
Neurological complications following treatment of children with
brain tumors

Michelle Monje, MD, PhD and Paul Graham Fisher, MD
Department of Neurology, Division of Child Neurology, Stanford University Medical Center, 750
Welch Road, Suite 317, Palo Alto CA 94304, (650) 736-0885
Michelle Monje: mmonje@stanford.edu; Paul Graham Fisher: pfisher@stanford.edu

Abstract
Brain tumors and their treatments in children result in a range of neurological complications that
can affect daily function and rehabilitation potential, including neurocognitive sequelae,
ototoxicity, seizure disorders, stroke, and peripheral neuropathy. Deficits in cognitive function,
particularly learning and memory, attention and speed of information processing, can be
debilitating. With new insights to the cellular and molecular etiology of these deficits, new
therapies for cognitive decline after therapy are emerging. Management strategies for other
neurological complications are also emerging.

Introduction
Structure and function are intimately linked in the nervous system. However, normal
functioning of the nervous system depends upon not only the structural integrity of the brain,
spinal cord and peripheral nerves, but also several dynamic physiological processes. While
the majority of the nervous system forms during fetal development, many cell types
continue to divide and regenerate throughout life. Astrocytic and oligodendroglial
populations replenish themselves continually to maintain the integrity of the white matter, as
do endothelial cells comprising the neurovasculature. These support cells are necessary for
normal neuronal physiology and peripheral nerve function. Newborn neural cells,
particularly the dentate granule cell neurons of the hippocampus, generate constantly
throughout life. Together with ongoing maintenance of white mater tract integrity, this
process of postnatal hippocampal neurogenesis is thought to be critical to proper cognitive
function. These dynamic cell populations are particularly vulnerable to the cytotoxic actions
of cancer therapies, particularly irradiation. Other important cell populations and neural
structures are similarly susceptible to toxicity from treatments, including mature
oligodendrocytes of the white matter, endothelial cells of the blood vessles, hair cells of the
inner ear, and long axons of peripheral nerves. The following review will focus on
neurological complications of brain tumor therapies that significantly affect quality of life
and rehabilitation potential, including neurocognitive effects, seizure disorders, stroke,
ototoxicity, and neuropathy.

Neural precursor cells in the childhood brain
Neural progenitor cell biology is central to the etiology of the late effects of brain tumor
therapies. Neural stem cells, self-renewing cells that generate neurons, astroglia, and
oligodendroglia, as well as lineage-restricted neural precursor cells, exist in the postnatal
brains of all mammals studied to date, including humans 12. Neural stem cells, neuronal
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precursor cells, and glial precursor cells are collectively known as neural progenitor cells
(NPCs). Prominent populations of neural stem cells exist in the subventricular zone
throughout the central nervous system 3 and in the hippocampus 2. Lineage-restricted glial
precursor cells are found throughout the subcortical white matter, and in fact, the process of
postnatal myelination of the frontal lobes continues from birth through the end of the third
decade of life. Maintenance of white matter tract integrity is thought to depend upon
ongoing generation of glial cells (oligodendrocytes and astrocytes) from glial progenitor
cells. Once thought to be a relatively static organ, the postnatal brain is now known to
require ongoing cell generation from diverse progenitor cell populations in multiple
germinal zones as part of normal health.

Neurocognitive Sequelae
Cognitive dysfunction, characterized by prominent dysfunction of short-term memory, is
perhaps the most common sequela of brain tumor therapy. The tumor itself, neurosurgery,
chemotherapy, and particularly radiotherapy can all contribute to neurocognitive sequelae.
Cranial radiotherapy causes a debilitating cognitive decline in children 456. Months to years
after treatment, patients exhibit progressive deficits in memory function, spatial relations,
processing speed, visual motor processing, quantitative skills and attention 78. This pattern
of cognitive impairment implies disruption of limbic and frontal networks. Hippocampal
dysfunction is a prominent feature of these neuropsychological sequelae. In fact, the severity
of the cognitive deterioration appears to depend upon the radiation dosage delivered to the
medial temporal lobes 9.

The incidence of treatment–induced impairment in cognition has been very well described in
children. It is estimated that, when irradiated at age less than 7 year, nearly 100% of children
require special education; after 7 years of age approximately 50% of children require special
education10. Very young children (age < three years) are exquisitely vulnerable to
radiation 11. Some degree of memory dysfunction is thought to occur in the majority of
children, including a progressive decline in intelligence quotient (IQ) 12. The use of
stimulants such as methylphenidate can help to mitigate some cognitive symptoms, such as
poor attention and daytime fatigue 1314. While some have proposed use of modafinil or
intensive cognitive rehabilitation to mitigate symptoms, these strategies are still under
investigation. Insights to the etiology of cognitive dysfunction following therapy for brain
tumors will hopefully lead to neuroprotective strategies in the future.

Cellular etiology of neurocognitive sequelae
Radiation

The cognitive dysfunction that follows radiotherapy is inconsistently associated with
radiological findings, and frequently occurs in patients with normal-appearing
neuroimaging 15. A clinically significant memory deficit in the absence of radiological
findings implicates damage to a subtle process with robust physiological consequences.

