explain this inverse association posit 
that the effect of type 2 diabetes on prostate 
cancer risk is mediated by type 2 diabetes sta-
tus. Specifically, having type 2 diabetes may 
decrease prostate cancer risk through (1) its 
influence on insulin levels; (2) its influence upon 
the bioavailability of insulin growth factor 1, 
leptin, and free testosterone; (3) type 2 diabe-
tes drug treatments (i.e. metformin); and (4) 
changes in lifestyle and diet [3, 4]. However, the 
exact mechanism is unknown at this time.

The association between these two diseases 
could also be explained via pleiotropy, whereby 
specific genetic variants affect both type 2 dia-
betes and prostate cancer risk, independently 
[4]. Several genes recently identified in type 2 
diabetes GWA studies have also been found to 
be associated with prostate cancer risk [3, 5-7]. 
Additionally, Pierce and Ahsan created a type 2 
diabetes risk score using 18 common diabetes 
SNPs and found an inverse association with 
prostate cancer, indicating that individuals with 
increased genetic susceptibility to diabetes 
have decreased risk of prostate cancer [4].

To date, the majority of studies of type 2 diabe-
tes genetic risk variants and prostate cancer 
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have largely been candidate gene analyses and 
no research study has been conducted to sys-
tematically identify the genes that overlap 
between diabetes and prostate cancer out-
comes in the same study population. 
Furthermore, all studies to date have focused 
on individual SNPs and no analyses have been 
conducted to identify genetic pathways that 
may overlap between these two biologically 
related disease outcomes.

Therefore, to identify genes that may contribute 
to both diabetes and prostate cancer outcomes 
and the biological pathways these diseases 
may share, we conducted a GWA study of type 
2 diabetes, summarized variation across genet-
ic loci into a polygenic risk score, and deter-
mined if that diabetes risk score was also asso-
ciated with prostate cancer. Secondarily, we 
performed a GWA study of prostate cancer and 
conducted separate pathway analyses for each 
outcome to determine if any of the biochemical 
pathways identified were shared between type 
2 diabetes and prostate cancer.

Methods

Subjects

The ARIC study began in 1987-9 and recruited 
a population-based cohort from four U.S. com-
munities including: Forsyth County, NC; 
Jackson, MS; the northwest suburbs of 
Minneapolis, MN; and Washington County, MD 
[8]. The Jackson, MS, site recruited exclusively 
self-reported African Americans. At the other 
sites, the racial composition of the cohort 
reflected that of the community. The baseline 
examinations (Visit 1) were conducted between 
1987 and 1989; Visit 2 was held between 
1990 and 1992; Visit 3 between 1993 and 
1995; and Visit 4 was conducted between 
1996 and 1998. A fifth clinic examination start-
ed in 2011. Of participants still alive at the time 
of the three follow-up visits to date, response 
rates for visits 2, 3, and 4 were 93, 86, and 
81%, respectively. After the baseline exam, 
ARIC cohort members were contacted annually 
by telephone (even during the years in which 
they also had a clinical exam) to establish vital 
status and assess a history of cardiovascular 
disease, including hospitalizations.

Genotyping and QC description

Genotyping was performed at the Broad 
Institute of MIT and Harvard using the Affymetrix 

SNP Array 6.0. Genotyping, quality control, and 
imputation procedures for the ARIC genome-
wide association study have previously been 
described in detail [9].

Statistical methods 

Analyses were conducted using male self-
reported Caucasian participants in the ARIC 
cohort with available GWA study data (N=4407). 
All participants were followed through 2006 for 
diabetes and prostate cancer, which is the 
most recent data available on incident cancer 
outcomes. Individuals with a history of prostate 
cancer or prevalent diabetes at the baseline 
examination were excluded from analysis. We 
also restricted analyses to individuals who had 
sufficient follow-up information to determine 
incidence of both prostate cancer and type 2 
diabetes, leaving us with 3822 individuals for 
analysis.

