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Abstract
Emotion influences the perception of respiratory sensations, although the specific mechanism
underlying this modulation is not yet clear. We examined the impact of viewing pleasant, neutral,
and unpleasant affective pictures on the respiratory-related evoked potential (RREP) elicited by a
short inspiratory occlusion in healthy volunteers. Reduced P3 amplitude of the RREP was found
for respiratory probes presented when viewing pleasant or unpleasant series, when compared to
those presented during the neutral series. Earlier RREP components, such as Nf, P1, N1, and P2,
showed no modulation by emotion. The results suggest that emotion impacts the perception of
respiratory sensations by reducing the attentional resources available for processing afferent
respiratory sensory signals.
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Respiration is a continuous process which, under normal conditions, is not consciously
perceived. In some circumstances, however, we become aware of respiratory sensations,
e.g., during breath-holding, strong physical exercise, some forms of meditation, or in
disease-related conditions (Altose, Cherniack, & Fishman, 1985; Davenport & Vovk, 2009).
In respiratory diseases such as asthma or chronic obstructive pulmonary disease (COPD),
although the perception of respiratory sensations such as dyspnea (breathlessness) may be a
troublesome and frightening experience (American Thoracic Society, 1999; GINA, 2008;
GOLD, 2008), adequate perception of respiratory sensations is important for motivating
patients to seek timely medical treatment (Banzett, Dempsey, O’Donnell, & Wamboldt,
2000). Reduced perception of initial bronchoconstriction and dyspnea in asthma patients, for
example, might lead to increased morbidity due to delayed or inadequate medication use,
delayed visits to the physician or emergency department and might even include near-fatal
attacks (Barnes, 1994; Barreiro, Gea, Sanjuas, Marcos, Broquetas, & Milic-Emili, 2004;
Fritz et al., 2007; Kifle, Seng, & Davenport, 1997; Kikuchi et al., 1994; Magadle, Berar-
Yanay, & Weiner, 2002). However, over-perception of respiratory sensations can also be a
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problem, leading to overuse of medication and related negative health effects (Main, Moss-
Morris, Booth, Kaptein, & Kolbe, 2003).

A growing body of literature suggests that psychological factors such as emotion, attention,
and learning can strongly impact reports of respiratory perception, often independent of
ventilatory changes (Chetta, Foresi, Marangio, & Olivieri, 2005; De Peuter, Van Diest,
Lemaigre, Verleden, Demedts, & Van den Bergh, 2004; Lehrer, Feldman, Giardino, Song,
& Schmaling, 2002; von Leupoldt & Dahme, 2007). Several studies in healthy volunteers
and patients with asthma or COPD have demonstrated that individuals with a personality
characterized by high negative emotionality report more dyspnea or respiratory sensations
than those with low negative emotionality, regardless of their pulmonary status (De Peuter,
Lemaigre, Van Diest, & Van den Bergh, 2008; Han et al., 2004; Li et al., 2006; Put, Van den
Bergh, Van Ongeval, De Peuter, Demedts, & Verleden, 2004; Vögele & von Leupoldt,
2008). For example, patients with COPD and comorbid panic disorder and/or panic
symptoms report greater resistive load induced dyspnea than matched patients with COPD
without panic comorbidity, despite similar limitations in their respiratory function
(Livermore, Butler, Sharpe, McBain, Gandevia, & McKenzie, 2008).

Similarly, experimental induction of negative emotion in patients and healthy individuals
resulted in increased reports of respiratory sensations (Bogaerts, Notebaert, Van Diest,
Devriese, De Peuter, & Van den Bergh, 2005; Rietveld & Prins, 1998; von Leupoldt, Mertz,
Kegat, Burmester, & Dahme, 2006; von Leupoldt, Riedel, & Dahme, 2006; von Leupoldt et
al., 2008a). However, whether these reports of respiratory sensation are accompanied by
measurable changes in the neural processing of respiratory signals remains unknown.
Because either over- or under-perception of respiratory sensations has critical implications
for both clinical assessment and treatment, it is essential to determine effects of emotion on
neural correlates of respiratory perception.

