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We quantitatively analyzed particle tracking data on insulin gran-
ules expressing fluorescent fusion proteins in MIN6 cells to better
understand the motions contributing to intracellular transport and,
more generally, the means for characterizing systems far from equi-
librium. Care was taken to ensure that the statistics reflected intrin-
sic features of the individual granules rather than details of the
measurement and overall cell state. We find anomalous diffusion.
Interpreting such data conventionally requires assuming that a pro-
cess is either ergodic with particles working against fluctuating
obstacles (fractional Brownian motion) or nonergodic with a broad
distribution of dwell times for traps (continuous-time randomwalk).
However, we find that statistical tests based on these two models
give conflicting results. We resolve this issue by introducing a sub-
ordinated scheme in which particles in cages with random dwell
times undergo correlatedmotions owing to interactionswith a fluc-
tuating environment.We relate this picture to the underlyingmicro-
tubule structure by imaging in the presence of vinblastine. Our
results provide a simple physical picture for how diverse pools of
insulin granules and, in turn, biphasic secretion could arise.
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Eukaryotic cells package proteins into vesicles for trafficking and
spatially localized secretion. These essential functions are highly

regulated, and defects in them can lead to disease (1, 2). Although
optical microscopy, combined with molecular and cellular biology,
can provide important insight into intracellular dynamics, in the
past, most measurements detected variations in intensities from
many molecular events and thus averaged in some way. These in-
clude fluorescence correlation spectroscopy (FCS) (3), fluorescence
recovery after photobleaching (FRAP) (4), and image correlation
spectroscopy (5). Recent advances in experimental methods now
enable tracking single particles in cells (6). Although these mea-
surements still involve a degree of time averaging (7), the resulting
individual time trajectories contain more information than the
mean values extracted from the aforementioned approaches.
Qualitatively, the time trajectories reveal complex behaviors:

combinations of random, directed, transiently stalled and con-
strained motions (e.g., refs. 7, 8). These different types of motion
reflect the interplay of various molecular components in crowded
environments. Quantifying their relative importance can constrain
mechanisms, but extracting this information from the particle
tracking data requires new theoretical tools. Operationally, one
strategy is to classify segments of trajectories according to their
motions (e.g., active and passive) (9, 10), but this requires long
trajectories. A less data-demanding approach is to identify different
types of anomalous diffusion (11).
What features can give rise to the observed anomalous behavior?

Simple crowding is insufficient, as it results in standard Brownian
motion but with a reduced diffusion coefficient (12). Instead,
anomalous behavior implies a form of heterogeneity. The random
steps can be broadly distributed in time, leading to a continuous-
time random walk (CTRW) (13), or in space, leading to fractional
Brownian motion (FBM) (14). Various statistical tests have been
introduced to distinguish these universality classes from each other

and from simple Brownian motion (i.e., a random walk with ho-
mogeneous steps in time and space) (15).
Several studies have applied these tests to subdiffusive dynamics

in cells. The earliest considered only FBM (7, 16).More recent ones
allowed for both FBM and CTRW (17, 18) and found that the two
models contribute to varying extents depending on the system: The
motion of bacterial chromosomal loci was almost pure FBM (18),
whereas the diffusion of the Kv2.1 potassium channel in the plasma
membrane of human embryonic kidney cells was found to combine
ergodic (FBM) and nonergodic (CTRW) processes. Given these
two very different examples, it is important to examine other forms
of intracellular transport to elucidate statistical signatures of mo-
lecular mechanisms and to understand how the motions relate to
biological function.
We use spinning-disk confocal microscopy and particle tracking

to obtain trajectories of individual insulin-containing vesicles,
termed granules, in cells. Pancreatic β-cells package the hormone
insulin into granules (250–350 nm in diameter) and traffic it to the
plasma membrane to enable rapid release in response to glucose
stimulation. Failure of secretion is associated with type 2 diabetes.
Biphasic insulin secretion, composed of a fast release followed by
a slower second phase, is disturbed in the advancing diabetic state
with (initially) progressive loss of the first phase (19). Different
pools of granules and membrane docking scenarios have been
suggested to underlie biphasic secretion based on qualitative
analysis of limited numbers of granules, but these features remain
poorly defined despite much effort to observe them in β-cells (20).
We labeled insulin granules using a syncollin-GFP construct