Incident type 2 diabetes was defined as a self-
reported physician diagnosis obtained by inter-
viewer-administered questionnaire. Interviews 
were conducted at each of the in-person visits 
(though 1996-1998), and thereafter annually 
by phone. Incident prostate cancer outcomes 
were ascertained by linkage to the following 
cancer registries: the Minnesota Cancer 
Surveillance System, the North Carolina Cancer 
Registry, the Washington County (Maryland) 
Cancer Registry, and the (statewide) Maryland 
Cancer Registry. Cohort identifiers were linked 
to each cancer registry’s database to obtain 
data regarding cancer occurrence, primary site, 
and diagnosis date. In addition to a search of 
cancer registries, the ARIC study asked partici-
pants to report all hospitalizations, and hospi-
tal surveillance was carried out in each commu-
nity and cancer-related hospital discharges not 
identified by cancer registries were retrieved in 
each community.

To analyze diabetes events for the GWA study, 
we used Cox proportional hazard models to cal-
culate hazard ratios and corresponding 95% 
confidence intervals using ProbABEL and 
assuming an additive genetic model [10]. Cox 
models were adjusted for age at baseline and 
field site. For incident diabetes, time to event 
was defined as the date of the interview at 
which the participant first reported a diagnosis 
of diabetes. Participants who did not report dia-
betes during follow-up were censored at the 
date of the last interview.
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To create polygenic risk scores for type 2 diabe-
tes, we reduced the number of SNPs available 
for analysis by filtering on minor allele frequen-
cy (MAF), genotyping rate, and linkage disequi-
librium independent of their association with 
type 2 diabetes. Specifically, we selected a 
sample of SNPs with a MAF of ≥5%, a genotyp-
ing rate threshold of ≥99%, and a pairwise r2 
threshold of <0.25 within a 200-SNP sliding 
window [11]. Focusing the analysis on a subset 
of SNPs in approximate linkage equilibrium 
ensured the score represents the aggregate 
effect of a large number of independent SNPs 
[11]. After pruning, there were 99,966 SNPs 
out of 2,438,031 SNPs available for analysis.

Next we obtained sets of alleles that were asso-
ciated with type 2 diabetes at increasingly lib-
eral thresholds (PT<0.05, 0.25, and 0.5) in Cox 
regression. For each individual, we calculated 
the sum of the number of score alleles they 
had, weighted by the allele-specific log hazard 
ratio estimated from the GWA for diabetes in 
ARIC. There were 5,119 alleles at the 0.05 
threshold, 25,358 at 0.25, and 50,058 at 0.50. 

Proc Score in SAS was used to calculate the 
scores (SAS Institute Inc., Version 9.2, Cary, 
NC). We used Cox regression to assess whether 
the aggregate polygenic risk scores for type 2 
diabetes were associated with prostate cancer 
risk. We modeled the sets of score alleles as 
both a continuous variable, to estimate its 
association with prostate cancer under a linear 
assumption, and in quintiles, to explore the 
dose-response relationship.

Finally, we created a weighted polygenic risk 
score by adding together the number of geno-
typed or imputed risk alleles of 58 genes or 
regions (Table 1). The selection of these 58 
genetic variants was based on a recent large-
scale association analysis of European-
Americans that combined genome-wide asso-
ciation data from multiple studies to identify 
genetic variants associated with type 2 diabe-
tes [12]. The score weights the dosage for each 
SNP by the odds ratio reported for the com-
bined DIAGRAM consortium analysis [12]. This 
risk score was also assessed using Cox regres-
sion, modeling the score both continuously and 
in quintiles. The creation of polygenic risk 
scores should significantly increase the statisti-
cal power necessary to detect associations 
with prostate cancer, as many of the loci with 

weak individual effects are more likely to be sig-
nificantly associated with an outcome when 
combined into a risk score [13].

