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AIMS
Vancomycin is one of the most evaluated antibiotics in neonates using modeling and simulation
approaches. However no clear consensus on optimal dosing has been achieved. The objective of
the present study was to perform an external evaluation of published models, in order to test their
predictive performances in an independent dataset and to identify the possible study-related
factors influencing the transferability of pharmacokinetic models to different clinical settings.

METHOD
Published neonatal vancomycin pharmacokinetic models were screened from the literature. The
predictive performance of six models was evaluated using an independent dataset (112
concentrations from 78 neonates). The evaluation procedures used simulation-based diagnostics
[visual predictive check (VPC) and normalized prediction distribution errors (NPDE)].

RESULTS
Differences in predictive performances of models for vancomycin pharmacokinetics in neonates
were found. The mean of NPDE for six evaluated models were 1.35, -0.22, -0.36, 0.24, 0.66 and 0.48,
respectively. These differences were explained, at least partly, by taking into account the method
used to measure serum creatinine concentrations. The adult conversion factor of 1.3 (enzymatic to
Jaffé) was tested with an improvement in the VPC and NPDE, but it still needs to be evaluated and
validated in neonates. Differences were also identified between analytical methods for
vancomycin.

CONCLUSION
The importance of analytical techniques for serum creatinine concentrations and vancomycin as
predictors of vancomycin concentrations in neonates have been confirmed. Dosage
individualization of vancomycin in neonates should consider not only patients’ characteristics and
clinical conditions, but also the methods used to measure serum creatinine and vancomycin.

WHAT IS ALREADY KNOWN ABOUT
THIS SUBJECT
• Population pharmacokinetics of vancomycin have been widely

studied in neonates.
• Many covariates including bodyweight, gestational age and

post-natal age, renal function, co-administered drugs, etc. have
been evaluated and some of them are associated with
inter-individual pharmacokinetic variability.

WHAT THIS STUDY ADDS
• The analytical technique used for measuring serum creatinine

concentrations has been confirmed as a study-related factor
influencing the transferability of published models to different
clinical settings.

• Different predictive performances were demonstrated between
analytical methods (FPIA and EMIT).

• The neonatal conversion factor of serum creatinine
concentrations between the Jaffé and enzymatic methods and
the interferences/cross-reactivity of analytical methods need to
be evaluated in neonates in future studies.
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Introduction
Vancomycin, a glycopeptide antibiotic, is widely prescribed
in neonatal intensive care units because of the increased
incidence of neonatal late onset sepsis caused by coagu
lase-negative staphylococci and methicillin-resistant Sta-
phylococcus aureus [1]. Vancomycin is a large, hydrophilic
molecule with poor oral absorption. Hence it is given
intravenously to treat systemic infections. Vancomycin is
25–50% protein bound,mainly to albumin and IgA (protein
binding changes non-linearly with vancomycin concentra-
tions), and is almost exclusively eliminated by the renal
route [2, 3]. A small amount of vancomycin is eliminated
by concentration-dependent, non-renal routes [4]. The
pharmacokinetic–pharmacodynamic relationship of van-
comycin to therapeutic response can be optimized by
achieving a ratio of the area under the concentration–time
curve in 24 h : the minimum inhibitory concentration of at
least 400 h in adults with Staphylococcus aureus pneumo-
nia [5, 6].

Population pharmacokinetic modelling approaches are
strongly recommended for analysis of PK data in neonates.
[7] To date, vancomycin is one of the most studied antibiot-
ics using population pharmacokinetics in neonates and
numerous studies have been published to characterize its
pharmacokinetic parameters, to identify individual factors
influencing variability and/or to develop dosing regimens
for neonates [8–21]. Although all these models have been
internally validated, no clear consensus on the optimal
dosing regimen has been achieved in clinical practice [8,22]
because results obtained differ from one study to another.

One hypothesis for this discrepancy might be centre
related differences in the data used for modelling. The
centre-related factors (such as study population, including
number of neonates,clinical practices,treatment protocols,
analytical methods for vancomycin and serum creatinine
concentration measurements) might have important influ-
ences on extrapolating the results to patients from another
centre.This potential influence might not be identified with
an internal evaluation process [23].A recent review of all the
population pharmacokinetic analyses of vancomycin also
heightened the requirement for external evaluation of pub-
lished models [24]. Therefore, the present study was con-
ducted to perform an external evaluation of published
vancomycin population pharmacokinetic models in
neonates, in order to test their predictive performance
using an independent dataset. Our aim was to identify the
possible study-related factors influencing the transferabil-
ity of pharmacokinetic models to different clinical settings.

