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Abstract
The cerebral blood supply is delivered by a surface network of pial arteries and arterioles from
which arise (parenchymal) arterioles that penetrate into the cortex and terminate in a rich capillary
bed. The critical regulation of cerebral blood flow, locally and globally, requires precise
vasomotor regulation of the intracerebral microvasculature. This vascular region is anatomically
unique as illustrated by the presence of astrocytic processes that envelope almost the entire
basolateral surface of parenchymal arterioles. There are, moreover, notable functional differences
between pial arteries and parenchymal arterioles. For example, in pial vascular smooth muscle
cells (VSMCs), local calcium release events (“calcium sparks”) through ryanodine receptor (RyR)
channels in sarcoplasmic reticulum membrane activate large conductance, calcium-sensitive
potassium (BK) channels to modulate vascular diameter. In contrast, VSMCs in parenchymal
arterioles express functional RyR and BK channels, but under physiological conditions these
channels do not oppose pressure-induced vasoconstriction. Here we summarize the roles of
ryanodine receptors in the parenchymal microvasculature under physiologic and pathologic
conditions, and discuss their importance in the control of cerebral blood flow.
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Introduction
In vascular smooth muscle cells (VSMCs), a global increase in cytoplasmic calcium
concentration ([Ca2+]i) leads to vasoconstriction by activation of Ca2+/calmodulin-
dependent myosin light-chain kinase. However Ca2+ is a versatile second messenger, and
vasomotor pathways involving local Ca2+ signals, such as Ca2+ sparks encoded by
ryanodine receptors (RyRs), or propagated Ca2+ signals in the form of Ca2+ waves, have
been the subject of many recent studies. The topic of Ca2+ signaling in the microcirculation
is one of growing interest, particularly in the cerebral parenchyma as brain integrity is
critically dependent on constantly adapting blood perfusion. Arteriolar tone significantly
depends on the Ca2+ entry through ion channels of the VSMC plasma membrane, and also
on the Ca2+-dependent vasodilator influences of endothelial cells. However these aspects of
microvascular Ca2+ signaling are beyond the scope of the current review. The goal of this
review is to provide a synopsis of current knowledge regarding RyR-dependent Ca2+ signals
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in smooth muscle cells of the brain parenchymal microvasculature and how these signals
influence cerebral blood flow (CBF).

Part 1: Regulation of cerebral blood flow by parenchymal arterioles
Within the brain microcirculation, the parenchymal arterioles (PAs) are fundamental
regulators of CBF. PAs account for approximately 40% of the total cerebral vascular
resistance (33). Thus regulation of their diameter is a central process for (i) maintaining
constant perfusion of brain tissue across a range of systemic arterial pressures
(cerebrovascular autoregulation), and (ii) during neurovascular coupling (NVC), i.e. the
mechanisms by which functional hyperemia occurs in the brain (34, 58).

1.1 Myogenic tone and cerebrovascular autoregulation
A function of arteries and arterioles is to constrict and relax in response to changes in
intravascular pressure. An increase in intraluminal pressure constricts cerebral arteries and
arterioles. A decrease in intravascular pressure has the opposite effect, inducing
vasodilation. This essential regulatory mechanism, known as the vascular myogenic
response was first described more than one hundred years ago (9) and ensures that blood
flow remains nearly constant during moment-to-moment fluctuations in arterial pressure.
PAs are the last smooth muscle-containing vessels upstream of the capillary bed and play a
critical role in maintaining appropriate capillary perfusion pressure under both normal and
pathologic conditions (33, 55). Additional anatomical features of the brain microcirculation,
particularly the limited collateral supply blood flow, which has a so-called “bottleneck”
effect on perfusion of the neocortex (87), further emphasize the relative importance of this
part of the intracerebral microcirculation and its control mechanisms including those
involved in regulation of myogenic tone.