that was targeted to them following transfection (21). We observe
anomalous diffusion in the granule transport in MIN6 insulinoma
cells and find that it satisfies tests for both FBM and CTRW. In
other words, the random steps are characterized by heterogeneity
in both space and time. Care is taken to ensure that nonergodic
behavior reflects intrinsic features of the granule motion rather
than changes in cell state. We show that a simple model that
combines FBMand CTRW through subordination accounts for all
of the observations. Analysis of the granule motion in the presence
of vinblastine, a microtubule-disrupting drug, allows us to relate
the dynamics to the structure of the microtubule network. We also
present simulations showing that our kinetic scheme can account
for the otherwise unexplained apparent granule storage pools and
biphasic secretion of insulin.

Author contributions: L.H.P., A.R.D., and N.F.S. designed research; S.M.A.T., S.B., H.Y.K.,
and T.H. performed research; A.K. and J.J. contributed new reagents/analytic tools; S.M.A.T.
and S.B. analyzed data; and S.M.A.T., S.B., L.H.P., A.R.D., and N.F.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1S.M.A.T., S.B., and H.Y.K. contributed equally to this work.
2A.R.D. and N.F.S. contributed equally to this work.
3To whom correspondence may be addressed. E-mail: dinner@uchicago.edu or nfschere@
uchicago.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1221962110/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1221962110 PNAS | March 26, 2013 | vol. 110 | no. 13 | 4911–4916

A
PP

LI
ED

PH
YS

IC
A
L

SC
IE
N
CE

S

mailto:dinner@uchicago.edu
mailto:nfschere@uchicago.edu
mailto:nfschere@uchicago.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1221962110/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1221962110/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1221962110


Results and Discussion
Anomalous Diffusion of Insulin Granules. We study MIN6 cells be-
cause they have about 10-fold fewer granules than wild-type
mouse β-cells, which allows resolving and tracking hundreds of
individual granules. The reduced density also mitigates granule–
granule crowding effects. In Fig. 1A, we show a typical MIN6 cell
expressing syncollin-GFP in the insulin granules. The fluo-
rescently labeled insulin granules are dispersed throughout it.
The distribution of displacements has non-Gaussian statistics
(Fig. 1B), and the trajectories appear to have a wide range of
behaviors (SI Appendix, Fig. S1). As a first step toward charac-
terizing the type of motion performed by the granules, we calcu-
late the time-averaged mean square displacement (TA-MSD) (4,
7, 8, 22–24) for each single-granule trajectory as

δðs; tÞ2 = 1
t− s

Zt−s

0

�
rðτ+ sÞ− rðτÞ�2dτ; [1]

where r is the position of the particle, s is the lag time, and t is the
total measurement time for each trajectory. Throughout this
paper, we use overlines to indicate time averages and angle
brackets to denote ensemble averages. The TA-MSD can be
viewed as a moving-average analysis. Fig. 2A shows the TA-MSD.
Unless otherwise indicated, the data are from a single represen-
tative cell, and we use only the 186 trajectories with at least 200
observation points (spaced at 1-s intervals); data for additional
cells are shown in SI Appendix, Fig. S2. As the time lag s increases,
the range available for averaging decreases, so we observe in-
creasing sampling noise as s approaches 100 s.
The exponent α in the scaling relation δ2 =Dsα characterizes

the motion: α = 1 for pure diffusive (Brownian) motion, α < 1 for
subdiffusive motion, α > 1 for superdiffusive motion, with α = 2
corresponding to pure ballistic motion. The overall trend in Fig.
2A is subdiffusive, with α = 0.76. Fig. 2A also shows that the
TA-MSDs of the trajectories are distributed and the anomalous
diffusion coefficient D exhibits a broad variation. When the ex-
ponent α is calculated by fitting to the first 10% of the data points
of the individual trajectories, we find the distribution to be broader
than expected from intrinsic randomness or regular spatial inhomo-
geneities; the values of α span from the subdiffusive to superdiffusive
regimes, whereas the mean is at α = 0.76 (SI Appendix, Fig. S3).
Going beyond the standard TA-MSD analysis, Fig. 1B, Inset