Methods

Review of population pharmacokinetic models
of vancomycin in neonates
We performed a systematic literature search in PubMed
and EMBASE for all studies evaluating population pharma-

cokinetic parameters of vancomycin in neonates until
2010. We combined the following key words (MeSH and
free text) in our search strategies: vancomycin, neonate,
infant, newborn, paediatric, pharmacokinetic, population
pharmacokinetics and reference lists of identified articles
were then manually screened for additional relevant
studies by two authors (Wei Zhao and Evelyne
Jacqz-Aigrain).

The following modelling information was extracted
from the articles and from direct contacts with the authors:
model structure, typical population pharmacokinetic
parameters, inter- and intra-individual variability, residual
variability, covariates, estimation method (first order or first
order condition with or without interaction option) and
the methods of handling lower limit of quantification con-
centrations (e.g. half of quantification value or M3 method
which maximizes the likelihood for all the data and treats
the concentrations below the quantification as censored
[25]). Models without confirmed information from original
authors were excluded.

Patients-external evaluation database
Neonates with a post-natal age of <28 days, receiving van-
comycin during their stay in the neonatal intensive care
unit of Robert Debré University Hospital (Paris, France)
between January 2010 and November 2010 were consid-
ered for inclusion in this prospective study if at least one
vancomycin serum concentration was assayed for thera-
peutic drug monitoring. The following data were prospec-
tively collected by a trained research assistant (Daolun
Zhang): vancomycin dose, duration of administration, post-
menstrual age (weeks), post-natal age (days), small for
gestational age according to the foetal growth weight
standard in European neonates [26], weight (kg), serum
creatinine concentrations (mmol l-1), use of positive
pressure ventilation, concurrent medications (such as
non-selective cyclo-oxygenase inhibitors, inotropes,
amoxicillin-clavulanic acid, spironolactone), time of the last
dose before sampling and blood sampling times. Patients
with incomplete information were excluded.The study was
carried out in accordance with the Declaration of Helsinki.
The Ethics Committee (CPP Comité de Protection des Per-
sonnes, Hôpital Saint Louis, île-de-France IV) declared that
this research project could be exempted from obtaining
informed consent because all data were extracted during
routine therapeutic drug monitoring procedures.

Dosing regimen and sampling
Vancomycin (Sandoz, Levallois-Perret, France) was admin-
istered as an intravenous infusion over 60 min.The empiri-
cal initial dosing regimen is presented in Table 1, showing
that the dose of 15 mg kg-1 was administered at a dosing
interval of 6 to 36 h depending on post-menstrual age.
Monitoring of vancomycin concentrations was performed
in order to maintain a trough concentration at steady-state

Transferability of published vancomycin population pharmacokinetic models in neonates

Br J Clin Pharmacol / 75:4 / 1069



between 5 and 15 mg l-1. In cases of severe infection,
trough concentrations of up to 20 mg l-1 were targeted,
with close clinical follow-up.

Assay of serum vancomycin and creatinine
concentrations
The serum vancomycin trough concentrations were deter-
mined either by an enzyme-multiplied immunoassay
method (EMIT) using the Cobas Mira Plus System (Roche
Diagnostics, Neuilly-sur-seine, France) or by a fluorescence
polarization immunoassay method (FPIA) using the Cobas
integra 400 plus system (Roche Diagnostics, Meylan,
France). According to the manufacturer’s instructions, the
lower limit of quantification and coefficients of variation
were 5 mg l-1 and <5.7% for EMIT, and 0.74 mg l-1 and
<3.3% for FPIA, respectively [27, 28]. Serum creatinine con-
centrations were measured by an enzymatic method using
the Advia 1800 chemistry system (Siemens Medical Solu-
tions Diagnostics, Puteaux, France).The lower limit of quan-
tification for this assay was 13 mmol l-1.

Evaluation of the predictive performance of
published pharmacokinetic models
The predictive performance of published pharmacokinetic
models was evaluated individually by simulation-based
diagnostic methods. The simulation studies were con-
ducted using NONMEM VI (V2.0; Icon Development Solu-
tions, USA).

