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Abstract
Autism prevalence has risen dramatically over the past two decades in California. Although often
suggested to have been crucial to the rise of autism, environmental and social contextual drivers of
diagnosis have not been extensively examined. Identifying the spatial patterning of autism cases at
birth and at diagnosis can help clarify which contextual drivers are affecting autism’s rising
prevalence. Children with autism not co-morbid with mental retardation served by the California
Department of Developmental Services during the period 1992 to 2005 were matched to
California’s Birth Master Files. We search for spatial clusters of autism at time of birth and at time
of diagnosis using a spatial scan approach that controls for key individual-level risk factors. We
then test whether indicators of neighborhood-level diagnostic resources are associated with the
diagnostic clusters and assess the extent of clustering by autism symptom severity through a
multivariate scan. Finally, we test whether children who move into neighborhoods with higher
levels of resources are more likely to receive an autism diagnosis relative to those who do not
move with regard to resources. Significant birth and diagnostic clusters of autism are observed
independent of key individual-level risk factors. While the clusters overlap, there is a strong
positive association between the diagnostic clusters and neighborhood-level diagnostic resources.
In addition, children with autism who are higher functioning are more likely to be diagnosed
within a cluster than children with autism who are lower functioning. Most importantly, children
who move into a neighborhood with more diagnostic resources than their previous residence are
more likely to subsequently receive an autism diagnosis than children whose neighborhood
resources do not change. We identify birth and diagnostic clusters of autism in California that are
independent of individual-level autism risk factors. Our findings implicate a causal relationship
between neighborhood-level diagnostic resources and spatial patterns of autism incidence but do
not rule out the possibility that environmental toxicants have also contributed to autism risk.
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INTRODUCTION
Autism prevalence has risen dramatically over the past two decades (Mitka, 2010). In
California, the increase has been precipitous – over 600% from the 1992 to 2002 birth
cohorts (Keyes, Susser, Cheslack-Postava, Fountain, Liu, & Bearman, 2011). Similar rates
of increase have been observed elsewhere in the United States and in other industrialized
countries (Baio, 2002; Madsen, Lauritsen, Pedersen, Thorsen, Plesner, Andersen et al.,
2003). Numerous biological, environmental and social factors have been implicated in the
rise of autism, but there is no general consensus as to the roles that each have played. The
majority of empirical studies have focused on potential genetic causes of autism (Abrahams
& Geschwind, 2008) and other individual level risk factors, such as male sex, advanced
parental age, prenatal and perinatal complications, and maternal exposures to viruses and
other teratogens (Kolevzon, Gross, & Reichenberg, 2007; Patterson, 2009). Although often
suggested to have been crucial to the rise of autism, environmental and social contextual
drivers of diagnosis, such as local environmental toxicants (Windham, Zhang, Gunier,
Croen, & Grether, 2006), diagnostic accretion (King & Bearman, 2009), legislative change
(Fountain & Bearman, 2011), neighborhood level resources (King & Bearman, 2011) and
increased awareness (Liu, King, & Bearman, 2010), have been studied less extensively.

This article utilizes administrative data from California to consider how identifying the
spatial patterning of autism cases at birth and at diagnosis can inform the study of contextual
drivers of autism. We have previously identified a spatial cluster of autism cases at birth
(henceforth “birth cluster”) located in the West Hollywood (Mazumdar, King, Liu,
Zerubavel, & Bearman, 2010). Given that not all families live at the same residences from
the time of their children’s births to diagnoses, examining the spatial clustering of autism at
these two moments in time can help disentangle the contextual mechanisms involved. For
example, it is possible for a birth cluster to form as a result of the neighborhood-level
clustering of an autism risk factor that is particularly relevant around the time of birth, such
as an environmental toxicant. Meanwhile, a different set of mechanisms that are independent
of those generating birth clusters could be responsible for clustering at diagnosis. Such
“diagnostic clusters” could be observed if parents who suspect that their children may have
autism select neighborhoods based on available services or neighborhoods that parents select
to move to are associated with an increased risk of acquiring an autism diagnosis.