The precise nature of the mechanisms and modulators of myogenic vasoconstriction is still a
matter of some debate. However, myogenic constriction occurs in blood vessels studied in
isolation, demonstrating that mechanisms intrinsic to the vascular wall are sufficient to
induce this response (90, 119). Disruption of the endothelium does not impair pressure-
induced constriction suggesting that both sensor and effector mechanisms responsible for the
myogenic response reside within smooth muscle cells (75). In turn, it is broadly accepted
that the pressure-induced constriction involves a depolarization of the arterial myocyte cell
membrane (52) that activates voltage-dependent Ca2+ channels (VDCC), resulting in Ca2+

influx and subsequent vasoconstriction (62). Interestingly, compared with pial arteries, PAs
depolarize and constrict to lower levels of intravascular pressure leading to a high amount of
tone (between 30% and 40% at 40 mm Hg) (23, 29, 32, 51, 86, 88). Physiologically, this
creates a high “vasodilator reserve”, i.e. a substantial capacity of these arterioles to dilate in
response to locally generated vasodilator signals. This is particularly adapted to CBF
regulation and the functional hyperemic response, as the vascular resistance is inversely
proportional to the fourth power of the arterial radius according to the Hagen-Poiseuille
equation.

1.2 The neurovascular unit regulates CBF locally
The ability of the brain to coordinate neural activation state with local CBF has been
recognized since the end of the nineteenth century (102). This linkage is called
neurovascular coupling. It underlies functional hyperemia in the brain, which ensures that
local increases in metabolic demand are satisfied by increased substrate delivery by the
blood. Impairment of this coupling between neuronal metabolism and cerebral perfusion,
even if brief, generally trigger dramatic consequences. Anatomic and functional
observations support a role of capillaries in functional hyperemia (59, 94). However, PAs
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are thought to mediate a large part of the local CBF increase in response to increased
neuronal activity, due to their high level of vascular resistance and ability to dilate rapidly in
response to a variety of endogenous substances (34, 37, 44, 110, 133). In contrast to pial
arteries, PAs are not supplied with perivascular nerves (49) but are wrapped in astrocytic
processes, called endfeet, which cover nearly their entire basolateral surface (58, 106).
Studies over the last ten years have illuminated the importance of this anatomical
configuration in mediating NVC. Synaptic release of neurotransmitters such as glutamate
during brain neuronal activity stimulates metabotropic receptors on astrocytes and generates
an increase in cytoplasmic Ca2+ which propagates through astrocytic processes by activation
of inositol 1,4,5-trisphosphate receptors (InsP3Rs), ultimately elevating [Ca2+]i in the
endfeet. There, this Ca2+ signal activates pathways leading to dilation of the PAs, involving
various factors such as locally released K+ ions, adenosine, prostaglandins or
epoxyeicosatrienoic acids (EETs) (37, 58, 96, 108). Neurons also release several substances
able to regulate CBF such as nitric oxide (NO), prostanoids and vasoactive neurotransmitters
(5, 57). Therefore neurons, astrocytes, myocytes and endothelial cells form a neurovascular
unit that collectively controls local blood flow. These various pathways leading to
vasodilation all act, to some extent, by hyperpolarizing the VSMC membrane which
deactivates VDCC and then decreases [Ca2+]i.

Thus, it is clear that the intracerebral microcirculation participates actively and substantially
in the global and local regulation of CBF. The control of parenchymal arteriolar diameter by
the VSMCs within the vessel wall is a process that is fundamental to this regulation. In turn,
regulation of VSMC tone depends on variations in cytoplasmic [Ca2+]i. Therefore,
understanding the regulation of [Ca2+]i in smooth muscle cells of PAs is of central
importance.

Part 2: Roles of the sarcoplasmic reticulum, inositol 1,4,5-trisphosphate
receptors and ryanodine receptors in regulation of parenchymal arterioles
2.1 The sarcoplasmic reticulum and regulation of intracellular Ca2+

The sarcoplasmic reticulum (SR) is constantly involved, through the release and re-uptake of
Ca2+ into the cytoplasm, in vascular smooth muscle Ca2+ homeostasis (123). At low
intraluminal pressure (e.g. 10 mm Hg), VSMC [Ca2+]i has been estimated to be ~120 nM
(62, 88). The sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) transports Ca2+ from the
cytoplasm into the SR. The presence in the SR lumen of the Ca2+ binding proteins,
calreticulin and calsequestrin (65), also facilitates the active pumping of Ca2+ against its
gradient by decreasing the luminal Ca2+ concentration (123). As a result, the available Ca2+

in the SR is significant, and therefore the opening of SR Ca2+ channels leads to the release
of Ca2+ into the cytosol (54, 97).