Pathway analysis

We performed GWA analyses for incident type 2 
diabetes and incident prostate cancer and con-
ducted a pathway analysis of the top signals 
using the Meta-Analysis Gene-set Enrichment 
of Variant Associations (MAGENTA) program, 
which queries for gene set enrichments in path-
ways found in the Gene Ontology (GO), Panther, 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG), Reactome, and BioCarta pathway data-
bases [14]. Because there are multiple com-
parisons of pathways within a database, we 
applied a Bonferroni correction for the number 
of pathways considered within each database 
and used that p-value as the significance 
threshold. MAGENTA produces a list of path-
ways for each disease outcome and their asso-
ciated GSEA p-value. To determine if there was 
overlap in pathways between disease out-
comes we qualitatively compared the top five 
most significant pathways associated with type 
2 diabetes with the top five pathways for pros-
tate cancer.

Results

There were 774 incident cases of self-reported, 
physician diagnosed type 2 diabetes and 373 
incident cases of prostate cancer in the 
Caucasian ARIC males with GWA data (Table 2). 
The median follow-up time was 17.9 for type 2 
diabetes and 17.8 years for prostate cancer. 
There were 80 individuals who had both events. 
The rate of type 2 diabetes was 13 per 1,000 
person-years and the rate of prostate cancer 
was 6 per 1,000 person-years. Men with and 
without incident diabetes did not significantly 
differ in age at baseline; however, men with 
prostate cancer were statistically significantly 
older at baseline compared to those without 
prostate cancer (Table 2).

Diabetes polygenic risk scores were not statis-
tically significantly associated with incident 
prostate cancer when modeled linearly (Table 
3). Likewise, the score quintiles were largely 
unassociated with prostate cancer across all of 
the significance thresholds (p for trend=0.16; 
0.07; 0.11; 0.19 for Pt <0.05, 0.25, and 0.5 and 
the 58 SNP risk score, respectively) (Table 4).
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Table 1. Type 2 diabetes susceptibility loci used to construct the 58 SNP risk score
SNP Chromosome Locus Position (Build 36 bp) Risk Alleles Other
rs10923931 1 NOTCH2 120,319,482 T G
rs2075423 1 PROX1 212,221,342 G T
rs780094 2 GCKR 27,594,741 C T
rs10203174 2 THADA 43,543,534 C T
rs243088 2 BCL11A 60,422,249 T A
rs7569522 2 RBMS1 161,054,693 A G
rs13389219 2 GRB14/COBLL1 165,237,122 C T
rs2943640 2 IRS1 226,801,829 C A
rs1801282 3 PPARG 12,368,125 C G
rs1496653 3 UBE2E2 23,429,794 A G
rs6795735 3 ADAMTS9 64,680,405 C T
rs11717195 3 ADCY5 124,565,088 T C
rs4402960 3 IGF2BP2 186,994,381 T G
rs17301514 3 ST64GAL1 188,096,103 A G
rs4458523 4 WFS1 6,340,887 G T
rs459193 5 MAP3K1/ANKRD55 55,842,508 G A
rs6878122 5 ZBED3 76,463,067 G A
rs7756992 6 CDKAL1 20,787,688 G A
rs17168486 7 DGKB 14,864,807 T C
rs849135 7 JAZF1 28,162,938 G A
rs10278336 7 GCK 44,211,888 A G
rs13233731 7 KLF14 130,088,229 G A
rs516946 8 GOLGA7/ANK1 41,638,405 C T
rs7845219 8 TP53INP1 96,006,678 T C
rs3802177 8 SLC30A8 118,254,206 G A
rs16927668 9 PTPRD 8,359,533 T C
rs10811661 9 CDKN2A/B 22,124,094 T C
rs17791513 9 TLE4 81,095,410 A G
rs2796441 9 TLE1 83,498,768 G A
rs11257655 10 CDC123/CAMK1D 12,347,900 T C
rs12242953 10 VPS26A 70,535,348 G A
rs12571751 10 ZMIZ1 80,612,637 A G
rs1111875 10 HHEX/IDE 94,452,862 C T
rs7903146 10 TCF7L2 114,748,339 T C
rs2334499 11 HCCA2 1,653,425 T C
rs163184 11 KCNQ1 2,803,645 G T
rs5215 11 KCNJ11 17,365,206 C T
rs1552224 11 ARAP1 (CENTD2) 72,110,746 A C
rs10830963 11 MTNR1B 92,348,358 G C
rs11063069 12 CCND2 4,244,634 G A
rs10842994 12 PPFIBP1/KLHDC5 27,856,417 C T
rs2261181 12 HMGA2 64,498,585 T C
rs7955901 12 TSPAN8/LGR5 69,719,560 C T
rs12427353 12 HNF1A (TCF1) 119,911,284 G C
rs1359790 13 SPRY2 79,615,157 G A
rs4502156 15 C2CD4A 60,170,447 T C
rs7177055 15 HMG20A 75,619,817 A G
rs11634397 15 ZFAND6 78,219,277 G A
rs2007084 15 AP3S2 88,146,339 G A
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Table 2. Participant characteristics by incident diabetes and prostate cancer
Males Diabetes (N=774) No Diabetes (N=3048) p-value