One such neurophysiological process is hippocampal neurogenesis. Studies in animal
models have demonstrated that therapeutic doses of cranial irradiation virtually ablate
neurogenesis 161718, and that this inhibition of neurogenesis correlates with impaired
performance on hippocampal-dependent memory tests 19. Surprisingly, irradiation does not
simply deplete the stem cell population, but rather disrupts the microenvironment that
normally supports hippocampal neurogenesis 17. This microenvironmental perturbation is
due largely to irradiation-induced microglial inflammation, and anti-inflammatory therapy
with the nonsteroidal anti-inflammatory agent indomethacin partially restores hippocampal
neurogenesis and function in rodents 20. Studies of human postmortem samples have also
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confirmed ablation of hippocampal neurogenesis following cranial radiotherapy in
childhood 21 Clinical trials are currently underway to evaluate the clinical safety and utility
of anti-inflammatory therapy to limit hippocampal inflammation during cranial
radiotherapy. Additional strategies to restore neurogenesis following radiation therapy are
emerging from the preclinical literature (Table 1). Blocking the deleterious effects of
inflammation on mitochondria using mitochondrial protectants, such as the vitamin
thiamine, during radiation exposure improves neuroblast survival and results in a two-fold
increase in neurogenesis 22. Aerobic exercise, a potent pro-neurogenic activity due to
peripheral VEGF elaboration 23 improves hippocampal neurogenesis even after radiation
exposure 24. Whether other interventions, such as antioxidants, preclude or help minimize
radiation-induced injury remains an experimental question.

Additional factors that may contribute to cognitive dysfunction following cranial radiation
therapy include subtle white matter dysfunction and altered regional blood flow due to
microvascular disease 258.

Chemotherapy
Many chemotherapeutic agents have now been demonstrated to have toxic effects on
multiple neural cell types, affecting both proliferating and static cells of the central nervous
system. For example, methotrexate, an anti-metabolite with a particularly high incidence of
neurotoxic effects, induces cell death in multiple neural cell types, including neurons, in
both in vitro and in vivo model systems 26. Particularly vulnerable to methotrexate toxicity
are the glial progenitor cells that form myelinating oligodendrocytes and astrocytes, both
critical to white matter integrity 27. Further studies have confirmed and delineated the
particular chemo-sensitivity of neural precursor cells, including both neural stem as well as
lineage-restricted progenitor cells that form, among other cell types, the myelinating
oligodendrocytes in the frontal white matter 28. A wide range of agents, including BCNU,
cisplatin, and cytarabine have proved to be more toxic to neural precursor cells than cancer
cells.28. In addition to their precursor cells, mature myelinating oligodendrocytes are
exquisitely sensitive to chemotherapeutic agents at dosages lower than those required to kill
most tumor cells 2829. Following single drug exposures in an in vivo animal model, rebound
cell proliferation in germinal zones implies that compensatory mechanisms may replace the
lost cells; disturbingly, repetitive drug exposures (BCNU, cisplatin, or cytarabine) ablate this
proliferative response, suggesting a depletion of the precursor pool 28. Consistent with this
finding, toxicity to oligodendrocyte progenitors and myelinating oligodendrocytes causes
progressive damage to white matter in a rodent model after short-term 5-fluorouracil
exposure at clinically-relevant doses 29.

Multiple chemotherapeutic agents similarly affect the precursor cells that contribute to
hippocampal neurogenesis. Like radiation exposure, systemic methotrexate administration
causes a persistent decrease in cell proliferation within the germinal region of the
hippocampus and associated poor performance on hippocampal-dependent cognitive tasks in
rodent models 3031.

Seizures
Seizures are a frequent in children with brain tumors, both at the time of presentation and as
a long-term consequence 32. Seizure disorders can arise from epileptic foci that result from
the original tumor or from sequelae of surgery, radiation, or chemotherapy, such as gliosis or
stroke. Supratentorial tumors are more frequently associated with seizures than those
occurring in the posterior fossa 32. The prevalence of seizures among 5-year survivors is
approximately 30% compared to siblings, and in the remainder who have not had a seizure
by 5 years after tumor diagnosis, there is still a 15-fold risk of new–onset seizures, compared
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to controls.33 Risk factors for seizure disorders following brain tumor therapy include
radiation of greater than 30Gy involving any cortical area 34. Once manifest, seizure
disorders are managed with antiepileptic drugs as for any patient, although among survivors
of brain tumors there is often attention to use drugs with less potential for cognitive
impairment, hepatoxicity, or drug interactions. Prophylactic use of anti-epileptic drugs is not
indicated in patients without a history of seizures. Levetiracetam and lamotrigine are
increasingly being used when necessary in this population.