In California, salient neighborhood-level characteristics that could be associated with an
increased risk of autism diagnosis include: socioeconomic status (SES), pediatrician density,
advocacy organization density, and spending by the Department of Developmental Services
(DDS). Children residing in high SES neighborhoods are at greater risk of receiving an
autism diagnosis (King & Bearman, 2011; Liu et al., 2010), a finding that is consistent with
the effect of neighborhood SES on a wide range of other health outcomes. For example,
neighborhood SES is a predictor of the stage at which cancer is diagnosed (Breen &
Figueroa, 1996; Shipp, Desmond, Accortt, Wilson, Fouad, & Eloubeidi, 2005). The exact
mechanisms underlying the associations between neighborhood SES and health outcomes
are debated, but a likely component is that neighborhood SES is a good proxy for local
resources and the availability of health-related information (Eng, Maxfield, Patrick, Deering,
Ratzan, & Gustafson, 1998). Meanwhile, the number of pediatricians in a neighborhood
provides a more specific measure of available resources. There is extensive literature that
shows that physician density (Ananthakrishnan, Hoffmann, & Saeian, 2010; Léonard,
Stordeur, & Roberfroid, 2009; Roll, 2012) is associated both with the timely diagnosis of
certain disorders and with increased consumption of medical services (Menken & Sheps,
1985). While a sufficient supply of pediatricians may be able to address the need for
diagnostic services, advocacy organizations are key to spreading awareness of symptoms
among caregivers. An increased density of advocacy organizations should, therefore, be
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associated with an increased likelihood of autism diagnosis in a given neighborhood. In
addition, advocacy organizations can influence legislation and funding. Lastly, California’s
DDS coordinates autism services through a network of 22 regional centers. Residents of
California are assigned to regional centers by zip code, and services are available to children
diagnosed with autism and other mental disorders free of charge. It has been argued that the
availability of free services may encourage parents whose children exhibit mild autism
symptoms to actively pursue a diagnosis (Zarembo, 2011). Yet, variations in regional center
funding may increase or decrease this incentive differentially by area. Together, the above
characteristics capture neighborhood resources from different perspectives associated with
access to diagnostic services and awareness of diagnostic symptoms.

Road map
These potential relationships between neighborhood-level characteristics and autism have
specific implications for the spatial patterning of autism incidence. First, whether due to
migration, to having been generated by different sets of contextual mechanisms, or a
combination of both, birth and diagnostic clusters are unlikely to completely overlap.
Therefore, in this study we first identify birth and diagnostic clusters of autism in California
and then assess their overlap. It is possible that parents who are at greater risk of having
children with autism live in the same neighborhoods or parents whose children are at greater
risk for autism similarly select neighborhoods to move to after their children are born. To
address these possibilities of residential sorting, we control for individual-level
characteristics of parents when identifying the clusters.

Second, if there is substantial overlap between birth and diagnostic clusters, it will not be
possible to empirically distinguish which of the two moments in time is more relevant.
Given that a substantial proportion of children (>50%) do not move between the time of
birth and the time of diagnosis, the presence of birth clusters could lead to clustering at time
of diagnosis. Yet, it is equally likely that the presence of diagnostic clusters caused by
mechanisms present at time of diagnosis could lead to the observation of clustering at time
of birth. We, therefore, use the following tests to help identify the contextual mechanisms
most relevant to the rise of autism.

If mechanisms related to diagnosis are responsible for generating diagnostic clusters, they
should be positively associated with level of neighborhood resources. We examine whether
the four key neighborhood level resources mentioned above are associated with the
diagnostic clusters more so than with autism diagnoses in California in general. Next, there
is considerable ambiguity in the diagnosis of autism spectrum disorders and, consequently,
physicians’ responses to symptom presentation are heterogeneous (Bresnahan, Li, & Susser,
2009; Eyal, 2010; Lecavalier, Snow, & Norris, 2011; Noterdaeme, Wriedt, & Höhne, 2010;
Saulnier & Klin, 2007). Even when holding all design and methodological factors invariant,
prevalence estimates have varied by a factor of 4.5 from the strictest to the least demanding
set of diagnostic criteria (Charman, Pickles, Chandler, Wing, Bryson, Simonoff et al., 2009).
Therefore, an increased level of neighborhood-level resources in terms of pediatrician and
advocacy organization density, regional center spending, and SES would lead to more
diagnoses of high-functioning autism. We thus test whether autism diagnoses cluster by
severity. Finally, focusing on children who have been exposed to varying levels of
diagnostic resources allows one to more clearly assess whether they have had an impact on
the rising incidence of autism. If they have, children who moved into neighborhoods with
higher levels of resources should have a higher chance of being diagnosed with autism
relative to children whose levels of resources did not change. We assess whether children
who moved into highly resourced neighborhoods are at significantly higher risk of
subsequent autism diagnosis than children whose level of resources never changed.
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METHODS
Study population

We obtained information on clients with Autistic Disorder (International Classification of
Disease-9 299.0) served by the DDS from 1992 to 2005. It has been estimated that 80% of
all children with autism in California are served by the DDS. The remaining 20% have other
diagnoses on the autism spectrum, such as Asperger’s, that do not by themselves qualify an
individual for DDS services (Croen, Grether, Hoogstrate, & Selvin, 2002). We further
confined our analyses to children with “sole autism,” those whose diagnoses are not co-
morbid with mental retardation.