Baseline Age (years) 54.1 54.5 0.08
Center: Forsyth County, NC 30.3 28.9 0.0008
             Minneapolis, MN 31.9 38.9
             Washington County, MD 37.9 32.2

Prostate Cancer (N=373) No Prostate Cancer (N=3449) p-value
Baseline Age (years) 56.5 54.2 <0.0001

Center: Forsyth County, NC 29.2 29.2 0.85
             Minneapolis, MN 38.6 37.3
             Washington County, MD 32.2 33.5

Table 5 shows the top five pathways identified 
by GSEA from the six pathway databases using 
the results of the prostate cancer GWA analy-
sis. None of the biological pathways were sta-
tistically significantly associated with prostate 
cancer. Table 6 shows the top five pathways 
identified by GSEA from six pathway databases 
using the results of the type 2 diabetes GWA 
analysis. There was only one biological pathway 
that was statistically significantly associated 
with type 2 diabetes incidence after the 
Bonferroni correction for multiple testing, the 
growth hormone signaling pathway from the 
BioCarta database (p=0.0001). However, this 
pathway was not significantly associated with 
prostate cancer (p=0.43). When type 2 diabe-
tes gene set enrichment analysis p-values gen-
erated by MAGENTA were compared to prostate 
cancer, for each of the top type 2 diabetes 
pathways found in Table 6, none of the path-

ways were associated with prostate cancer 
(p>0.05).

Table 7 compares GSEA results for this study to 
the top five pathways for type 2 diabetes identi-
fied by Perry et al. in a previous analysis [15]. 
None of the top five pathways reported by Perry 
et al. (p<=0.005) was found to be associated 
with type 2 diabetes in our analysis (p>0.22) 
(13). Table 8 shows that of the top five path-
ways found in the Genetic Database of Diabetes 
Mellitus (DMBase) analysis, only the growth 
hormone signaling pathway (p=0.0001) was 
statistically significantly associated with type 2 
diabetes in our analysis [16].

Discussion

This purpose of this study was to determine if a 
type 2 diabetes polygenic risk score was also 

rs12899811 15 PRC1 89,345,080 G A
rs9936385 16 FTO 52,376,670 C T
rs7202877 16 WDR59/CTRB1 73,804,746 T G
rs2447090 17 SRR 2,245,724 A G
rs4430796 17 HNF1B (TCF2) 33,172,153 G A
rs12970134 18 MC4R 56,035,730 A G
rs10401969 19 ARMC6/SF4 19,268,718 C T
rs8108269 19 GIPR/CD3EAP 50,850,353 G T
rs4812829 20 HNF4A 42,422,681 A G