Simulation-based diagnostics were performed by
using normalized prediction distribution errors (NPDE) [29]
and visual predictive checks (VPC). The dataset was simu-
lated 1000 times using the published population model
parameters (typical PK parameters, inter- individual vari-
ability and residual error models). For NPDE, a cumulative
distribution was assembled for each observation with
1000 simulated concentrations. The NPDE is expected to
follow an N (0, 1) distribution. The following graphs were
plotted by using NPDE within the R package (v1.2) [30]: (i)
a QQ-plot of the distribution of the NPDE vs. theoretical N
(0,1) distribution and (ii) a histogram of the NPDE. For the
VPC, the simulated concentrations (5th, 50th and 95th per-
centiles) and observed concentrations (5th, 50th and 95th

percentiles) were plotted against time.

Results

The external evaluation dataset consisted of 112 trough
steady-state concentrations (32 measured with EMIT and
80 with FPIA) obtained from 78 neonates. Routine moni-
toring of vancomycin concentrations was carried out after
the third dose and dosage intervals were assumed to be
regular from the start of treatment (the ADDL data item
was used to account for past dosage history). Overall, 58%
of the first measured concentrations (n = 45) were in the
target range of 5 to 15 mg l-1, 14% were below 5 mg l-1 and
28% were above 15 mg l-1. After dosage adjustment, 61%
of the measured concentrations (n = 16) achieved the
target, 4% were below 5 mg l-1 and 35% were still above
15 mg l-1. The characteristics of the patients are presented
in Table 2.

Seven neonatal population pharmacokinetic models of
vancomycin were published between years 1999 and 2010
[8–13, 17]. Differences between studies were identified
with regard to the neonatal population in terms of total
number, number of preterm and term babies and covari-
ates tested. The characteristics of these seven studies are
summarized in Table 3. As the dataset from model A was
included in model B, only model B was evaluated in the
following tests.

One of the differences between the published models
was the method used for measuring serum creatinine con-
centrations. The Jaffé method was used in models A, B, F
and G, the enzymatic method in model C and serum cre-
atinine concentration was not included in model D. Model
E tested urine output as a potential variable for renal func-
tion, but it was not significant. The Jaffé method is known
to be non-specific and can overestimate serum creatinine
concentrations, especially when bilirubin is elevated. In
adults, the serum creatinine concentration measurement
using the Jaffé method overestimates that of the enzy-
matic method by about 30% [31, 32]. and we therefore
tested the adult conversion factor of 1.3 in this study.

Normalized prediction distribution errors
Before accounting for differences in creatinine assay
methods, the mean NPDE (Table 4 and Figure 1) were
found to be significantly positive for models B, E, F and G
(0.26% of the simulated patients had negative CL values
with model E). A positive mean NPDE indicates an under-
prediction of the concentrations in the external evaluation
dataset.The negative mean NPDE for models C and D indi-
cate an over-prediction. The significant difference in NPDE
variance indicates over-prediction of variability for models
C and E.

When the serum creatinine concentrations in the exter-
nal evaluation dataset were converted to the Jaffé equiva-
lent using the adult correction factor of 1.3, the NPDE of
models B, F and G showed a major improvement in per-
formance.The other models were not re-assessed because
model C also used an enzymatic method for measuring

Table 1
Dosage regimen of vancomycin in neonates used at Robert Debré
hospital

Post-menstrual age (weeks) Dose (mg kg-1) Dosing interval (h)

<27 15 24–36
27–30 15 18–24

31–34 15 12–18
35–37 15 8–12

>37 15 6–8

W. Zhao et al.
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serum creatinine concentration and models D and E did
not include serum creatinine concentration as a covariate.

Figure 2 also illustrates the relationship between post-
menstrual age, weight or serum creatinine concentration
and NPDE. No appreciable differences in model perform-
ance were found across all post-menstrual age, weight and
serum creatinine concentration ranges for each individual
model.

As two analytical techniques (EMIT and FPIA) were used
to measure serum vancomycin concentrations, the NPDE
value of each patient was extracted from the NPDE R
package (v1.2) and compared between the two methods.
Post-menstrual age, serum creatinine concentration and
weight were not significantly different between the two
groups. In Table 5, the different predictive performances of
the two analytical techniques in the external dataset are
shown, indicating their impact on the transferability of the
pharmacokinetic models.

Visual predictive checks
The VPCs showed an initial under-prediction of both the
median and 90% percentile interval of observations for
models B, F and G (Figure 1) but predictions of median
vancomycin concentrations were acceptable with models
C, D and E. Using the adult correction factor of 1.3, a slight
under-prediction of median concentrations for model B1
was identified but predictions were acceptable for models
F1 and G1 (Figure 2).