Each DDS client is evaluated annually using the Client Development Evaluation Report
(CDER) in order to determine appropriate services based on level of functioning. We
utilized the average score of three CDER items that relate to communication functioning
(word usage, receptive language, and expressive language) from clients’ first evaluations as
a composite communication score. We categorized this score into four categories: highest
functioning, high functioning, mid functioning and lower functioning. Since the functioning
scores improve as children age, the cutoff scores for 3 and 4 year olds are specific to their
age groups and correspond to the 10th, 20th, and 75th percentiles in the 1992 birth cohort.
The percentage of children in the highest functioning category changed from 10% in 1992 to
19% in the 2002 birth cohort (Dakhlallah & Bearman, 2012).

Information on all children born in California along with individual level risk factors was
obtained from California’s Birth Master Files (BMF). The BMF contains detailed
demographic information related to the child, mother, and father as well as prenatal and
birth characteristics. We linked the DDS data to the BMF of all children born from 1992 to
2002 using probabilistic matching. Links were based on first, middle, and last names, sex,
race, date of birth, and maternal zip code at birth. The resulting linked dataset was manually
reviewed. About 80% of children in the DDS database were linked to a birth record (Liu et
al., 2010), and the majority of children without a link were born outside of California (King,
Fountain, Dakhlallah, & Bearman, 2009). A more detailed description of the linking process
can be found in our previous studies (King & Bearman, 2011; Liu et al., 2010; Mazumdar et
al., 2010). Information on the following known autism risk factors was obtained from the
BMF: male sex, whether the birth was paid for by Medi-Cal (California’s Medicaid
program), preterm birth (<34 weeks), low birth weight status (<2.5 kg), mean parental age,
mean parental education, and race/ethnicity. When information on father’s age, education or
race was missing, mother’s age, education or race was used. Ten percent of records were
missing information on father’s age, while a negligible number of records (<1%) were
missing information on both parents’ ages. When information on both parents was missing,
the record was dropped. Descriptive statistics on the linked DDS-BMF dataset are provided
in Appendix Table 1.

The BMF also contains each child’s address at birth, which we geocoded to Zip Code
Tabulation Areas (ZCTAs) for the years 1993 to 1996 and to census block groups for the
years 1997 to 2002 (98% success rate). ZCTAs are statistical geographic entities produced
by the U.S. Census Bureau that are generalized approximations of the United States Postal
Service’s ZIP Codes. There are approximately 1,600 ZCTAs and 22,000 block groups in
California. Using the same method, we also geocoded the case children’s addresses at
diagnosis, which were obtained from the DDS. Children whose addresses could not be
geocoded (<2%) were dropped from the dataset.

Because it is most common to receive an autism diagnosis at ages three or four years (Liu et
al., 2010), we restricted our analyses to those who were diagnosed at ages three or four
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years. Our final dataset included 8,044 children with sole autism born between 1993 and
2002 and diagnosed between 1997 and 2005. (Data censorship prevented us from including
children born in 2002 and diagnosed in 2006.)

Siblings
Since we are interested in the effect of neighborhood-level resources on autism diagnoses
for families that move across neighborhoods, it is necessary to know the post–childbirth
movement patterns of families, independent of whether their children are later diagnosed
with autism. To accomplish this, we constructed a dataset of siblings (includes 1,954,862
children). We matched each child in the BMF born between 1997 and 2007 to their full
siblings using parents’ dates of births and the first letter of mothers’ maiden names. This
dataset has been described in more detail elsewhere (Liu et al., 2010). We assumed that
families remained intact and travelled together through our study period and were able to
infer the locations of older siblings at the times of births of younger siblings.

Since we also have location data from the DDS for children later diagnosed with autism, we
know which families moved prior to their children’s diagnoses and which families stayed
within a ZCTA between birth and diagnosis. This information forms the case data. The
control group is comprised of children with a younger sibling in the sibling dataset who did
not receive an autism diagnosis either before or after their families moved. To ensure that
the case and control populations were comparable except for diagnostic status, we matched
the case and control populations using exact and propensity score matching. A propensity
score is defined as the conditional probability of assignment to a particular treatment versus
control group given a set of observed covariates (Leuven & Sianesi, 2003). In our case, the
“treatment” group is children who were diagnosed with autism, and the control group is
children in the sibling data without an autism diagnosis. By matching our case and control
groups using propensity score matching, we minimize the risk of making erroneous
inferences regarding the effects of neighborhood-level resources due to confounding effects
of between-group differences in any observed characteristics that might also be associated
with neighborhood-level resources. One of the advantages of propensity score matching is
that the treatment effect identified does not depend on how correctly linear models are
specified, such as in the case of covariate adjustments in multivariate regression, which can
be difficult to determine. Instead, the appropriateness of the propensity score matching can
be easily determined by checking the balance in the covariates (Oakes & Johnson, 2006).
We exact matched cases to controls on the children’s ages and used propensity scores to
match cases and controls within each age stratum using information on parents’ ages, sex,
Medi-Cal, mother’s race and education. We used a caliper of 1/4th the standard deviation
and matched approximately 10 controls to each case. The matched dataset has 34,693
controls and 3,703 cases. Appendix Table 2 displays the numbers of siblings born in each
year for the control population.