Table 3. Adjusted associations between the type 2 diabetes polygenic risk scores and incident prostate 
cancer
Significance threshold HR 95% Confidence Intervals P-value
0.05 1.03 0.94-1.14 0.40
0.25 1.03 0.94-1.14 0.51
0.50 1.03 0.93-1.13 0.57
58 SNP 0.96 0.87-1.07 0.46
*Hazard ratios are per 1 standard deviation for the genetic score (SD=18.1, 44.8, and 56.8 risk for Pt 0.05, 0.25, and 0.50 and 
4.5 for the 58 SNP risk score , respectively).
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associated with incident prostate cancer; in 
addition, to conduct pathway analyses of both 
disease outcomes and identify shared bio-
chemical pathways. Type 2 diabetes polygenic 
risk scores were not significantly associated 
with prostate cancer incidence in men in the 
same study population. None of the top five 
pathways most significantly associated with 
type 2 diabetes in gene set enrichment analy-
sis, from each of the six pathway databases 
queried, were significantly associated with 
prostate cancer. Nor were the top five type 2 
diabetes pathways associated with prostate 
cancer. Only one pathway was statistically sig-
nificantly associated with type 2 diabetes after 
the Bonferroni correction, the growth hormone 
signaling pathway in the BioCarta database.

To date, the identification of variants associat-
ed with both outcomes has been limited and 
inconsistent. HNF1B is the only gene associat-
ed with both type 2 diabetes and prostate can-
cer that has been replicated across studies [6]. 
Our own study failed to detect genetic pathways 
shared between the two diseases. Wu et al. 
found no association between type 2 diabetes 
and prostate cancer risk, concluding that the 
inverse association between the two outcomes 

is the result of detection bias whereby, 
individuals with type 2 diabetes have 
attenuated prostate specific antigen, 
which results in a less frequent diagno-
sis of prostate cancer [17]. While this 
may not fully explain the association 
between the two outcomes, the number 
of genetic variants associated with both 
outcomes is limited and at this point in 
time does not contribute meaningfully 
to explaining shared etiology. Future 
analyses should consider alternative 
explanations for the association 
between these two diseases such as 
unmeasured confounding, metabolic 
and hormonal changes, or the effects of 
diabetes treatment.

The growth hormone signaling pathway 
is a biologically plausible candidate 
pathway for type 2 diabetes. There are 
28 genes identified in the growth hor-
mone signaling pathway including 
HRAS, HNF1A, GRB2, STAT5A, STAT5B, 
SRF, SLC2A4, INS, SOS1, PIK3CA, 
SHC1, INSR, PIK3R1, GHR, PRKCA, 
PIK3CG, PTPN6, MAP2K1, SOCS1, 

Table 4. Adjusted associations between the type 2 dia-
betes polygenic risk scores, modeled as quintiles, and 
incident prostate cancer 
 Quintile HR 95% CI p-value P for trend
0.05 1 1.00 ref 0.16

2 1.00 (0.72-1.40) 0.99
3 1.45 (1.06-1.98) 0.02
4 1.21 (0.86-1.71) 0.27
5 1.19 (0.86-1.65) 0.28

0.25 1 1.00 ref 0.07
2 1.01 (0.73-1.42) 0.92
3 1.34 (0.97-1.86) 0.07
4 1.44 (1.03-2.01) 0.04
5 1.21 (0.87-1.67) 0.26

0.50 1 1.00 ref 0.11
2 1.14 (0.83-1.60) 0.41
3 1.32 (0.95-1.84) 0.10
4 1.41 (1.01-1.99) 0.04
5 1.23 (0.89-1.71) 0.21

58 SNP 1 1.00 ref 0.19
2 0.83 (0.61-1.15) 0.26
3 0.82 (0.60-1.12) 0.21
4 0.88 (0.64-1.20) 0.41
5 0.78 (0.57-1.08) 0.14

RAF1, IRS1, PRKCB, MAPK1, GH1, RPS6KA1, 
PLCG1, MAPK3, and JAK2. There were 27 out 
of these 28 genes represented in our GWA 
study and 2423 single nucleotide polymor-
phisms (SNPs) from these 27 genes were ana-
lyzed by MAGENTA. None of the individual SNPs 
had p-values that approached a Bonferroni cor-
rected statistical threshold, lending support to 
the idea that when one combines nominally sig-
nificant variants into biological pathways one 
may have greater statistical power to detect 
sets of variants associated with type 2 diabe-
tes [18].