Various smooth muscle cellular functions, including contraction, relaxation, proliferation
and differentiation, involve Ca2+ release from the SR (13, 54, 123). Two families of SR
Ca2+ release channels have been identified so far: the InsP3R and the RyR.

2.2 Inositol 1,4,5-trisphosphate receptors
The InsP3R consists of 4 subunits with a molecular weight of ~310 kDa each (40). Three
distinct genes code three different types of subunits leading to three receptor subtypes
(InsP3R1-3). Although all three isoforms appear to be expressed in vascular myocytes,
InsP3R1 seems to be the predominant subtype in adult VSMCs, and InsP3R2 and InsP3R3
appear to be expressed primarily during proliferative phases of cellular activity (69, 79, 83,
112, 129). The possible formation of heterotetrameric complexes has been demonstrated by
co-immunoprecipitation of InsP3R expressed in cell lines (77).
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All InsP3R subtypes are activated by inositol 1,4,5-trisphosphate (InsP3) (38), which is
produced by phospholipase C (PLC) activation in response to Gαq/11 protein coupled
receptor activation (11, 13, 40). Therefore, InsP3Rs are involved in the responses to several
endogenous vasoactive molecules such as endothelin 1, acetylcholine, noradrenaline, and 5-
HT (12). InsP3Rs also display a bell shaped Ca2+ sensitivity: InsP3R-Ca2+ release is
potentiated at low Ca2+ concentrations (< 500 nM) whereas it is inhibited at higher Ca2+

concentrations (> 1~10 μM), with differences between subtypes (15, 38, 40, 115). These
properties appear to be fundamental in the generation of Ca2+ oscillations observed in
VSMCs in response to vasoconstrictors (12). Recently, in pial arteries, InsP3R-mediated
Ca2+ release has been shown to activate transient receptor potential TRPM4 channels (46)
and large conductance Ca2+-activated potassium (BK) channels (130). Activation of
transient receptor potential TRPC3 channels by direct physical coupling with InsP3R has
also been described (124).

2.3 Ryanodine receptors
Similarly to InsP3Rs, three different genes encode three different RyR subtypes (RyR1-3)
and functional channels are formed by the association of four subunits (35, 50). Possible
heteromeric RyR2/RyR3 and RyR2/RyR1 formations, but not RyR1/RyR3 formations, have
been demonstrated by immunoprecipitation (127). To date, the RyR is the only ion channel
discovered by electron microscopy (41), presumably due to the strikingly large size of RyR
protein subunits (550–660 KDa) (89). RyR subunits have cytosolic C- and N-termini and
between four and twelve transmembrane domains, depending on the four different models
proposed (19, 111, 117, 134). The reason(s) for the well-conserved large size of the RyRs,
and the associated substantial metabolic cost of production and maintenance, remain unclear
but underscores the physiological importance of these proteins.

RyR1 and RyR2 have been extensively studied in skeletal muscle and cardiac muscle,
respectively, (66) where they are highly expressed and play a fundamental role in excitation-
contraction (E-C) coupling. RyR3 appears to be more broadly expressed, with predominance
in neurons (43, 68). The three subtypes are expressed in large cerebral arteries (118) as well
as in the cerebral microcirculation (Dabertrand & Brayden, unpublished observations). Their
expression in VSMCs also appears to be modulated by pathologic and environmental
conditions (25, 26, 30, 65, 78). The channel opening is regulated by several agents including
SR Ca2+ load (35, 89). But RyRs seem regulated primarily by binding of Ca2+ on the
cytosolic face of the channel. [Ca2+]i ranging from 1 to 10 μM triggers the opening of the
channel, whereas millimolar [Ca2+]i inhibits it (35, 60). Consequently, RyRs can be
activated by Ca2+ entry through plasma membrane Ca2+ channels or by SR Ca2+ release
from adjacent InsP3Rs or RyRs (13). This mechanism, called Ca2+-induced Ca2+ release
(CICR), is fundamental in cardiac contraction (66, 98). CICR has been described in several
types of smooth muscle including cerebral arteries (61), in which bolus application of
caffeine, which simultaneously activates all the RyRs, causes transient increases in [Ca2+]i
and vasoconstriction in both pial and parenchymal arterioles (29, 63). However, in contrast
to cardiac and skeletal myocytes, global RyR-Ca2+ release appears to be minimal during E-
C coupling in VSMCs under physiological conditions (60, 120).