Additional Data
In order to calculate risk of autism diagnosis in the population, the numbers of children aged
0 to 4 years in each ZCTA were obtained from the Earth Sciences Research Institute’s
(ESRI) Community Sourcebook America (ESRI, 2000-2005) for the years 2000 to 2005. For
the years 1997 to 1999, for which similar data were not available, we used linear
extrapolation to derive the number of children living in each ZCTA.

To measure physician and advocacy organization densities, we obtained data on
pediatricians from Medical Marketing Services, which licenses the data from the American
Medical Association, and data on advocacy organizations from the Internal Revenue Service
(IRS) database of tax-exempt charity organizations. 3,162 pediatricians and approximately
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3000 advocacy organizations per year were then geocoded to ZCTAs. In addition, median
income data by ZCTA were obtained from ESRI (ESRI, 2000-2005), and regional center
spending data were obtained from the DDS and assigned by catchment area.

Cluster Analysis
To identify neighborhoods with excess risk of autism, or “clusters,” we used the Kulldorff’s
Spatial Scan Statistic. Kulldorff’s Spatial Scan Statistic reduces cluster detection to
maximum likelihood estimation or finds the “most likely cluster” over geographic space. It
is implemented with SaTScan Software (Kulldorff, 2006). By conducting just one
hypothesis test over the entire geographic space, this method solves the problem of multiple
hypothesis testing that has plagued cluster detection literature. SaTScan identifies candidate
clusters, circles of increasing radii bound by a maximum threshold radius and centered on
pre-specified locations, such as ZCTA centroids. Over many candidate clusters, SaTScan
maximizes a likelihood ratio that is a function of the observed number of cases ‘O’, the
expected number of cases in the candidate cluster ‘E’, and the total number of cases in the
entire region (California), ‘-n.’ Since a circle can encompass multiple ZCTAs, E and O can
be aggregate statistics. For details on the derivation of the log likelihood ratio and the
scanning procedure, (Kulldorff, 1997). This likelihood formula assumes that autism cases
are distributed as a Poisson random variable, and the likelihood ratio is compared to
simulated likelihood ratios generated from 9,999 Monte Carlo randomizations of the data to
assess statistical significance. The Poisson Model is appropriate when case and population
data are aggregated to counts, such as in our search for neighborhoods of excess autism
births relative to all births and neighborhoods of excess diagnoses relative to population
controls at the local levels of ZCTAs and block groups. The area that has the highest
likelihood value (or the lowest p value) is the most likely primary cluster. Note that if O is
less than E in a given cluster, the relative risk would be less than 1, resulting in a region
classified as a cluster of low relative risk.

The quantity E represents the expected number of autism cases given the average individual-
level risk within the candidate cluster. As mentioned above, residential sorting of parents
with an increased number of autism risk factors into certain neighborhoods could result in an
uneven spatial distribution of individual risk, potentially masking environmental and social
contextual risk factors. Unfortunately, the SaTScan program does not allow for covariate
correction for a large number of variables at the individual level (Kleinman, Abrams,
Kulldorff, & Platt, 2004). Yet, we can correct the expected numbers of cases of autism at the
ZCTA and block group levels given the areas’ compositions of individuals using a
regression model: for each annual cohort, we estimated the probability of each child born
being subsequently diagnosed with autism using the individual autism risk factors
mentioned above in a logistic regression model:

(1)

where pij is the estimated probability for the i’th individual in the j’th local area (ZCTA or
block group), and α and βm are the estimated intercepts and slopes for m risk factors. (In
our case, m=7.) We approximated the risk of autism diagnosis at each local area as the
Median(pij) = pj for i=1 to nj births, and we calculated the expected number of autism cases
Ej in j as pj*nj = Ej. The median provides a more stable estimate of risk than the mean,
because a small number of individuals in a local area might have extremely high or low
values of pij. This, in turn, would bias the mean pij and result in a biased expected count Ej.
The median, in contrast, provides a robust summary measure of local area risk level.
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The population data used to estimate the pij’s and nj’s were different for the analyses of
births and diagnoses. For calculating the risk of autism births, the BMF were used for all
births, and the nj were the number of births in a block group or ZCTA j. For calculating the
risk of autism diagnoses, data on children aged 0 to 4 years were required. Since such data
were usually not available, we used the linked sibling dataset to estimate the median pj’s at
each ZCTA. The probabilities pj were then multiplied by the number of 0-4 year olds in each
ZCTA(nj).