Discussion

Modelling and simulation have shown major advantages
in supporting dosing regimen selection, streamlining the
costs and duration of drug development [33], particularly
in paediatrics. According to regulatory guidelines [34–36],

vancomycin is a good example of a drug for which the
modelling and simulation approach can be used to estab-
lish optimal dosage recommendations in neonates. This
antibiotic is active against well defined bacteria and its
pharmacokinetic/pharmacodynamic relationship can be
assumed to be similar across all age ranges including
neonates, as the target is the bacterium, although treat-
ment efficacy requires the assumption that host defence
systems are similar in all age groups.

As non-linear, iterative search algorithms may produce
spurious estimates of the model parameters, evaluation of
the accuracy, robustness and predictive performance of
these models are mandatory. An extensive model evalua-
tion procedure should include an internal evaluation, fol-
lowed by an external evaluation with an independent
dataset and a prospective clinical study in a patient cohort
with similar characteristics [37, 38].However, full evaluation
procedures are lacking in many published studies [2] and
in a recent review [23], advanced internal evaluations were
performed in only 16% of the models developed for
children.

Internal evaluation aims at testing the ability of the
proposed model to describe the data used to create the
model. All neonatal population pharmacokinetic vanco-
mycin models studied here, have reported internal evalu-
ation using different methods, which include basic
goodness-of-fit plots, bootstrapping or VPCs. The informa-
tion obtained on the mean and variability of the pharma-
cokinetic parameters and the impact of covariates are
important, as they will be used for pharmacokinetic study
designs or dosing regimen optimization. However, such
information should be carefully interpreted, particularly in
neonates, because the number of study subjects recruited
is frequently small and may not be representative of all
neonatal groups (preterm and term babies). This is impor-
tant because rapid physiological and developmental

Table 2
Baseline characteristics of 78 neonates (112 samples) in the evaluation dataset

Number Mean SD Median Range

Patients 78
Samples 112

Concentration (mg l-1) 13.6 7.4 12.0 <LLOQ–42.8
Weight (kg) 1.41 0.88 1.14 0.57–4.9

Post-natal age (days) 14 6 14 3–27
Post-menstrual age (weeks) 32.2 4.3 31.0 26.3–43.7

Serum creatinine (mmol l-1)* 52 26 46 21–174
Positive pressure ventilation 44

SGA 37
Co-administration

Inotropic drugs 10
Non-selective NSAIDs 5
Amoxicillin-clavulanic acid 0
Spironolactone 0

SGA, small-for-gestational-age. *The serum creatinine concentration was measured on the same day as the vancomycin concentrations by enzymatic method.

Transferability of published vancomycin population pharmacokinetic models in neonates
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changes occur in this age range. All these factors could
have an important,yet not always predictable, influence on
interpreting and extrapolating the results.

External evaluation is an important additional proce-
dure. Indeed, useful models are expected to describe pre-
cisely the original building dataset, but are also required to
predict the expected concentrations and/or effects and
their variability in patients with similar clinical, biological

and disease treatment characteristics. External evaluation
not only examines the modelling procedure, but also all
other study-related factors. As demonstrated with our
external evaluation dataset, different predictive perform-
ances of the published models were observed. This dis-
crepancy could be partly explained by the following
factors:

1 Serum creatinine assay: It is known that the Jaffé method
overestimates serum creatinine concentrations when
compared with the enzymatic method, due to interfer-
ences with proteins, ketoacids, bilirubin, cephalosporins
etc. This may lead to inaccuracies in calculating creati-
nine clearances when models based on Jaffé creatinine
concentrations are fitted to datasets using the enzymatic
method. Indeed, the enzymatic method is more specific
and is considered to be more suitable, especially for pre-
mature neonates who commonly have high bilirubin
concentrations [39, 40].The adult conversion factor of 1.3
was evaluated with an improvement in the VPC and
NPDE. There is no such validated conversion factor avail-
able for use in neonates. However, recent studies have
demonstrated that continuous changes in neonatal
serum composition (albumin, IgG, bilirubin) and renal
maturation influenced the conversion of serum creati-
nine values between the two analytical methods [41, 42].