One technique for studying the neural processing of respiratory perception is the respiratory-
related evoked potential (RREP) recorded from the electroencephalogram (EEG)
(Davenport, Friedman, Thompson,&Franzen, 1986). The RREP is a measure of cerebral
cortical activity elicited by short inspiratory occlusion or breathing against inspiratory
resistive loads (Bloch-Salisbury, Harver, & Squires, 1998; Chou & Davenport, 2007;
Davenport, Colrain, & Hill, 1996; Davenport et al., 1986; Logie, Colrain, & Webster, 1998;
Redolfi et al., 2005; Webster & Colrain, 2000a). The RREP quantifies the initial arrival and
processing of sensory afferent respiratory information in the sensorimotor cortex by the
early components (Nf, P1, N1) and subsequent cognitive processing in other associative
cortical areas by the later components (P2, P3) (Davenport & Vovk, 2009). In particular, the
later RREP components such as the P3 seem to be vulnerable to higher order cognitive
processes not related to respiration per se as previous studies demonstrated an attenuation or
absence of the P3 under distraction conditions compared to conditions where attention was
focused on the respiratory stimulus (Davenport, Chan, Zhang, & Chou, 2007; Harver,
Squires, Bloch-Salisbury, & Katkin, 1995; Webster & Colrain, 2000b).

In the present study, we measured RREPs to study the influence of emotional engagement
on the neural processing of respiratory perception in healthy volunteers. Emotional states
were induced by presenting series of pleasant, neutral, and unpleasant pictures. To assess
emotional engagement, we collected reports of hedonic valence and arousal, as well as skin
conductance activity, event-related potentials measured at picture onset (commonly referred
to as late positive potential), and indices of respiratory motor drive. Previous studies
measuring these responses during affective picture viewing have reliably found enhanced
responding when viewing emotional (pleasant or unpleasant) compared to neutral pictures
(e.g., Bradley & Lang, 2007; Cuthbert, Schupp, Bradley, Birbaumer, & Lang, 2000; Van
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Diest, Janssens, Bogaerts, Fannes, Davenport, & Van Den Bergh, 2009), and we expected
similar patterns of modulation as evidence of emotional engagement in the current study.

The RREP was measured using a probe which briefly occluded respiration immediately
following the onset of inspiration. When external startling (e.g., Cuthbert, Schupp, Bradley,
McManis, & Lang, 1998; Keil, Bradley, Junghoefer, Russmann, Lowenthal, & Lang, 2007)
or painful (Kenntner-Mabiala, Andreatta, Wieser, Mühlberger, & Pauli, 2008) probes are
presented during affective picture viewing, previous studies have found that the resulting
amplitude of the P3 component is reduced, suggesting less attention is available for
processing the probe when processing emotionally salient cues. Assuming that internal
processing is similarly modulated by enhanced motivated attention in emotion, we
hypothesized similar affective modulation for respiratory probes, with reduced P3
amplitudes for the RREP for probes presented during pleasant or unpleasant affective
picture series compared to non-arousing neutral series.

Method
Participants

Fourteen healthy adults (6 female, mean age = 19.7, SD = 2.2) participated after providing
informed written consent. Normal baseline lung function was confirmed by spirometry
(Discovery, Futuremed America Inc., Granada Hills, CA) according to standards published
by the European Respiratory Society (Quanjer, Tammeling, Cotes, Pedersen, Peslin, &
Yernault, 1993). All participants underwent a questionnaire screening to exclude those with
symptoms of depression (Beck Depression Inventory-II; Beck, Steer, & Brown, 1996) or
anxiety (State-Trait Anxiety Inventory, STAI; Spielberger, Gorsuch, & Lushene, 1970).
Baseline characteristics of the participants are listed in Table 1. The study protocol was
approved by the Institutional Review Board of the University of Florida.

Affective Picture Series
Four hundred and thirty-two pictures were selected from the International Affective Picture
System (IAPS; Lang, Bradley, & Cuthbert, 2008), based upon normative ratings. Pictures
were grouped into pleasant, neutral, and unpleasant categories, each consisting of 144
pictures. For each category, 4 series of 36 pictures each were selected, which were matched
for picture content and mean ratings of hedonic valence and arousal. In addition, each of the
4 pleasant and 4 unpleasant series was equated for rated arousal. Each picture in the
resulting 12 affective picture series was presented on a monitor for 10 s, without an inter-
stimulus interval, resulting in a total presentation time of 6 min for each series. The picture
order within each series was randomized for each volunteer using experimental stimulus
software (Presentation, Neurobehavioral Systems Inc., Albany, NY).

Evaluative Ratings
Evaluative ratings of hedonic valence and arousal were obtained after each 6-min picture
series using a paper and pencil version of the Self-Assessment Manikin (SAM, Bradley &
Lang, 1994), which acquires ratings of valence and arousal using a 9-point scale.