shows the distribution of the x components of the spatial displace-
ments between successive 1-s time intervals; similar behavior is
observed for the y components. The distribution is clearly non-
Gaussian with long tails that represent the enhanced proba-
bility of the granules making large displacements. To make this

observation more precise, we plot the distribution of granule dis-
placements, P(δ), for various time intervals, s, in SI Appendix, Fig.
S4. Here, δðsÞ= jrðτ+ sÞ− rðτÞj, where we have averaged over τ.
For a system obeying Gaussian statistics, it is expected that P(δ)
would depend only on the second moment σ2 = 〈δ(s)2〉. We de-
termined whether P(δ) for the granule data obeys Gaussian sta-
tistics for different values of s. For Brownian motion, one expects
a collapse of P(δ) for different s to a single curve when normalized
by σ. However, this is clearly not the case for the granule data (SI
Appendix, Fig. S4). We also measured the distribution of different
jump lengths during the motion. Fig. 1B shows the cumulative
distribution of different jump lengths, i.e., the probability to per-
form a jump larger than dmin. The data are fitted well by a log-
normal distribution, suggesting uncorrelated processes with
multiplicative probabilities.
It is also important to establish whether the granule dynamics

exhibit ergodic behavior. This is accomplished by changing the
extent of data used for each trajectory (t in Eq. 1) and by mea-
suring the value of hδ2ðs; tÞi for a constant s. For this analysis, we
first time average each trajectory and then average over the
ensemble of granules. For a system that obeys ergodic behavior
one expects the time and ensemble averages to converge at long
times. In striking contrast, Fig. 2B shows that hδ2ðs; tÞi decays as
a power law for increasing t. The observed motion is not ergodic,
and the statistic reveals ever deeper traps as more data are in-
cluded. This behavior is called “aging” in the literature on glasses
(25). It is important to emphasize that aging is an ongoing in-
trinsic feature of the motion, not a result of a change in cell state.

Competing Forms of Subdiffusive Behavior. Finding that the move-
ment of granules inside the β-cells is anomalous, non-Gaussian,
and nonergodic motivates us to characterize those observations in
the framework of two standard models of anomalous diffusion:
FBM and CTRW. These two models differ with respect to their
physical motivations. In a CTRW model, the motion is described
by a particle that jumps between traps with random dwell times;
the distribution of dwell times follows a power law t−β−1 with
0 < β < 1. The motion is annealed, which means that, when the
particle returns to the same trap, the waiting time is different. In
CTRW, the spatial step sizes are usually assumed to be uniform.
The net effect is that the system is nonergodic with a broad scatter
of single-trajectory TA-MSDs that average to be linear in s (26,
27). The system is nonergodic because deeper and deeper traps
are discovered the longer one measures. In our system, the traps
could correspond to binding events with a distribution of disso-
ciation times or cages with varying lifetimes.
In contrast, FBM is a Gaussian stationary process. The spatial

position x(t) is correlated such that 〈x(t)x(t + s)〉 ∝ (jtj2H + jt +
sj2H − jsj2H), where H is the Hurst exponent (15, 28). The micro-
scopic picture is not as transparent as CTRW. Simple examples
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Fig. 1. (A) Typical confocal fluorescence image of syncolin-EGFP–labeled
insulin granules in live MIN6 cells. Granules are typically 350–400 nm in di-
ameter. See SI Appendix, Fig. S1, and Movie S1 for examples of trajectories.
(B) Cumulative distribution of jump lengths (symbols) and fit of an in-
tegrated log-normal distribution (dashed line). (Inset) Raw distribution of x
components of steps compared with a Gaussian fit.
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Fig. 2. (A and B) Time-averaged mean square displacement (TA-MSD) as
a function of lag time s (A) and measurement time t (B); see Eq. 1 and main
text. In A, the blue lines are for individual trajectories of length t = 200 s, and
the red dashed lines show an exponent of α = 0.76. In B, the lines are av-
eraged over the same set of trajectories, with s as indicated.
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yielding FBM statistics are diffusing particles interacting with
random obstacles (e.g., as in single-file diffusion) (29) or dif-
fusing particles that interact within a viscoelastic medium with
a broad range of coupling strengths (30). In this case, the system
is ergodic (i.e., there should be no dependence on measurement
time), and one expects no scatter for the TA-MSD with a sub-
linear exponent.
Our goal is to determine the extent to which these models