In contrast to the excitatory role of RyRs in skeletal and cardiac muscle, RyRs mediate local
Ca2+-release events (Ca2+ sparks) that activate BK channels to oppose pressure-induced
depolarization and contraction of cerebrovascular smooth muscle (60, 63, 85, 120). The
serial linkage of RyR and BK in this negative feedback vasodilator mechanism is well
established, and clearly demonstrated by the robust and non-cumulative constrictions
induced by RyR and BK channel blockers in intact pressurized pial arteries (63, 64).
Interestingly, small caliber pial arterioles and PAs do not constrict to BK channel blockers in
vivo (91, 109) or in vitro (29, 44, 51, 56), despite functional BK channels in VSMCs of
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these arterioles (29, 51). This suggests that under basal conditions the functional role of
RyRs in the cerebral microcirculation is distinct from pial arteries.

Part 3: Calcium signaling in parenchymal arteriolar myocytes
3.1 Waves rather than sparks in the microcirculation

Under normal conditions of pH and temperature, pressure-induced constriction of
intracerebral parenchymal arterioles is poorly counterbalanced by Ca2+ spark-driven BK
current (29, 51, 56). This absence of negative feedback likely contributes to the greater
myogenic tone observed in PAs compared to pial arteries (23, 24, 88). Using the
intracellular fluorescent Ca2+ dye Fluo-4, we found that VSMCs in pressurized PAs
exhibited primarily Ca2+ waves (78% of cells) propagating through the cytoplasm over a
duration of several seconds, and very few localized Ca2+ events (12% of cells) (29). Ca2+

waves and Ca2+ sparks were not observed in PAs when SR Ca2+ was depleted by
cyclopiazonic acid or when the arterioles were exposed to RyR blockers (ryanodine or
tetracaine). These results indicate that RyRs mediate both Ca2+ waves and Ca2+ sparks in
PAs (29). However, it is premature to conclude that waves rely exclusively on RyRs with no
InsP3R involvement (47). Interestingly, a similar Ca2+ signal topography, i.e. Ca2+ sparks in
large arteries and Ca2+ waves in the microcirculation, has also been described in cremaster
muscle feed arteries and arterioles (121, 122). However, Westcott and Jackson (2011)
attributed the waves in the arterioles not to RyR, but to InsP3R activation. Differences in
InsP3R and RyR subtype expression between the cremaster and the cerebral microcirculation
may account for this divergence (25, 27, 28, 73, 121). Moreover, the presence of
perivascular nerves in cremaster arterioles (39) may facilitate the engagement of the InsP3R
in the generation of Ca2+ waves by releasing Gαq/11 protein coupled receptor agonists, and
thus maintaining a high level of cytoplasmic InsP3. Receptor tyrosine kinase activation also
generates InsP3 (13) and possible contributions of this signaling pathway should be
considered. In contrast to cremaster arterioles, PAs lack extrinsic innervation (49) and
demonstrate elevated cytoplasmic [Ca2+]i (88) which may promote RyR activation. The
large variability observed in the mechanisms triggering and propagating Ca2+ waves in
smooth muscle makes it difficult to develop a global model, but the variation in RyR
function between large and small caliber arteries remains noteworthy and requires further
detailed investigation.

In a recent study, Mufti et al. provided interesting insights into the role of the RyR-mediated
Ca2+ waves in cerebral arteries. They demonstrated their importance in maintaining
myogenic tone under low pressure by increasing phosphorylation of myosin light chain (82).
Parenchymal arterioles depolarize and constrict to a greater extent than pial arteries at lower
pressure (23, 51, 88). These observations are consistent with (i) the predominance of Ca2+

waves in PA VSMCs and (ii) the lack of effect of RyR and BK channel blockers on PA
diameter. A likely explanation for the inability of Ca2+ waves to activate BK channels is that
Ca2+ waves do not deliver sufficient Ca2+ to activate BK channels (95). In contrast, Ca2+

sparks deliver micromolar Ca2+ to closely apposed BK channels to cause substantial channel
activation.