Stroke
Cranial irradiation for a brain tumor is associated with latent cerbrovascular disease, with
some patients carrying a particularly increased risk 35. The most common underlying
vascular disturbances that lead to stroke in survivors of childhood brain tumors are venous-
based cavernous malformations, small vessel telangectasias, aneurysms, moyamoya disease,
and mineralizing microangiopathy. In all these pathologies there tends to be underlying
injury to endothelial cells of the blood vessel wall. The cumulative incidence of stroke,
typically ischemic rather than hemorrhagic, 25 years after treatment in children has been
reported by one study as high as 6.9%. 36. Factors which increase risk are radiation dose >30
Gy, particularly to the middle cranial fossa; neurofibromatosis; obesity; insulin resistance;
and suboptimal fitness level. Thus, among brain tumor survivors, attention should be
focused as years pass to identifying and modifying risk factors (e.g., elevated hemoglobin
A1C, hypertension, high cholesterol, inactivity) that presdipose to stroke. Asymptomatic
vascular pathology may be noted on routine follow-up brain MRIs to detect tumor, but
intervention is rarely warranted. Some children who develop moyamoya disease may be
candidates for vascular shunting procedures.

Ototoxicity
Posterior and middle cranial fossa radiotherapy and platinum-based chemotherapy both
contribute to sensorineural ototoxicity and hearing loss. Toxicity to cochlear hair cells is
central to the etiology of treatment-related hearing loss and results in deficits hearing sounds
in the high frequency range. The damage is typically irreversible and bilateral, although may
not always be symmetrical 37. In a large cohort study of 5 year survivors of various pediatric
brain tumors, the prevalence of self-reported hearing loss or deafness was 20% compared to
siblings 33. Prevalence is even higher in patients treated for tumors requiring > 50Gy
radiation to the posterior fossa and cisplatin chemotherapy 34. Hearing loss in the higher
frequencies of sound ranges affects approximately 50 – 70% of children receiving
cisplatin 383940. Severity of hearing loss depends upon the cumulative dose of cisplatin, and
may progressively worsen over the course of the first two years after therapy 41. In
comparison to cisplatin, carboplatin use alone is rarely ototoxic 4140; however combined use
of cisplatin and carboplatin appears to be synergistic with regard to hearing loss 40. Hearing
loss is a relatively common sequela of brain tumor therapy that can affect speech and
language development and academic performance, especially in younger children. Close
monitoring with audiological testing and intervention with hearing aids as appropriate can
help to mitigate the impact of the hearing loss. Current radiation therapy practices
employing conformal techniques has reduced radation-induced damage of the cochlea, but
use of amifostine or N-acetylaspartate to prevent cisplatin damage to hair cells has not yet
proved to be an effective strategy.

Neuropathy
Vinca alkaloids, most prominently vincristine and to a lesser extent vinblastine and
vinorelbine, are commonly used to treat brain tumors and frequently cause peripheral
neuropathy. Through disruption of axonal microtubules, vincristine causes an axonal
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neuropathy affecting both sensory and motor fibers in almost all patients. Small sensory
fibers are particularly affected. Clinical manifestations include finger tip and foot
parasthesias, muscle cramps, foot and wrist drop and sensory loss of varying degrees. Focal
neuropathies and cranial neuropathies are also possible. In addition the sensory and motor
neuropathy, vincristine commonly causes an autonomic neuropathy, characterized by
gastrointestinal, urinary and/or sexual dysfunction. Neuropathy after vinca alkaloid use can
be particularly severe in patients with an underlying inherited neuropathy, such as Charcot-
Marie-Tooth disease 42 and care must be taken to avoid their use in such patients. In
pediatric patients, for whom genetic neuropathies are frequently not yet manifest, a careful
family history can elicit the possible predisposition to severe neuropathy with use of agents
like vincristine. Following therapy, the neuropathy typically improves with time, although
patients, especially children treated at an older age, may not recover completely and a mild
foot drop is often evident even many years after the completion of therapy. Long-term use of
ankle-foot orthoses or other habilitative devices may be required for select patients.

Other Complications
Children may experience a number of other chronic neurological conditions from brain
tumors and respective treatments, such as pain, migraine, balance difficulties, weakness or
hemiparesis, tremor or other movement disorders, or visual loss. These problems are best
addressed as they arise, by a multi-disciplinary team including a physical medicine and
rehabilitation doctor, neurologist, neurosurgeon, ophthalmologist, and/or pain specialist. For
additional management recommendations, the reader is referred to the Children’s Oncology
Long-Term Follow-Up Guidelines for Survivors of Childhood, Adolescent, and Young
Adult Cancers (www.survivorshipguidelines.org)

Conclusions
Common neurological sequelae of brain tumor therapy, including cognitive impairment,
ototoxicity, seizure disorders and neuropathy pose significant hurdles to everyday life and to
the rehabilitation process. Damage to vulnerable cell populations and structures is central to
the neurological complications of brain tumor therapy. Increased understanding of the
underlying mechanisms for these neurologic complications, and methods to prevent them,
will be an important challenge for the future and will hopefully lead to reduced neurological
morbidity in pediatric brain tumor patients.
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Table 1

Potential interventions to improve hippocampal neurogenesis after radiation

• Non-steroidal anti-inflammatory drugs (indomethacin) 16

• Mitochondrial protectants (thiamine) 22

• Aerobic exercise 24
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