explain the subdiffusive statistics of the granule motion. There
are a number of standard statistical measures for this purpose.
The sublinear behavior of the TA-MSD (Fig. 2A) immediately
suggests FBM with H < 0.5 (15, 28). A spatially bounded CTRW
can also exhibit sublinear behavior (31) but can be excluded here
owing to the difference in magnitude of the exponents in Fig. 2 A
and B; they would be exact opposites of each other for a spatially
bounded CTRW. To strengthen the connection to the FBM
model, we also apply a test recently introduced to discriminate
between FBM and CTRW (32): the p-variation ðV ðpÞ

n Þ. This
measure divides a trajectory into 2n segments; then, the scaling
of the differences in position in successive segments is deter-
mined by summing over the differences raised to the p power.
For CTRW, V ð2Þ

n ðtÞ saturates as n is increased, whereas for
FBM, V ð2Þ

n ðtÞ diverges as n → ∞. We estimated the 2-variation
with some of our longest granule transport time series, and the
trend shown in Fig. 3A favors FBM over CTRW.
At the same time, FBM is not sufficient to account for all of the

observations. The broad scatter in Fig. 2A and the aging and lack of
ergodicity in Fig. 2B suggest CTRW behavior. Interestingly, for
long t in Fig. 2B, one observes convergence to a constant value,
which suggests a cutoff time for the CTRW model. A lack of er-
godicity can also be detected by decoupling of the distributions of
persistence and exchange times (33–35). The persistence time is the
time for a particle to first become mobile. Namely, if we consider
a particle i, initially at t0 = 0 with position ri(0), then the persistence
time t1 for a cutoff distance d is the first time that jri(t1) − ri(0)j ≥ d.
The exchange times are the subsequent times for moving this
amount, such that jri(tn) − ri(tn−1)j ≥ d for n > 1. We observe
decoupling for 50 < d < 300 nm (Fig. 3B). The decoupling of the
two distributions, as well as another ergodicity breaking parameter
(26) (SI Appendix, Fig. S5), supports CTRW. The broad scatter of
the TA-MSD for individual trajectories in Fig. 2A is consistent with
nonergodicity and is discussed further in SI Appendix (26).

Unified Model. The statistical measures above suggest that the
granule data contain FBM and CTRW features simultaneously,
and there is a precedent for this possibility (17). Certainly the
cellular environment is a dense viscoelastic medium (36, 37), and
elastic-like coupling of granules to the cytoskeleton would be
consistent with FBM. At the same time, granules can attach to
microtubules through multiple motors, so that the binding and

unbinding times could be sufficiently distributed to give rise to
a CTRW. Thus, it is meaningful to consider a model that combines
CTRW and FBM.
We developed a simple simulation to determine whether a hy-

brid model could account for all of the observed statistics. The
simulation involves generating a sequence of random times dis-
tributed with a power law with exponent β and then, at each step,
moving in one dimension by an amount consistent with a FBM
spatial trajectory. The statistics of stochastic processes that sub-
ordinate an ergodic process (FBM) to a nonergodic process
(CTRW) are known (38, 39). To make a better match between the
one-dimensional hybrid model and the experimental trajectories
we use the exponent equality α = 1 − β + 2Hβ, where α is the
exponent describing the sublinear behavior of the TA-MSD, β − 1
is the exponent of the aging power-law decay (SI Appendix), and
H is the FBM Hurst exponent (39). To obtain α = 0.76, as in Fig.
2A, we first match β − 1 to the experimental value in Fig. 2B and
find β − 1 = 0.2; we then set H = 0.35 for the FBM process. The
estimated β and H are consistent with the multiplicative behavior
of the ensemble-averaged MSD exponent (SI Appendix, Fig. S6)
(39). The simulation so defined gives results that are consistent
with the granule data (i.e., compare Figs. 2 and 3 with Fig. 4 and
SI Appendix, Fig. S5 with SI Appendix, Fig. S7). The success of the
simple subordinated random walk simulation indicates that mo-
lecular models of intracellular transport should incorporate ele-
ments of both FBM and CTRW pictures.