3.2 Local Ca2+ release initiates Ca2+ waves
The ability of Ca2+ sparks to initiate Ca2+ waves which travel through the cytoplasm
following a CICR mechanism was first described in cardiac myocytes (20, 21) and is still an
area of active investigation (18). Similarly, Ca2+ spark-initiated Ca2+ waves have been
observed in several vascular beds including the hepatic portal vein (4, 48), small mesenteric
arteries (99), and retinal arterioles (116). The prevalent model explaining the propagation of
the initial Ca2+ release to the entire cell is that a local increase in Ca2+ activates neighboring
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RyRs because resting open state probability (Po) of RyRs is high (Figure 1) (10, 13, 16).
When resting Po is low, local RyR Ca2+ release (e.g. a spark) is not sufficient to activate
nearby RyRs to cause a Ca2+ wave (Figure 1) (10, 13). It is also possible that ambient InsP3
levels are elevated in PAs, and that a combination of InsP3Rs and RyRs in non-junctional
SR elements is causing Ca2+ waves (47).

The fundamental role played by the RyR Po in shaping intracellular Ca2+ signals is
particularly well illustrated in the observations reported by Heppner et al. in VSMCs of pial
arteries (53). These investigators found that a small increase in pH (7.4 to 7.5) increases
Ca2+ spark frequency. However, further increases in pH beyond 7.6, shifted Ca2+ signaling
from stationary sparks to Ca2+ waves (Figure 1) (53). The simplest explanation for this
phenomenon is that a decrease in intracellular proton (H+) levels increased RyR Po, and
therefore the likelihood of Ca2+ waves. However, the induced Ca2+ waves contributed little
to the observed vasoconstriction (53).

3.3 Acidosis converts Ca2+ waves to sparks to activate BK channels
Because smooth muscle cells in PAs exhibit mostly Ca2+ waves at physiological pH, we
hypothesized that acidic pH might dilate PAs by reshaping the predominant intracellular
Ca2+ signal from Ca2+ waves to Ca2+ sparks, which would activate BK channels to cause
membrane potential hyperpolarization and vasodilation (Figure 1). Using pharmacological
and genetic approaches, we found that this mechanism accounts for 60% of the vasodilation
observed by acidifying the external pH from 7.4 to 7.0 (29). The concept that acidosis, over
a narrow and physiologically relevant pH range, can induce vasodilation principally by
remodeling Ca2+ signals is entirely novel, and as described below, may not be limited to the
intracerebral microcirculation.

The reshaping of the Ca2+ signaling in VSMCs of PAs by protons likely occurs because
changes in extracellular pH (pHo) lead to changes in intracellular pH (pHi). The relationship
between pHo and pHi has been established in VSMCs from many tissues including the brain
(3, 6, 92, 113). This relationship appears to be linear with a ratio ΔpHi/ΔpHo of about 0.73
(7). Moreover, both normocapnic and hypercapnic acidosis induce a RyR-BK channel
component of acidic pH-induced dilation. In a 1989 study, Toda et al. investigated the
relaxation of dog cerebral artery strips in response to acidosis induced by hypercapnia or
manipulation of the bicarbonate concentration (114). These investigators showed that the
increase in CO2 from 5% to 15%, as in our study (29), has a vasorelaxant effect mediated by
decreasing pH rather than acting through direct effects of CO2 in the bathing media. This
finding is consistent with our observations concerning the similarity between normocapnic
and hypercapnic acidosis effects on Ca2+ signaling in PAs. Additionally, a reduction in pHo
lowers cytoplasmic Ca2+ (8) which would decrease RyR activity. Interestingly, Heppner et
al. showed that inhibition of Ca2+ influx through VDCC did not prevent the induction or the
persistence of alkaline pH-induced Ca2+ waves in rat cerebral pial arteries (53). Thus the
reshaping of RyR-dependent Ca2+ signaling by pHo appears to be due primarily to the direct
regulation of RyR P0. The simplest interpretation of the observed remodeling of Ca2+