Table 3S1‡

PMA (weeks)

AGA SGA

Dose mg kg-1 Dosing interval (h) Dose mg kg-1 Dosing interval (h)

<26 12.5 24 10 24
26–28 15 24 12.5 24

28–30 10 12 15 24
30–32 12.5 12 10 12

32–33 15 12 10 12
33–34 15 12 12.5 12

34–37 20 12 15 12

Table 3S2:

Weight (kg) PNA (days) Dose mg kg-1 Dosing interval (h)

<0.8 <7 15 24
<1.2 <7 15 18

<1.2 >7 15 12
<2.0 <7 15 12

<2.0 >7 15 12
>2.0 <7 15 12

>2.0 >7 15 8

AGA, appropriate for gestational age; BSA, body surface area; ECMO, extra corporeal membrane oxygenation; EMIT, enzyme-multiplied immunoassay method; FPIA, fluorescence
polarization immunoassay method; GA, gestational age; NSAID, nonsteroidal anti-inflammatory drugs; PCA, postconceptional age; PETINIA, particle enhanced turbidimetric
inhibition immunoassay; PMA, post-menstrual age; PNA, post-natal age; SGA, small for gestational-age. *Renal function = (516 ¥ EXP (Kage ¥ ((PMA - 40)/52 - 40))/serum
creatinine)/6. †Urine output was tested as indicator of renal function; serum creatinine concentration was not tested. ‡A loading dose of 15 mg kg-1 was given for maintenance
doses of less than 15 mg per dose. §Model B was developed using the dataset of model A plus 35 extra neonates.

Table 4
The respective mean and variance of normalized prediction distribution
errors of external evaluation dataset using parameters derived from six
published models

Model Mean P* Variance P†

B 1.35 <0.0001 1.19 0.16
C -0.22 0.02 1.35 0.02

D -0.36 <0.0001 1.24 0.09
E 0.24 0.02 1.44 0.003

F 0.66 <0.0001 0.86 0.30
G 0.48 <0.0001 1.03 0.80

B1 0.63 <0.0001 1.15 0.26
F1 0.09 0.20 0.89 0.42

G1 0.01 0.94 1.00 1.00

Models B1, F1 and G1: Jaffé equivalent concentrations with conversion factor of
1.3. *Wilcoxon signed rank test. †Fisher variance test.

Transferability of published vancomycin population pharmacokinetic models in neonates
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Figure 1
Normalized prediction distribution errors NPDE and visual predictive check. NPDE: QQ-plot of the distribution of the NPDE vs. the theoretical N (0,1)
distribution (left). Histogram of the distribution of the NPDE, with the density of the standard Gaussian distribution overlaid (right). Visual predictive check:
observed data are plotted using a circle (�). The dashed lines represent the 10th, 50th and 90th percentiles of simulated data (n = 1000). The solid lines
represent the 10th, 50th and 90th percentiles of observed data. Models B–E: the six published models. Models B1, F1 and G1: Jaffe equivalent concentrations
with conversion factor of 1
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Therefore, it remains crucial to validate a creatinine con-
version coefficient, adapted to neonates, which will prob-
ably change in the first weeks of life.Using this factor may
improve transferability from one centre to another if dif-
ferent methods are used to determine serum creatinine
concentrations.

2 Analytical methods used for vancomycin monitoring:The
FPIA assay has been shown to have interferences from
vancomycin crystalline degradation products [43]. Van-
comycin is converted to its crystalline degradation prod-
ucts when exposed to heat, including normal body
temperature.This cross-reactivity was particularly impor-
tant in patients with end-stage renal disease and could
lead to falsely elevated serum vancomycin concentra-
tions in excess of 50–70% [44] In addition, this overesti-
mation may also have been influenced by total bilirubin
concentrations and post-natal age [45]. The particle
enhanced turbidimetric inhibition immunoassay used in
model B does not cross-react with vancomycin crystal-
line degradation products. However the measured total
concentrations from this method were higher than that
of high-performance liquid chromatography, which is
considered to be the ‘gold standard’ reference method
[46]. In our present external evaluation dataset, the
assays used to measure serum vancomycin concentra-
tions changed throughout the study period.This allowed
us to collect different serum vancomycin concentrations
measured by both EMIT and FPIA,and the results showed
different predictive performances of the two techniques.
However, as the formation and accumulation of vanco-
mycin crystalline degradation products in neonates are
unknown and cross-reactions vary between assays from
different manufacturers,a conversion factor forvancomy-
cin concentrations between difference analytical tech-
niques could not be investigated in the present study.