We discarded any clusters with Ej’s less than 1, since, in theory, these areas had zero
expected cases. A Spatial Scan then aggregated the remaining Ej’s over circles of increasing
radii that were bound by a maximum threshold radius (set here at 1% of the expected
population) and centered on pre-specified local area centroids to create the candidate
clusters and calculate E, the expected number of cases. We have previously shown that a 1%
upper threshold is appropriate for our data (Mazumdar et al., 2010). We mapped the clusters
and their temporal stability over time and tabulated the risks associated with them.

To assess the public health impact of these clusters, we calculated their Population
Attributable Fractions (PAF) (Yiannakoulias, 2009) as:

(2)

where Oc is the observed number of cases in cluster c, Z is the total number of cases in
California over the observation window, and RRc is the relative risk in cluster c. The PAF
indicates the reduction in risk gained by the elimination of an exposure or, in this context,
how much of the overall risk of sole autism in California is attributable to the observed
clusters (Yiannakoulias, 2009).

Neighborhood resources
Once spatial clusters were identified, simple Geographic Information System (GIS) queries
were used to measure the degree of association between neighborhood-level resources and
diagnostic clusters adjusted for individual-level risk factors. We calculated the densities of
pediatricians and advocacy organizations by ZCTA by dividing the numbers of pediatricians
and advocacy organizations by the numbers of 0 to 4 year old children. In addition, median
income and regional center spending at the ZCTA level were calculated. A reasonable
analysis of the effect of neighborhood-level characteristics on autism diagnoses should also
include a measure that is correlated with urbanicity but is unrelated to autism diagnoses. The
absence of a relationship between such a variable and autism diagnoses would underscore
the robustness of our test. Therefore, we also constructed a dataset of 5000 locational points
per year distributed over California and then calculated the densities of these points among 0
to 4 year olds in each ZCTA. Since these points mimic the underlying population
distribution, whether a significant relationship is found between their densities and autism
diagnoses forms a test for whether any associations found between neighborhood-level
resources and diagnostic clusters are simply due to urbanicity.

Spatial clustering by functioning
As argued above, neighborhood diagnostic resources should be particularly relevant to the
diagnosis of children with less severe autism symptoms. Therefore, we examined whether
children with autism in the highest functioning category are spatially clustered. We used the
multivariate scan statistic (Kulldorff, Mostashari , Duczmal, YW, Kleinman, & Platt, 2007)
to evaluate each of the functioning categories at once relative to the underlying population at
risk. In the multivariate scan, for each candidate cluster, the likelihoods for each category
are calculated separately and then summed together. This summed likelihood indicates the
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likelihood that a specific neighborhood is a cluster. Therefore, clusters may be made up of
either disproportionate contributions from different categories or proportionate contributions
from all categories. Thus, the multivariate scan can be used to identify clusters of children
with autism who are members of any of the four severity groups. The multivariate scan
method is summarized in the context of our autism functioning data in Appendix Table 3
(Kulldorff, 2011; Kulldorff et al., 2007). Using this approach, it is possible for an excess of
diagnoses in a neighborhood to consist entirely of children who are in the highest
functioning category. Such a result would point toward different mechanisms (e.g.
diagnostic expansion) than if the excess were equally attributable to all four categories.
Appendix Table 4 summarizes all the spatial scans we used in our analyses.

Neighborhood level resources and mobility
Lastly, we assessed the impact of neighborhood-level resources at time of diagnosis on
autism incidence independent of locational factors at time of birth by focusing on families
that moved. We used the matched sibling dataset and measured changes in the levels of
neighborhood resources by dividing the resource variables – SES, regional center spending,
and pediatrician, advocacy organization, and random point density - into deciles. For the
density measures, we added an extra category for zero density. Although the categorization
of continuous data may result in loss of information, it allowed us to detect non-linear
associations. For each resource attribute, the matched dataset was structured as either a 10
by 10 or 11 by 11 origin-destination table by linking children’s origin and destination
ZCTAs with the ZCTAs’ respective neighborhood resource categories. The tables, therefore,
captured the movements, or lack thereof, of cases and controls from one resource category
to another. We lagged the attribution of the destination ZCTA by two years to ensure
temporal and spatial causality and to adjust for the temporal uncertainty that families may
have moved in the year previous to the one in which a child was diagnosed (cases) or a
sibling was born (control).