A number of these genes in the growth hor-
mone signaling pathway have variants that 
have previously been found to be associated 
with type 2 diabetes. Specifically, HNF1A has 
both rare mutations resulting in monogenic 
forms of diabetes, in addition to common vari-
ants that predispose individuals to multifacto-
rial diabetes [19]. INS has a variable number 
tandem repeat that has been proposed to exert 
pleiotropic effects on both birth weight and dia-
betes susceptibility [20]. A recent large-scale 
candidate gene association study found vari-
ants of INS and SOS were significantly associ-
ated with type 2 diabetes [18]. Heterozygous 
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Table 5. Top five most significant prostate cancer gene set enrichment analysis (GSEA) results for six 
pathway databases
Database Number of 

pathways 
queried

Bonferroni 
corrected
p-value

Pathway P-value for as-
sociation with 
incident type 2 
diabetes from 
GSEA

P-value for 
association 
with incident 
prostate cancer 
from GSEA

GO 1778 0.00003 Endosome membrane 0.160 0.004
1778 0.00003 Ubiquitin-specific protease activity 0.237 0.014
1778 0.00003 Mitochondrial intermembrane 

space
0.923 0.015

1778 0.00003 Erythrocyte differentiation 0.752 0.015
1778 0.00003 NAD or NADH binding 0.450 0.015

Panther 527 0.0001 Protein complex assembly 0.180 0.003
527 0.0001 Other cell adhesion molecule 0.710 0.007
527 0.0001 Phospholipase 0.048 0.025
527 0.0001 Neuronal activities 0.060 0.032
527 0.0001 Zinc finger transcription factor 0.190 0.036

Ingenuity 81 0.0006 NRF2-mediated oxidative stress 
response

0.648 0.049

81 0.0006 Axonal guidance signaling 0.993 0.105
81 0.0006 Wnt beta-catenin signaling 0.992 0.249
81 0.0006 Nitric oxide signaling in the cardio-

vascular system
0.078 0.257

81 0.0006 Leukocyte extravasation signaling 0.918 0.362
KEGG 186 0.0003 Wnt signaling pathway 0.429 0.005

186 0.0003 Vascular smooth muscle contrac-
tion 

0.033 0.033

186 0.0003 Oocyte meiosis 0.444 0.040
186 0.0003 Glycerophospholipid metabolism 0.061 0.049
186 0.0003 Alpha linolenic acid metabolism 0.190 0.053

BioCarta 214 0.0002 ALK pathway 0.377 0.004
214 0.0002 BAD pathway 0.536 0.058
214 0.0002 GCR pathway 0.272 0.058
214 0.0002 CREB pathway 0.026 0.058
214 0.0002 AGPCR pathway 0.603 0.062

Reactome 430 0.0001 Transmission across chemical 
synapses 

0.014 0.056

430 0.0001 Prefoldin mediated transfer of  
substrate to CCT TRIC 

0.399 0.061

430 0.0001 Membrane trafficking 0.357 0.070
430 0.0001 Regulation of insulin secretion by 

glucagon like peptide 1 
0.844 0.070

 430 0.0001 Neurotransmitter receptor binding 
and downstream transmission in 
postsynaptic cell