3 Ethnicity: The external dataset was from Caucasian and
African neonates, although the percentage of each

ethnic group was not recorded, as special consent is
required to collect this information. Our dataset was
slightly over-predicted by model D, which was devel-
oped with Malaysian neonates. It should also be noted
that, in contrast to the other models, model D did not
include renal function as a covariate.

If a model is used to establish dosing regimen recommen-
dations, then simulation-based diagnostics should be used
and the NPDE and VPC are considered as the reference
methods [29]. NPDE yields information on the accuracy of
the predictive performance of a model by calculating the
mean value and variance of the prediction errors. VPC
shows the direct visual relationship between predicted
and observed concentrations. The combination of these
two methods facilitates interpretation of the results. As
demonstrated by the review of published models, the dif-
ferences in age and weight exist among the studies.
Models B and D were developed based on PK data from
preterm neonates and the other models were based on
neonates and infants. Due to rapid physiological changes
in neonates, it is important to perform model evaluation
procedures across age and weight ranges [47], which are
considered to be representative of developmental vari-
ables. No appreciable differences in model predictive per-
formance across post-menstrual age and weight range
were found for all six published models.This indicates that
even though patients’ age and weight vary, there was no
systemic bias in population prediction using these models.
In addition, the renal function should be an important
covariate of vancomycin clearance. We evaluated the
predictive performance across the serum creatinine con-
centration range and no appreciable differences were
found. However, the integration of renal function in vanco-
mycin neonatal dosing predictions is still controversial in
published studies. Difference approaches (model-
estimated method, serum creatinine measurement, urine
output) were used. The comparison of these approaches
should be evaluated in a further study based on a large
dataset.

As our study intended to illustrate the importance of
external evaluation to identify the possible study-related
factors that might limit transferability in different clinical
settings, we did not develop a new population pharma-
cokinetic model with our external evaluation dataset or
recommend new dosing regimen. In addition, we cannot
recommend which published model is ‘better’as a result of
this analysis, as this is beyond the scope of this analysis. As
important difference was highlighted when transferring
vancomycin published models, in the absence of external
validation, models when only internally validated should
only guide individual dosing regimens of vanocmycin in
their own clinical setting.

There are some limitations to our study. As this study
was based on routine therapeutic drug monitoring data,
only vancomycin trough concentrations were available for

Table 5
The respective mean and SD of normalized prediction distribution errors
of external evaluation dataset according to analytical methods of vanco-
mycin (EMIT or FPIA)

Model
EMIT FPIA

P*Mean � SD Mean � SD

B 1.01 � 0.90 1.48 � 1.14 0.04
C -0.59 � 1.01 -0.07 � 1.19 0.03

D -0.75 � 0.83 -0.21 � 1.18 0.02
E 0.74 � 1.36 0.04 � 1.08 0.005

F 0.28 � 0.65 0.82 � 0.98 0.005
G 0.09 � 0.74 0.64 � 1.07 0.01

B1 0.26 � 0.88 0.77 � 1.12 0.02
F1 -0.32 � 0.67 0.26 � 0.99 0.003

G1 -0.36 � 0.79 0.15 � 1.04 0.01

Models B1, F1 and G1: Jaffé equivalent concentrations with conversion factor of
1.3. *t-test (to describe the significance of the NPDE between the samples meas-
ured by the EMIT and by the FPIA for each model).
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external evaluation. Peak concentrations are not routinely
measured because a large variability in peak concentra-
tions is often observed and clinical benefit has not been
investigated [48]. There is no study to compare the useful-
ness of monitoring vancomycin peak and/or trough con-
centrations in neonates. A full dosing history was not
available for all samples. In such cases, regular dosing since
the start of vancomycin treatment and every change in
dosage was assumed.

In conclusion, in the current study, the predictive per-
formance of six published neonatal pharmacokinetic
models of vancomycin was evaluated with an independent
external dataset. The published models gave important
information on vancomycin population pharmacokinetic
parameters and covariate relationship in neonates.
However, the serum creatinine assay method, either Jaffé
or enzymatic, has an important impact on model predic-
tion when tested with independent patients. Given the
continuous and important changes of blood composition
during the neonatal period, the adapted conversion factor
between different analytical techniques still needs to be
investigated in neonates. A different predictive perform-
ance was also revealed between different analytical
methods for serum vancomycin concentrations. The trans-
ferability of published results to different clinical settings
has to consider study-related factors.
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