For each neighborhood-level attribute, we then modeled the odds of autism diagnosis for a
child that moved from one resource category to another relative to a given reference
category. We used log linear models, extensions of the two-way standard contingency table,
which analyzes the conditional relationship between two or more discrete, categorical
variables by taking the natural logarithm of the cell frequencies within a contingency table.
Log linear models are especially relevant to studying social (Breen, 2006, 2010) and
geographical mobility (Kaldor, Khlat, Parkin, Shiboski, & Steinitz, 1990), where the goal is
to model the odds of an outcome resulting from movement across categories in an Origin-
Destination Matrix. The log linear model we used is as follows (Marsden, 1988):

(3)

where is the number of cases of autism in a cell i, zi is the number of controls in the cell, βj
is a vector of particular log linear parameters to be estimated, and xij is an element of a pre-
specified design matrix. One of our design matrices is provided in Appendix Table 5. It
indicates possible movements across the levels of an origin-destination table. Our matrices
included D, indicating downward movement (from a higher to lower level of resources) 0,
indicating no movement, 1 through 6, indicating increases of 1 through 6 resource deciles
respectively, and 7+, indicating an increase of 7 or more resource deciles. We fitted the log
linear model to the four 10 by 10 or 11 by 11 resource matrices (pediatrician density,
advocacy organization density, median income, and regional center spending) and the
control matrix of random point density using LEM software (Vermunt, 1997).
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RESULTS
A primary cluster is observed for each birth cohort from 1993 to 2002 after adjustment for
known autism risk factors. Figure 1.A displays the clusters by temporal stability. Darker
shades indicate longer duration of an area being part of a cluster. The clusters consist of
three separate regions of high risk centered on Santa Monica, Alhambra and North
Hollywood. The cluster centered on North Hollywood has an approximate radius of 10
kilometers and is bounded by the South Central regional center to the South, the North Los
Angeles regional center to the North, and Interstate 5 to the West. Panels B and C show the
relative risks and PAFs for each birth cohort’s cluster. The risk of a child later diagnosed
with autism having been born within a birth cluster relative to the risk of a child later
diagnosed with autism having been born elsewhere in California ranges from 3.6 in 1996 to
6.0 in 1993. The PAFs of these clusters vary from 2.6% in 1996 to 4.3% in 1993.

Figure 2 displays the unadjusted diagnostic clusters, and Figure 3 displays the same clusters
after adjustment for autism risk factors. They both include the adjusted birth clusters in
crosshatch for easy reference. Table 1 shows the relative risks and PAFs for the adjusted and
unadjusted diagnostic clusters. Adjusting for known autism risk factors shrinks the
geographic size of the clusters and reduces their relative risks. For example, the areas north
of Malibu are part of the unadjusted diagnostic clusters but not part of the adjusted clusters.
Although the average relative risk over the study period is reduced from 5.4 to 3.7 with
adjustment, it is still quite significant. The PAFs exhibit similar decreases.

Approximately 55% of the area of the adjusted diagnostic cluster is also part of the adjusted
birth cluster. Net of a possible contribution from modeling errors, this lack of complete
overlap implies that contextual mechanisms that are specific to the diagnostic process might
have played a role in increased autism incidence. Furthermore, about 47% of children who
received their diagnoses while living in a diagnostic cluster were born outside of a birth
cluster. This rules out the possibility that the diagnostic clusters are merely results of
children who were born in birth clusters moving to areas included in the diagnostic clusters.

Examination of key neighborhood-level resources reveals that the region of the adjusted
diagnostic cluster has a high level of diagnostic resources: the number of pediatricians per
number of children aged 0 to 4 years is 2.00 (z=23.94, p<0.05) times higher than that of
California; the number of advocacy organizations per number of children aged 0 to 4 is 37%
higher (z=3.23, p<0.05) than that of the state; the percentage of households earning more
than $100,000 per annum (averaged over ZCTAs) in this region is 26.34%, while it is
22.85% (z=1.6, p=0.05) for California; and regional center spending per number of children
aged 0 to 4 is approximately $700, while it is $500 for the state. While these results do not
provide evidence for a causal association between the presence of these resources and
autism diagnoses in all of California, increased resources are associated with the observed
diagnostic clusters.

Meanwhile, the adjusted diagnostic clusters have higher prevalence of children with highest
functioning autism than California as a whole. The percentage of children with autism who
are highest functioning in the shaded area of Figure 4 is 23%, while it is 18% for all of
California (z=1.79, p<0.05). In contrast, 46% of the cases in the shaded area are categorized
as mid functioning compared to 52% in the whole state (z=1.78, p<0.05). The multivariate
scan indicates that not only are higher functioning children with autism more prevalent in
this area, but there are small, significant clusters of high functioning children with autism
(risks around 6 to 8, relative to the risk of children who are high functioning being
diagnosed with autism anywhere in California) nested within the adjusted diagnostic clusters
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for 2001 onwards (Figure 4.A). In contrast, the relative risk of a child with autism in the
lower functioning category being diagnosed within these small clusters is less than 2.