Disruption of Microtubules Changes the Dynamics. To probe one
aspect of the molecular basis for the observed anomalous behav-
ior, we performed an analysis analogous to that described above
for granule trajectories from cells that were subjected to the an-
ticancer drug vinblastine. Vinblastine is known to influence insulin
granule dynamics by affecting microtubules in a dose-dependent
manner (40). At low concentrations, it prevents the growth and
shortening of microtubules without causing net depolymerization.
At high concentrations (micromolar), it causes depolymerization
and leads to protofilament spirals and protein aggregates. We
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treated MIN6 cells with 5 μM vinblastine and measured granule
dynamics in live MIN6 cells at various times after exposure.
The TA-MSDs calculated from these data are again sublinear.

As the exposure time to vinblastine increases, the exponent
becomes progressively smaller until s is about 10 s (Fig. 5A). Then,
at longer timescales, the TA-MSD exhibits a crossover to a much
steeper trend (α = 1). Analyzing the dependence on the mea-
surement time (Fig. 5B), we find that aging shows power-law be-
havior at >10 s, with the same exponent as that of the untreated
system (β − 1 = −0.2, Fig. 2B). Again, using α = 1 − β + 2Hβ, we
estimate the value of the FBM Hurst exponent at longer time-
scales to be H = 0.5, which is consistent with a memory-less
behavior. Put together, these statistics indicate that, in the pres-
ence of vinblastine, FBM-type correlations in the motion are
limited to 10 s, and beyond that timescale, the dynamics can be
described as (memory-less) CTRW. This result contrasts with
the effect of Swinholide A and Cytochalasin D in a potassium
channel study that observed coexisting ergodic and nonergodic
processes (17): In that case, the drugs, which disrupt the actin cy-
toskeleton, eliminated theCTRWcomponent, restoring ergodicity.
We interpret our data as follows (see SI Appendix, Fig. S8 for

a schematic). Motion at timescales less than 10 s is spatially cor-
related as in FBM, consistent with trafficking along microtubules.
However, the filaments are shortened by the drug, and the overall
network is reduced to localized disconnected and more crowded
regions (Fig. 6 and SI Appendix, Figs. S9 and S10). Consequently,
at longer timescales (and hence length scales), the transport of the
granules between the disconnected regions is microtubule in-
dependent and is not correlated in time. It is interesting that the
CTRW behavior persists, possibly due to the random waiting times
between binding and unbinding of the granules to the microtu-
bules between different regions.We reproduce this crossover with
the hybrid model in SI Appendix, Fig. S11.

Microscopic Interpretation. The picture that emerges is that granule
dynamics reflect both active and passive mechanisms as well as the
dense cellular environment. The kinetic schemes identified can be
used to delineatemolecular hypotheses, and a reasonable scenario
given our analysis is the following. The granules undergo transport
on the microtubules and actin filaments via different molecular
motors (41). These motors bind and unbind to microtubules and
actin filaments, perform hops, and change the direction of their
movement on the underlying pathways, which is a randomly cross-
linked network. The distribution of waiting times giving rise to
CTRW arises from random binding and unbinding times. The
FBM contribution could originate from either the fluctuating

crowded environment of the cell or deformation of the filament
network when a vesicle is interacting with more than one filament.

Biological Implications. Our results have major implications for
pancreatic β-cell function. Insulin granule trafficking following
assembly in the Golgi apparatus is a key pathway leading to sus-
tained glucose-stimulated insulin secretion. Whereas individual
β-cells in a normal mouse islet contain over 10,000 granules, the
maximal rate of exocytosis is estimated to be less than 1 granule per
second in physiological conditions (42). For this reason, only
a small fraction (<5%) of existing granules must be mobilized for
insulin secretion in the initial response to stimulation. The typical
response of healthy islets in vitro is biphasic, with an initial sharp
rise in insulin within 5 min, followed by a sustained and prolonged
second phase that varies according to species and precise experi-
mental conditions (20, 42). Profound changes in this behavior, in
particular the loss of the first phase, occur in the diabetic state but
remain incompletely understood. Work in islets from diabetic
humans suggests the defects lie at the level of granule trafficking
and exocytosis (43). Recent studies of insulin secretion have fo-
cused on distinct “pools” of granules with varying mobility as the
basis for the observed secretion profiles (20).
In contrast, our findings suggest a scheme that combines