Respiratory Sensation
Participants rated the experienced intensity of the inspiratory occlusions after each picture
series on a horizontal visual analog scale (100 mm), ranging from 0 ( = not noticeable) to
100 ( = maximally imaginable intensity).
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Physiological Data Collection and Reduction
As illustrated in Figure 1, participants breathed, via a mouthpiece, through a breathing
circuit consisting of a non-rebreathing two-way valve (Hans Rudolph Inc., Kansas City,
MO) with the nose occluded by a clip. The inspiratory port of the valve was connected to a
pressure-activated occluder. Mouth pressure (Pm, in cmH2O) was continuously recorded
from a port in the center of the non-rebreathing valve by a differential-pressure transducer
(model MP-45, Validyne Engineering, Northridge, CA), connected to a PowerLab biosignal
recording unit (ADInstruments, Bella Vista, Australia), and displayed on a monitor by the
biosignal software package Labview (ADInstruments). Inspiration was interrupted by
manual activation of the occluder after the onset of inspiration as indicated by the Pm signal
on the monitor with a parallel marker signal being sent to the EEG recorder. Because of the
great interindividual variability in breathing patterns and durations of end expiratory pauses,
manual occluder activations have the advantage of a more precise presentation of an
occlusion directly after the onset of inspiratory flow, which is hardly achievable with time-
locked activation routines. Occlusions (500 ms duration) were presented every two to six
breaths during picture viewing, resulting in 107, 105, and 108 occlusions (means across
participants) for the pleasant, neutral, and unpleasant picture series, respectively.

To characterize the effects of affective content on the respiratory motor drive, the P0.1 (in
cmH2O) was measured every 60 s during picture viewing. P0.1 is the negative inspiratory
occlusion pressure at the mouth (Pm) 100 ms after the onset of an inspiratory effort against a
closed airway and reflects the summed motor output of the central respiratory controller
(Whitelaw & Derenne, 1993). P0.1 was derived offline from the continuous Pm signal with
the biosignal software package Labview. To avoid biases in the EEG signal averaging,
inspiratory occlusions for the measurement of P0.1 were not included in the RREP.

Skin conductance activity was measured as an autonomic marker of affective arousal using
Ag/AgCl standard electrodes, filled with 0.05-m NaCl Unibase paste and attached to the
distal phalanx of the left ring and small finger. A signal in the range of 0–40 µS was
acquired with a GSR Amp (ADInstruments) and conveyed to the PowerLab biosignal
recording unit (ADInstruments), connected to the biosignal software package Labview.
Using a scoring algorithm in Matlab (The MathWorks, Natick, MA), the number of skin
conductance responses was calculated offline for each series using the common minimal
response amplitude of >0.05 µS (Dawson, Schell, & Filion, 2000).

EEG data were recorded from the scalp using a 129-channel system (Electrical Geodesics
Inc., Eugene, OR). Scalp impedance for each sensor was kept below 70 kΩ. The EEG was
recorded continuously with a sampling rate of 250 Hz, with the vertex sensor as reference
electrode, and on-line bandpass filtered from 0.01 to 100 Hz. All further processing was
performed offline, using functions built into BESA 5.1. First, continuous EEG data were
low-pass filtered at 30 Hz using a digital filter. Segments with occlusions for P0.1
measurements as well as incomplete inspiratory occlusions (e.g., due to swallowing or
delayed triggering) were removed based on visual off-line inspection of the Pm signal. Raw
EEG data were visually inspected and were corrected for ocular artifacts (blinks and eye
movements) using the algorithm implemented in BESA (see Ille, Berg, & Scherg, 2002).
Single channels that were flat or showed bad signal throughout were interpolated, with a
maximum of twelve channels per subject that were not located at adjacent scalp areas.
Epochs were then extracted, including a segment ranging from 200 ms before until 1000 ms
after stimulus onset. Using a maximum of 200 µVas the cutoff amplitude, 82, 83, and 85
occlusion epochs were retained on average for the pleasant, neutral, and unpleasant picture
series, respectively.
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Based on previous RREP reports (Bloch-Salisbury et al., 1998; Chou & Davenport, 2007;
Davenport et al., 1986, 1996, 2007; Harver et al., 1995; Logie et al., 1998; Redolfi et al.,
2005; Webster & Colrain, 2000a, 2000b), the RREP components were identified as follows:
Nf was the negative peak in the frontal region (latency: 25–45 ms), P1 was the positive peak
in the centro-parietal region (latency: 45–65 ms), N1 was the negative peak in the centro-
lateral region (latency: 85–125 ms), P2 was the positive peak in the centro-parietal region
(latency: 180–230 ms), and P3 was the positive peak in the centro-parietal region (latency:
250–350 ms).