The clusters cross several regional center service area boundaries, including the boundaries
of Lanterman, North Los Angeles, Westside and South Central Los Angeles. Thus,
diagnostic clusters of children with high functioning autism are not solely artifacts of
differential evaluation practices by regional centers.

Finally, Table 2 displays the results of log-linear models that examine the effects of moving
to an area with either fewer or more resources on autism diagnosis. It reveals that moving to
an area that is 7 or more levels above one’s previous residence in terms of pediatrician
density, advocacy organization density and greater median income significantly increases
one’s odds ratio of a subsequent autism diagnosis relative to children whose resource
categories did not change. For example, relative to children whose resource categories do
not change, children who move from a region with no advocacy organizations (category 1)
to a region with many (category 8) have a 42% higher odds of being diagnosed with autism.
Comparable movements across categories of SES and pediatrician density also yield
significantly higher odds of 45% and 32% respectively. Regional center spending does not
have a significant effect. In contrast, moving to an area with fewer resources reduces one’s
odds ratio of receiving an autism diagnosis, but the effect is not significant. And as
expected, there is no relationship between the density of random locations, mobility and the
odds ratio of an autism diagnosis, ruling out the possibility that our findings on the effects of
neighborhood resources are artifacts of log linear models of density categories.

DISCUSSION
Our results illustrate that there have been clusters of births of children later diagnosed with
autism and clusters of autism diagnoses in California, both robust to key individual-level
risk factors. In addition, a number of our findings indicate the important role of resources in
shaping autism incidence, as the diagnostic clusters do not completely overlap with the birth
clusters and are associated with key neighborhood-level resources. The diagnostic clusters
are also disproportionately comprised of children with autism who are higher functioning,
implicating the possibility of diagnostic expansion moderated through neighborhood-level
resources. The fact that significant diagnostic clusters of children with autism in the highest
functioning category were found from 2001 onwards is consistent with the argument that
diagnostic expansion played a greater role in the later part of our study period (Dakhlallah &
Bearman, 2012). Although the association between neighborhood resources and autism
prevalence has been noted previously, (King & Bearman, 2011), the evidence in this article
further suggests that resources may play a causal role in shaping autism incidence. Most
striking is the fact that individuals are more likely to be diagnosed with autism when they
move into well-resourced neighborhoods relative to individuals whose neighborhood
resources do not change. Since children do not all move into well-resourced neighborhoods
from the same places and environmental exposures are hypothesized to be most relevant
during early gestation (Arndt, Stodgell, & Rodier, 2005) as well as localized (Mazumdar et
al., 2010), the increased odds ratio of diagnosis in the mover group should be specific to the
new neighborhood.

The findings reported in this article do not fully reject the possibility that environmental
toxicants drive some of the risk of autism. The substantial overlap of the birth and diagnostic
clusters along with the high levels of neighborhood diagnostic resources in both do not
allow for a complete dissociation between the effects of local toxicants and diagnostic
factors. Moreover, since there are a plethora of possible toxicants, it is impossible to falsify
all hypotheses that researchers have started to explore (Palmer, Blanchard, Steina, Mandell,
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& Miller, 2006; Roberts, English, Grether, Windham, Somberg, & Wolff, 2007; Windham et
al., 2006). However, the presence of an environmental component would not challenge our
results on the effect of neighborhood-level resources on the likelihood of an autism
diagnosis or on the presence of diagnostic expansion against a backdrop of increased
diagnoses. Regardless of the role of environmental toxicants, diagnostic resources in a
neighborhood have an independent effect on autism incidence. It is important to note that if
a toxicant(s) is solely responsible for the clustering of autism at time of birth as well as
diagnosis, it would have to disproportionately yield cases of autism that are higher
functioning in a small, bounded area. It would also have to be geographically localized to
the mapped area of Los Angeles, related to neighborhood-level SES or other resource
markers, and have an impact even at ages 3 or 4. While such a confounder would affect our
results, its existence seems unlikely. Similarly, different mechanisms specific to the time of
birth and then to the time of diagnosis may have operated in the same small area, generating
our overlapping clusters. But this too seems unlikely. The presence of diagnostic clusters net
of individual-level risk factors could also indicate the presence of the social diffusion of
autism awareness among physicians, resulting in localized changes in diagnostic practice.
However, although geographic differences in diagnostic practices have been found in
relation to other diseases (Yiannakoulias, Hill, & Svenson, 2009), our previous findings on
the role of social influence in the autism epidemic indicate that this is not the primary driver
of autism diagnoses (Liu, King, and Bearman, 2010). For example, having the nearest
elementary school or mall to one’s home in common with the nearest child with autism
increases a child’s likelihood of being diagnosed, while sharing the same nearest
pediatrician does not have an effect (Liu & Bearman, Forthcoming).