signals at pH 7.0 is that protons lower RyR P0 and then prevent local Ca2+ release to activate
neighboring RyRs (Figure 1) and Ca2+ release remains limited to single RyR (Ca2+ quark)
or clusters of RyRs (Ca2+ sparks). However we have not directly assessed this mechanism
and more complex models can be considered. Intracellular acidification in combination with
the subsequent reduction of intracellular Ca2+ could also decrease the Po of both RyRs and
InsP3Rs, and thereby terminate Ca2+ waves. The subsequent reduced leak of Ca2+ from the
SR would then elevate SR luminal [Ca2+], and thereby may enhance local spark probability
at the junctional SR elements which abut the plasma membrane with BK channels (131).
Indeed it is well demonstrated and recognized that an increase in the SR Ca2+ load activates
RyRs (35) and increases Ca2+ spark frequency along with spontaneous transient outward
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currents occurrence (131). Unfortunately the influence of SR Ca2+ load on InsP3Rs is less
clear and experimental evidence is scarce. A luminal Ca2+ binding site has been described
(104) and Bezprozvanny & Ehrlich showed that InsP3R activity is inhibited when luminal
Ca2+ concentration is raised from 3 μM to 10 mM (14), whereas Bottman and coworkers
reported a potentiation of the InsP3-induced Ca2+ release by luminal Ca2+ (17). These issues
remain to be resolved and are important topics for future investigation.

3.4 RyRs and neurovascular coupling
Parenchymal arterioles play a critical role during NVC (34). These arterioles dilate in
response to neuronal activation, which results in a local increase in blood flow (58, 67, 96).
Activation of BK channels by Ca2+ sparks through RyR is a powerful vasodilator
mechanism and can be activated in PAs by acidification (29). However, the origin and
nature of Ca2+ signals that occur in parenchymal VSMCs during NVC remain to be
identified. Interestingly, in brain slices, VSMCs of PAs exhibit synchronous Ca2+

oscillations (36, 37) which are rapidly suppressed during NVC simulated through neuronal
depolarization by electric field stimulation. This observation suggests that Ca2+ signals in
these arterioles are influenced by neural stimulation via vasoactive substances released from
astrocytes and neurons. In newborn piglets, glutamate increases Ca2+ spark frequency and
decreases cytoplasmic Ca2+ concentration in the VSMCs of brain slice arterioles (126). This
effect is thought to be mediated by carbon monoxide (CO) derived from astrocytic heme
oxygenase metabolism (70, 125, 126). However, CO has been described as a tonic
vasoconstrictor, preventing H2S-induced vasodilation in cerebellar slices from neonatal mice
(80) and CO failed to dilate isolated pial arteries from adult rats and mice (2). Therefore, the
involvement of CO during NVC in the mature brain remains to be established. Others have
suggested that epoxyeicosatrienoic acids (EETs) produced by cytochrome P450
epoxygenase may mediate NVC (72, 76, 93, 103). The mode of action of EETs in NVC has
not been fully resolved, but these compounds induce BK channel-mediated
hyperpolarization of VSMCs (42), and increase Ca2+ spark frequency in pial arteries (31).
Consequently, EETs are potential modulators of RyR activity during NVC. As in the case of
acidosis, Ca2+ spark-driven BK currents can be activated in PAs and can induce large,
sustained and reversible vasodilation (29) (Figure 1). Then Ca2+ spark-driven activation of
BK channels may also play a role in the vasodilator effects of substances such as CO and
EETs, whereby VSMC relaxation occurs.

In their classic study, Roy and Sherrington suggested a possible role for H+ during NVC
(102). Protons produced by neuronal metabolism could cause local acidification and then
vasodilation. While this hypothesis has been challenged, (58, 74) local release of protons
from the astrocytic endfoot onto the smooth muscle could produce dilation. Indeed,
alkalinization of astrocytic cell body during cortical stimulation (22) or metabotropic
glutamate receptor activation (1) has been reported, which would be consistent with the
release of H+. However, using the fluorescent pH indicator SNARFR-5, we did not observe
changes in endfoot pH in brain slices following electrical field stimulation (Dabertrand and
Nelson, unpublished observations). It is more likely that vasodilation induced by a decrease
in pH within the brain may occur during pathologic conditions.