The late positive potential (LPP) was defined by averaging over a set of centro-parietal
sensors in a window from 400–700 ms after the onset of each picture (Keil, Bradley, Hauk,
Rockstroh, Elbert, & Lang, 2002).

Procedure
After positioning of the EEG sensor net, skin conductance electrodes, and nose clip,
participants were seated in a recliner and breathed through the breathing circuit. The
experimental protocol was divided into 4 blocks. In each block, participants were presented
3 picture series (1 pleasant, 1 neutral, 1 unpleasant) in randomized order while the late
positive potential, RREP, P0.1, and skin conductance were measured. Each series was
preceded by a 1-min habituation epoch to allow adaptation to the mouthpiece breathing,
during which no inspiratory occlusions were presented. In order to focus attention on the
respiratory stimulus in all picture series, participants were instructed to press a button every
time they perceived an inspiratory occlusion, and button presses were recorded.

Immediately after each picture series, participants rated hedonic valence and arousal using
SAM and the perceived intensity of the respiratory stimulus on a visual analog scale,
followed by a 2-min rest period. After each block of 3 picture series, participants were
allowed a longer rest period of 5 min. The presentation order of the 4-picture series for each
valence category (pleasant, neutral, unpleasant) across the first, second, third, or fourth
block was randomized across participants. The consent form informed participants that they
might view ‘‘sexually explicit pictures or violent pictures,’’ but apart from that, participants
received no prior information regarding the emotional content of the picture series.

Statistical Analysis
Accuracy of occlusion detection was calculated as the proportion (%) of correct responses
(i.e., number correct of the total number of occlusions presented within one picture series).
The late positive potential, skin conductance responses, P0.1, button press, and ratings of
hedonic valence, arousal, and intensity of inspiratory occlusions were averaged across the 4-
picture series for each of the three picture contents and analyzed in separate one-way
ANOVAs with picture content (pleasant, neutral, unpleasant) as a repeated measure.

RREP components were analyzed in separate two-way repeated measures ANOVAs with
3(hedonic content) × 2(hemisphere: left vs. right) levels, followed up by separate on-way
ANOVAs (hedonic content) for each hemisphere. Hemisphere was included as a factor
because of earlier findings suggesting hemispheric differences in RREP amplitudes
(Revelette & Davenport, 1990). A Greenhouse-Geisser correction was applied in case of
violated sphericity assumptions with reported significance levels referring to corrected
degrees of freedom. All analyses were calculated with SPSS 15.0 software (SPSS Inc.,
Chicago, IL) using a .05 significance level.
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Results
Manipulation Check

Evaluative reports—As illustrated in Figure 2, evaluative ratings differed significantly
following viewing of pleasant, neutral or unpleasant picture series, in both rated hedonic
valence F(2,26) = 56.52, p < .001, η2 = 0.81 and rated arousal, F(2,26) = 30.27, p < .001, η2

= 0.70. Hedonic valence ratings showed the expected increase from unpleasant to neutral to
pleasant series with significant differences between all series (unpleasant vs. neutral: t(13) =
7.41, p < .001; pleasant vs. neutral: t(13) = 5.82, p < .001; unpleasant vs. pleasant: t(13) =
8.49, p < .001). Ratings of affective arousal demonstrated the expected higher arousal during
the pleasant and unpleasant series compared to the neutral series (pleasant vs. neutral: t(13)
= 7.09, p < .001; unpleasant vs. neutral: t(13) = 5.59, p < .001). No difference in arousal
reports was found between the pleasant and unpleasant series (t(13) = −0.51, n.s.).

Respiratory motor drive—P0.1 differed significantly between the three categories of
affective pictures, F(2,26) = 11.77, p < .001, η2 = 0.48. Replicating previous data (Van Diest
et al., 2009), higher negative P0.1 values were found during the pleasant (−1.43 ± 0.67
cmH2O) and unpleasant series (−1.56 ± 0.59 cmH2O), compared to the neutral series (−1.28
± 0.69 cmH2O) (pleasant vs. neutral: t(13) = −2.83, p < .01; unpleasant vs. neutral: t(13) =
4.69, p < .001). In addition, P0.1 values were slightly more negative during the unpleasant
compared to the pleasant series (t(13) = 2.12, p < .05).