0.003 0.111

INSR mutations are the most common cause of 
monogenic insulin resistance and a recent 
study identified INSR haploinsufficiency is 
associated with severe insulin resistance and 
dysglycemia [19]. A polymorphism of GHR exon 
3 has been found to be associated with type 2 
diabetes and a recent GWA study identified a 
variant of IRS1 associated with type 2 diabetes 

risk and this has been replicated by a second 
study by Yiannakouris et al. [22, 23]. Finally, the 
BioCarta growth hormone signaling pathway is 
also one of 19 pathways identified by the 
DMBase as being statistically significantly 
associated with type 2 diabetes (p=0.0000013). 
DMBase is an integrated web-based genetic 
information resource for diabetes mellitus 
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Table 6. Top five most significant type 2 diabetes gene set enrichment analysis (GSEA) results for six 
pathway databases
Database Number of path-

ways queried
Bonferroni cor-
rected p-value

Pathway P-value for as-
sociation with 
incident type 2 
diabetes from 
GSEA

P-value for as-
sociation with 
incident prostate 
cancer  from 
GSEA

GO 1778 0.00003 Single-stranded DNA 
binding

0.0008 0.683 

1778 0.00003 Endocytic vesicle mem-
brane

0.001 1

1778 0.00003 Nuclear-transcribed 
mRNA catabolic process, 
nonsense-mediated decay

0.003 0.465

1778 0.00003 Intracellular signaling 
cascade

0.003 0.722

1778 0.00003 Arachidonic acid secretion 0.004 0.250
Panther 527 0.0001 Vision 0.003 0.924

527 0.0001 Annexin 0.003 1
527 0.0001 Protein targeting and 

localization
0.007 0.754

527 0.0001 Calmodulin related protein 0.007 0.407
527 0.0001 Chemokine 0.008 0.593

Ingenuity 81 0.0006 Role of BRCA1 in DNA 
damage response

0.002 1

81 0.0006 JAK stat signaling 0.020 1
81 0.0006 Chemokine signaling 0.028 1
81 0.0006 14-3-3 mediated signaling 0.057 0.576
81 0.0006 FGF signaling 0.059 1

KEGG 186 0.0003 VEGF signaling pathway 0.002 0.608
186 0.0003 Acute myeloid leukemia 0.006 1
186 0.0003 Chemokine signaling 

pathway
0.006 0.425

186 0.0003 FC Gamma R mediated 
phagocytosis

0.007 0.840

186 0.0003 FC epsilon RI signaling 
pathway

0.010 0.273

BioCarta 214 0.0002 GH Pathway 0.0001* 0.439
214 0.0002 Calcineurin pathway 0.001 1
214 0.0002 CXCR4 pathway 0.004 0.250
214 0.0002 BCR pathway 0.006 1
214 0.0002 CCR3 pathway 0.007 0.246

Reactome 430 0.0001 Insulin synthesis and 
secretion

0.0003 0.923

430 0.0001 Regulation of gene expres-
sion in Beta cells

0.002 0.873

430 0.0001 Activation of the pre-repli-
cative complex

0.002 0.569

430 0.0001 Botulinum neurotoxicity 0.002 1
430 0.0001 Neurotransmitter receptor 

binding and downstream 
transmission in the post-
synaptic cell

0.003 0.111

*Statistically significantly associated pathway after Bonferroni correction.

designed to provide genomic variants, genes, 
and secondary information derived for research-
ers [16].

There are several limitations to our study. Type 
2 diabetes was self-reported. The inclusion of 
increasing numbers of score alleles with the 
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Table 7. GSEA p-values for top 5 pathways found in Perry et al. study of biological pathways associated 
with type 2 diabetes (Perry et al. 2009)
Database Pathway Perry et al. p-value for 

association with type 2 
diabetes

GSEA p-value for association with 
type 2 diabetes (this study)