In normal conditions, appropriate pH levels are maintained by the lungs and kidneys. The
CO2 resulting from metabolism is expired by the lungs, but if it is retained or rapidly
eliminated, it causes respiratory acidosis or respiratory alkalosis, respectively, The kidney,
as a regulatory organ, adjusts acid and base excretion and dysregulation in this balance leads
to metabolic acidosis or metabolic alkalosis. Nevertheless, acidification of nervous tissue
can be triggered rapidly with reduced respiratory rate, during CO2 inhalation (132) or during
cerebral lactic acidosis related to ischemia (101) and hypoxia (71). Indeed, without oxygen,
the brain switches to anaerobic glycolysis, leading to accumulation of lactic acid. Therefore,
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during ischemia, tissue pH falls by as much as 1 unit (84, 105) and this acidification is
thought to play a role in the injury caused, for example, by ischemic stroke (81, 107, 128).
Consequently moderate hyperventilation of patients with cerebral ischemia has been
considered in the past to counteract the acidification. However this also increases vascular
tone and therefore globally decreases CBF, which worsens the ischemia. (100).
Consequently, blockade of downstream targets activated by lactic acidosis appears currently
more promising clinically (81). Nevertheless, in the case of cerebral hypoxia or ischemia,
acidosis-related vasodilation of PAs might represent a mechanismto maintain perfusion by
promoting collateral blood flow.

Conclusion
Since the discovery of Ca2+ sparks in smooth muscle in 1995 (85), many roles of RyRs in
vascular function have come into focus. Ca2+ release through RyRs contributes to Ca2+

waves in VSMCs of pressurized arterioles, but the role of Ca2+ waves and their contribution
to parenchymal arteriolar tone remains obscure. It is also possible that Ca2+ waves modulate
the activity of Ca2+-dependent transcription factors such as Nuclear factor of activated T-
cells (NFAT) (45), and thereby exert transcriptional control. It is, however, clear that at
physiological external pH, Ca2+ waves do not activate BK channels in VSMCs of
pressurized parenchymal arterioles. Acidification leads to a loss of Ca2+ waves and the
appearance of Ca2+ sparks causing profound, rapid and reversible vasodilation. Over a
narrow and physiologically relevant pH range, the majority of the proton-induced
vasodilation depends on Ca2+ spark-driven activation of BK channels (29). These results
suggest that the role of the RyRs in vascular smooth muscle is context-dependent. The lack
of Ca2+ sparks and absence of BK channel-mediated hyperpolarization to oppose pressure-
induced constriction at physiological pH can explain why PAs are more depolarized and
constricted at lower pressures, an appropriate physiological response for arterioles that
experience lower pressures. Acidification-induced Ca2+ spark engagement of BK channels
provides a novel mechanism to enhance cerebral blood flow, and may play an important role
in pathological responses in the brain. Therefore, elucidating the regulatory mechanisms of
RyRs is crucial for understanding the control of cerebral blood flow.
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Abbreviations used

[Ca2+]i intracellular calcium concentration

BK large conductance Ca2+-activated potassium channel

CBF cerebral blood flow

CICR Ca2+-induced Ca2+ release

CO carbon monoxide

CO2 carbon dioxide
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E-C excitation-contraction

EET epoxyeicosatrienoic acid

H+ proton

InsP3 inositol 1,4,5-trisphosphate

InsP3R inositol 1,4,5-trisphosphate receptor

K+ potassium

NFAT nuclear factor of activated T-cells

PA parenchymal arteriole

pHi intracellular pH

pHo extracellular pH

Po open state probability

RyR ryanodine receptor

SERCA sarco/endoplasmic reticulum Ca2+-ATPase

SR sarcoplasmic reticulum

VDCC voltage-dependent Ca2+ channel

VSMC vascular smooth muscle cell
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Figure 1. Effect of pH on RyR-mediated Ca2+ signals in smooth muscle cells of pressurized pial
arteries and parenchymal arterioles
By modulating RyR excitability, protons can influence the shape of the Ca2+ signals in
cerebrovascular smooth muscle cells. At the physiologic pH of cerebrospinal fluid (pH=7.3)
myocytes in large (pial) arteries display spatially limited and brief Ca2+ release events
(sparks). When pH increases (alkalosis), RyR open probability (Po) increases as well and the
Ca2+ ions released by a cluster of RyRs activate neighboring clusters, forming a Ca2+ wave
by propagation of the signal. In contrast, parenchymal arterioles display Ca2+ waves under
normal conditions. When pH decreases (acidosis), RyR Po is low and this spatially restricts
the Ca2+ release (Ca2+ spark). This reshaping of Ca2+ signals in the brain microcirculation
plays a fundamental role during the vasodilation induced by acidosis.
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