granule dynamics in the cell interior with those close to the
membrane. To see this, we simulate a 2D idealized cell of unit
radius (Fig. 7A). Ten pores of radius 0.01 units are evenly spaced
around the circumference (red circles in Fig. 7A); these are
motivated by observations of membrane “hot spots” for secretion
(44, 45). Particles representing insulin granules are introduced
randomly in the cell area with preference toward the center
(linearly increasing probability from the outer membrane to the
center). These particles move within the cell by a subordinated
random walk (with the parameters elucidated above: H = 0.35
and β = 0.2), except within a distance a of a pore (indicated by
dashed lines in Fig. 7A), where they move by FBM. Close to the
membrane there is no trapping, consistent with the observations
that led to the notion of “restless” granules (20). Once a particle
reaches a pore it is removed irreversibly from the simulation, and
we study the flux of particles out of the cell (i.e., the first passage
time distribution for exocytosis) as a function of a.
As noted above, relatively few granules are secreted, so arrivals

at pores are expected to be rare in comparison with fluctuations in
granule positions. It is thus computationally demanding to obtain
statistics from direct simulation of this system, especially due to
the power-law waiting time distribution of the CTRW that con-
tributes to the subordinated randomwalk. To overcome this issue,
we used steered transition path sampling (46), an algorithm that
we recently introduced for enhanced sampling of transient pro-
cesses that do not obey detailed balance (such as FBM). The idea
is that the path ensemble is biased by preferentially selecting
otherwise unbiased trajectory segments that make progress to-
ward a goal, and then the physical weighting is restored in com-
puting the first passage time distribution. The trajectory segments
that we take to make progress are those with particles that can still
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time: α = 0.63, 0.57, 0.52, and 0.45 for 10, 20, 30, and 60 min, respectively. (B)
Aging behavior as a function of measurement time t (compare with Fig. 2B)
for different constant s (in seconds) for a MIN6 cell that was exposed to 5 μM
vinblastine for 10 min.

Fig. 6. (A and B) MIN6 cells before (A) and after 20 min of treatment with
5 μM vinblastine (B). Microtubules are labeled using CellLight Tubulin-GFP.
(Scale bar, 10 μm.) Several cells in a cluster grown on templated glass slides
are shown. The microtubules shift from filamentous to short fragments.
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reach one of the pores within the allotted number of simulation
steps (16,000 total for each particle; we generate the FBM steps
according to ref. 47 with an average step length of 0.02 units). The
bias becomes progressively stronger: As the number of remaining
steps decreases, the pressure for particles to be close to pores
increases.
The first passage time distributions for several a values are

shown in Fig. 7B. For a= 0 units, the secretion profile exhibits only
a slow rise, whereas, for larger a values (a = 0.1 units), there is
a sharp peak followed by a slow recovery and stabilization. This
transition from uni- to biphasic behavior results from the interplay
between the two types of dynamics (subordinated and pure FBM).
No such transition is observed if only one dynamic is involved. In
particular, it is not possible to obtain sustained secretion at a near-
constant level (the plateau phase in Fig. 7B) without the sub-
ordinated dynamics. Anomalous diffusion thus provides a simple
physical route to biphasic insulin release that does not require
invoking pools of special granules within the cell.
Because metabolic coupling to increased intracellular calcium is

only modestly perturbed in β-cell–containing islets from humans
with diabetes, one recent study concluded that “aberrant granule
docking, decreased Ca2+ sensitivity of exocytosis, and reduced
insulin release” (ref. 43, p. 1726) were the key issues requiring fur-
ther study. This study linked genetic susceptibility variants to defects
in insulin secretion. Further work is needed to define the defects in
granule dynamics in diabetes. The results of ref. 43 in combination
with our own suggest that therapies that target insulin granule dy-
namics from the cytoskeletal network structure to exocytosis could
have significant impact in the treatment of type 2 diabetes.