Skin conductance responses—The number of skin conductance responses (Figure 2)
differed marginally between the three categories of affective pictures, F(2,26) = 2.82, p < .
08, η2 = 0.18. More skin conductance responses were observed during the pleasant and
unpleasant series compared to the neutral series (pleasant vs. neutral: t(13) = 1.83, p < .05;
unpleasant vs. neutral: t(13) = −2.40, p < .05) without differences between the pleasant and
unpleasant series (t(13) = −0.51, n.s.).

Late positive potential—The late positive potential differed significantly when viewing
pleasant, neutral, and unpleasant picture series, F(2,26) = 5.14, p < .05, η2 = 0.28. Follow-up
tests indicated larger late positive potentials when viewing pleasant (0.73 ± 1.08 µV) or
unpleasant series (0.67 ± 0.76 µV) compared to the neutral series (0.07 ± 1.02 µV) (pleasant
vs. neutral: t(13) = 2.55, p < .05; unpleasant vs. neutral: t(13) = −3.05, p < .01). No
difference in the late positive potential was found between the pleasant and unpleasant series
(t(13) = 0.25, n.s.).

Respiratory-Related Evoked Potential
As illustrated in Figure 1, the commonly observed RREP components Nf, P1, N1, P2, and
P3 were obtained (see Table 2). The ANOVA for the P3 component indicated a significant
interaction of hedonic content and hemisphere F(2,26) = 3.56, p < .05, η2 = 0.22. Follow-up
analyses indicated a significant difference in P3 magnitude for inspiratory occlusions as a
function of picture content in the left hemisphere, F(2,26) = 3.33, p < .05, η2 = 0.20. As
shown in Figure 3, P3 magnitude was reduced in the left hemisphere for inspiratory
occlusions presented when participants were viewing either pleasant or unpleasant pictures,
compared to when they were viewing neutral pictures (pleasant vs. neutral: t(13) = −2.68, p
< .01; unpleasant vs. neutral: t(13)=1.96, p < .05). No difference in P3 magnitude was found
between the pleasant and unpleasant series (t(13) = 0.17, n.s.). The pattern of P3 modulation
was similar in the right hemisphere (see Table 2), but did not reach statistical significance.
No differences as a function of picture content were observed for the other RREP
components (e.g., Nf, P1, N1, and P2).

von Leupoldt et al. Page 6

Psychophysiology. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Respiratory Sensation
No difference in the accuracy of detecting respiratory occlusions was observed as a function
of pleasant, neutral, and unpleasant picture content (98.2, 97.8, and 98.8, respectively),
suggesting a similar attentional focus to the inspiratory occlusions across the three picture
categories. As illustrated in Figure 2, ratings of the perceived intensity of inspiratory
occlusions differed significantly as a function of picture content, F(2,26) = 4.14, p < .05, η2

= 0.24. Higher intensity ratings were found following unpleasant picture series, compared to
neutral pictures, t(13) = −2.84, p < .01, whereas a similar trend to report higher respiratory
sensation following the pleasant picture series did not reach statistical significance, t(13) =
1.83, n.s. No difference in intensity ratings was observed between the pleasant and
unpleasant series (t(13) = −0.89, n.s.).

Discussion
When viewing emotional pictures, enhanced arousal ratings, autonomic skin conductance
activity and centro-parietal late positive potentials were observed, compared to when
viewing neutral pictures. These results replicate previous studies finding that this pattern of
modulation is associated with emotional engagement (e.g., Bradley, Cuthbert, & Lang,
1996; Cuthbert et al., 2000; Lang, Greenwald, Bradley, & Hamm, 1993; Smith, Bradley, &
Lang, 2005; for review, see Bradley & Lang, 2007). Similarly, the respiratory motor drive
showed modulation by emotional arousal, with higher P0.1 during pleasant and unpleasant
series compared to neutral series, which also replicates previous findings demonstrating
increases in P0.1 (Van Diest et al., 2009) or other respiratory measures (Boiten, Frijda, &
Wientjes, 1994; Gomez, Shafy, & Danuser, 2008; Kreibig, Wilhelm, Roth, & Gross, 2007;
Ritz, George, & Dahme, 2000) during arousing emotional states.