KEGG Wnt signaling pathway 0.0007 0.429
KEGG Olfactory transduction 0.0009 0.864
GO Organic acid biosynthetic process 0.004 0.481
GO Regulation of Wnt receptor signaling 

pathway
0.005 0.221

GO Odontogenesis 0.005 0.758

use of liberal thresholds could be introducing 
false positives that make it more difficult to dis-
cern the signal from the noise. A further limita-
tion is the representation of each gene locus 
with a single SNP in the pathway analysis, when 
a disease-associated gene may have multiple 
functional variants [15]. In the pathway analy-
sis, we could have also have failed to detect 
more pathways significantly associated with 
type 2 diabetes or overlap between type 2 dia-
betes and prostate cancer because (1) the rel-
evant pathways or sets of functionally related 
genes were not tested; (2) the given distance 
around the gene may not capture potential sig-
nals from more distant transcriptional regula-
tory elements, such as enhancers or epigenetic 
marks; (3) rare variants were not tested (4) 
causal variants are spread across a large num-
ber of biological processes making it hard to 
detect clustering of associations into pathways 
and/or; (5) the fraction of causal genes in the 
given gene set may not be significantly higher 
than the total fraction of causal genes in the 
genome [14]. Also, the failure to identify shared 
pathways could be an issue of statistical power, 
due to the lower number of prostate cancer 
cases available for analysis compared to diabe-
tes cases (10% versus 20% of the sample).

Finally, comparisons with DMBase must be 
considered with caution. Lee et al. extracted 
diabetes genes from the literature and conse-
quently publication bias may exist, whereby 
non-significant findings remain unpublished, 
resulting in an artificially inflated magnitude of 
the effect for well-studied pathways [24]. 
Simulations have shown that in meta-analyses 
the use of published studies may over-estimate 
the effect sizes by as much as 30%, which 
threatens the validity of literature-based inves-
tigations of pathways [25]. Also, if publications 
from the literature are largely based on candi-
date gene studies, then pathways known to be 
biologically relevant from previous studies will 
be disproportionately represented in the data-
bases used by DMBase.

The strengths of our analysis include the avail-
ability of a large group of men in which both 
prostate cancer and type 2 diabetes outcomes 
were ascertained in a well-characterized cohort 
study. Also, we had access to up to 19 years of 
follow-up data allowing us to prospectively eval-
uate the association between genes and inci-
dent type 2 diabetes and prostate cancer out-
comes. Finally, to our knowledge this is the first 
pathway analysis that looks for common genet-

Table 8. GSEA p-values for top five pathways found in DMBase of biological pathways associated with 
type 2 diabetes (Lee et al. 2011)
Database Pathway DMBase p-value for associa-

tion with type 2 diabetes 
GSEA p-value for association 
with type 2 diabetes (this 
study)

KEGG Adiopocytokine signaling pathway 0.0000000000092 0.518
KEGG Type II diabetes mellitus 0.000000011 0.039
KEGG Insulin signaling pathway 0.000000026 0.028
KEGG Maturity onset diabetes of the young 0.00000051 0.150
BioCarta Growth hormone signaling 0.0000013 0.0001*

*Statistically significantly associated pathway after Bonferroni correction. 
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ic pathways shared between type 2 diabetes 
and prostate cancer.

In conclusion, polygenic risks scores derived 
from a GWA of type 2 diabetes in men were not 
statistically significantly associated with inci-
dent prostate cancer in the same study popula-
tion. In addition, separate pathway analyses of 
type 2 diabetes and prostate cancer failed to 
identify pathways significantly associated with 
both diseases, which could be explained by the 
different genetic architecture of the diseases, 
the power of our analyses, or the strength and 
completeness of the algorithms and pathway 
databases used. However while we were unable 
to find pathways shared between type 2 diabe-
tes and prostate cancer, our GWA analysis of 
type 2 diabetes did identify a pathway statisti-
cally significantly associated with type 2 diabe-
tes, the growth hormone signaling pathway, 
confirming an association with this pathway 
reported earlier. Additional studies are needed 
to confirm the association between type 2 dia-
betes and the growth hormone signaling path-
way; in addition, studies are needed to explore 
the genetic variants that comprise the pathway 
and how they may influence diabetes risk in iso-
lation or in conjunction with other genes in the 
pathway.
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