Another important finding is the lack of an effect of DDS regional center funding on the
odds of autism diagnosis. It is possible that funding variations simply reflect a differential
availability of services at regional centers or differential operational costs, independent of
the services offered. In this regard, it is important to note that the diagnostic clusters are
located in high SES, high cost of living ZCTAs. In addition, the clusters we observe cross
regional center catchment areas, indicating that the spatial structure of autism in California
is not due to variability in diagnostic practices across regional centers.

The spatial scans we used in our analyses have multiple advantages over a stratified spatial
analysis. When a geographic area is divided into multiple regions before scanning, each of
the scans tends to find the most likely cluster in the most urban area simply because of the
increased power offered by urban agglomerations (Waller, Hill, & Rudd, 2006). Therefore, a
scan over a large area with multiple urban centers, such as we have done here, is a better
methodological alternative, because it implicitly adjusts for urbanicity. It also prevents the
arbitrary division of a geographic area into smaller units, which could mask significant
effects, making our method conceptually preferable as well.

There are a few limitations associated with our study. Because we use data from California,
the generalizability of our results is limited. Also, while the DDS serves the vast majority of
children with autism in California, it is not possible to determine whether children with
autism who do not utilize DDS services have different patterns of diagnostic risk. In
addition, although we adjust for the key known autism risk factors, it is possible that
residential sorting according to an unobserved risk factor(s) at the time of birth and at the
time of diagnosis contributed to the birth and diagnostic clusters we observe. The key risk
factors adjustment in our cluster analyses was done by calculating expected rates of autism
using median summarized risks across local areas. While we believe this approach preserves
sufficient variability for these analyses, there are other methods, especially in the context of
spatial filtering (Rushton & Lolonis, 1996), that allow the adjustment to be done at the
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individual level using Monte Carlo Simulations (Banerjee, 2007). Testing spatial patterns
using these methods would be interesting avenues of future research.

This study identifies birth and diagnostic clusters of autism in California and implicates a
causal relationship between neighborhood-level diagnostic resources and spatial patterns of
autism incidence. Consequently, future research that examines contextual factors in relation
to autism should be cognizant of distinguishing between clusters at time of birth and at time
of diagnosis, as failure to do so could result in spurious conclusions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• In California, there are clusters of births of children later diagnosed with autism
and of autism diagnoses.

• The clusters are located in neighborhoods characterized by high socio-economic
status and many resources related to child development.

• Children with autism who are higher functioning exhibit stronger clustering than
children with autism who are lower functioning.

• Moving to a neighborhood of high socio-economic status or of high resource
density increases a child’s risk of receiving an autism diagnosis.
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Figure 1.
A) Adjusted autism birth clusters in Los Angeles by temporal duration
B) Risks of a child with autism having been born within a birth cluster relative to all
children with autism
C) Population Attributable Fractions of birth clusters
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Figure 2.
Unadjusted autism diagnostic clusters
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Figure 3.
Adjusted autism diagnostic clusters
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Figure 4.
A) Highest functioning clusters within adjusted diagnostic clusters
B) Risks of a child with autism in the highest functioning category having been diagnosed
within a diagnostic cluster relative to all children diagnosed with autism in the highest
functioning category
C) Population Attributable Fractions of highest functioning diagnostic clusters

Mazumdar et al. Page 19

Soc Sci Med. Author manuscript; available in PMC 2014 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Mazumdar et al. Page 20

Table 1

Risks of a child with autism having been diagnosed within a diagnostic cluster relative to all children
diagnosed with autism and Population Attributable Fractions for diagnostic clusters

Yeara Relative risk,
unadjusted clusters

Relative risk,
adjusted clustersb

Population Attributable
Fraction,

unadjusted clusters

Population Attributable
Fraction,

adjusted clustersb

1998 9.83 7.49 5.32 5.14

1999 4.98 3.71 3.68 2.52

2000 5.03 4.02 3.4 2.55

2001 5.13 4.34 3.62 2.7

2002 4.33 4.56 3.12 3.03

2003 4.37 3.68 3.17 2.59

2004 5.29 4.43 4.07 2.97

2005 4.24 3.81 2.93 2.48

a
No significant cluster was detected in 1997.

b
Adjusted for: male sex, Medi-Cal insurance status, preterm birth, low birth weight status, mean parental age, mean parental education, and race/

ethnicity
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