Experimental Methods
Labeling and Imaging Protocols. Syncollin-pEGFPwas used to express syncollin,
which is targeted to insulin granules in MIN6 cells (21); granules visualized
with this construct behave similarly to ones with insulin-GFP fusions (SI Ap-
pendix, Fig. S12), and this consistency across constructs suggests that the
dynamics are native-like. The MIN6 cells were plated on a glass coverslip and
incubated for about 1 h in 2 mM glucose before stimulation. All experiments

consisted of static incubation performed on a temperature-controlled mi-
croscope stage that was maintained at 37 °C. Cells were maintained and
perfused with 8 mM glucose and Krebs–Ringer buffer containing 119 mM
NaCl, 4.7 mM KCl, 25 mMNaHCO3, 2.5 mM CaCl2, 1.2 mMMgSO4, and 1.2 mM
KH2PO4.

All image series were acquired using a Yokogawa CSU10 spinning-disk
optical confocal scanner and a Roper CoolSnap HQ CCD camera (Roper
Scientific), using MetaMorph software (Universal Imaging). Sequential images
were taken for 5 min at 1 Hz. EGFP granules were excited with the 488-nm
line of an Ar+/Kr+ laser (Omnichrome Series 43) with the minimum laser
power that would give good signal-to-noise ratio. Fluorescence was col-
lected in an epi-geometry, separated from the excitation laser light (535/
40 nm band pass, Chroma) and imaged to the CCD detector. Excessive illu-
mination resulted in premature photobleaching of the sample.

We checked the effect of phototoxicity by imaging the same cells with
different relative excitation intensities (25%, 50%, and 100%). In this set of
experiments, the power-law scaling for the TA-MSD as a function of lag time
(s) and total time (t) is independent of the intensity, with consistent expo-
nents of α = 0.8 and β − 1 = −0.37 (SI Appendix, Fig. S12). Therefore, effects
from light, if any, do not significantly contribute to the results.

Particle Tracking Algorithm. Diatrack 3.0 (Semasopht) was used for two-
dimensional particle tracking of 1 to >100 particles in each image of the
measured sequence of insulin granules in live cells as well as both experi-
mental and simulated images of microspheres in solution. Trajectories of
insulin granules were recovered after thresholding, background subtraction,
and adjustment of parameters such as maximum displacement between
successive frames. The resulting single-particle trajectories were analyzed in
terms of transport properties and statistics with custom routines written in
MATLAB 7.1 (MathWorks). It is important to assess whether the tracking
error is the source of apparent subdiffusive behavior (48, 49); we show how
the contribution from the tracking error can be assessed in the SI Appendix
and find that it is negligible in our system.

Controlling for Nonintrinsic Contributions. Because statistical tests for anom-
alous diffusion rely on the dynamics taking place in a stationary state, we use
detrended fluctuation analysis (DFA) (50) to remove any contributions that
are not intrinsic to the granule motions (e.g., a slow evolution of the state of
the cell). The essential idea is that one fits low-order polynomials to running
windows of sequential data and subtracts these polynomial functions from
the data to obtain deviations from them. Thus, DFA is a useful tool when
one wants to determine the bias of a trend on the scaling properties of
a series of measurements without knowing a priori how the trend scales with
time. The mathematical protocol of DFA is described briefly in SI Appendix. By
applying this method to our data, we were able to extend the range of s over
which we could linearly fit data before the data get too noisy [compare Fig.
2A and SI Appendix, Fig. S2 (Inset) with SI Appendix, Fig. S13]. Also, DFA
widened the distribution of the exponents fitted to the first 10% of the data
points of the trajectories without significantly shifting its peak (compare SI
Appendix, Fig. S14 with Fig. S3). Therefore, DFA confirms that the behavior
that we describe here is indeed predominantly subdiffusive with some tra-
jectories being diffusive or superdiffusive. Also, in SI Appendix, Fig. S15 we see
that for the detrended time series, the long tails in the distribution persist.
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