Most importantly, the later RREP component P3 measured to brief inspiratory occlusions
presented when viewing emotional (pleasant or unpleasant) picture series was reduced
compared to when the same respiratory probe was presented in the context of a neutral
picture series. No influence of emotion was found for the earlier components of the RREP
(e.g., Nf, P1, N1, or P2). These findings suggest that emotional processing impacts the
perception of internal respiratory sensations in a manner very similar to that found for
external sensory probes (e.g., Cuthbert et al., 1998; Keil et al., 2007; Kenntner-Mabiala et
al., 2008). This effect can be related to the theoretical concept of motivated attention, in
which emotional stimuli are held to naturally engage attentional resources, reducing the
amount available for processing other cues (Bradley & Lang, 2007; Lang, Bradley, &
Cuthbert, 1997). That is, the processing of affectively arousing and motivationally relevant
stimuli demands resources, reducing those available even for processing afferent sensory
respiratory signals such as those presented here.

Attenuation of the P3 component of RREPs during emotional processing suggests that the
attenuated processing of sensory signals by emotion (as indexed by probe P3 amplitude) is a
salient feature across different sensory modalities, including internal respiratory stimulation.
Thus, processing of either external or internal sensory stimuli seems similarly modulated
when affective cues capture attention. In line with this assumption are previous findings
demonstrating that perception-related brain structures such as the insular cortex are
commonly activated during externally applied noxious thermal stimulation and internal
rectal balloon distension (Dunckley et al., 2005) as well as during externally applied heat
pain and internally generated dyspnea due to increased respiratory muscle effort (von
Leupoldt et al., 2008b). Similarly, reduced perceptual sensitivity for both externally applied
pain and internally generated dyspnea due to increased respiratory muscle effort has been
observed following stroke-related reductions in insular cortex activity (Schön et al., 2008).
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Taken together, the data suggest that the neural processing of respiratory signals is
attenuated in the context of high emotional arousal.

Stronger attenuation of the P3 component of the RREP during emotional processing was
found in the left hemisphere, although the pattern was similar in the right hemisphere as
well. It might be speculated that the general tendency across all picture categories for
smaller P2 and P3 amplitude of the RREP in the right hemisphere might have resulted in a
floor effect, preventing strong emotional modulation of the P3 component in this
hemisphere.

Whereas the P3 amplitude of the RREP was attenuated during affective processing, reports
of respiratory sensation were higher following the arousing unpleasant picture series, with a
similar trend toward reports of higher sensation following the arousing pleasant series as
well. One interpretation centers on the fact that reports of respiratory experience were
retrospective and occurred concurrently with ratings of the hedonic valence and arousal of
the picture series that were just viewed. In this case, reports of respiratory sensation may
primarily reflect what participants might have expected to occur when emotion is elicited
(e.g., more intense respiratory experience). If reports of the intensity of the inspiratory
occlusion were obtained coincident with each probe, this hypothesis would predict similar
affective modulation as the ERP, and can be pursued in future studies.

A second interpretation is that experienced emotional arousal enhances the evaluative
judgments of respiratory sensations (Janssens, Verleden, De Peuter, Van Diest, & Van den
Bergh, 2009; Rietveld, 2003). This is consistent with previous studies that found increased
ratings of respiratory sensations in individuals characterized by high negative emotionality
(Bogaerts et al., 2005; De Peuter et al., 2008; Han et al., 2004; Li et al., 2006; Livermore et
al., 2008; Put et al., 2004; Vögele & von Leupoldt, 2008) and increased reports of
respiratory sensations elicited by CO2 inhalation, exercise, or resistive-loaded breathing
following experimental induction of negative emotional states using unpleasant odours,
films, or affective picture series (Bogaerts et al., 2005; Rietveld & Prins, 1998; von
Leupoldt, Mertz et al., 2006; von Leupoldt, Riedel, & Dahme, 2006; von Leupoldt et al.,
2008a). This could lead to less efficient disease management in some individuals, as patients
with respiratory diseases with a comorbid depression or anxiety disorder show inadequate
medication use (Main et al., 2003), frequent visits to the physician (Feldman, Lehrer,
Borson, Hallstrand, & Siddique, 2005), and higher rehospitalization rates (Dahlen & Janson,
2002). From a clinical perspective, the detection of symptoms of negative emotionality in
respiratory patients would therefore appear to be highly important for successful disease
management (Carrieri-Kohlman et al., 2001), including psychotherapeutic interventions that
can successfully reduce the symptoms (Chetta et al., 2005; Kaplan & Ries, 2002; Kunik et
al., 2008).

In summary, the results of this study demonstrate that emotion impacts the perception of
respiratory sensations in healthy individuals as evidenced by an attenuation of the P3
component of the respiratory-related evoked potential elicited by short inspiratory
occlusions. No emotional impact on earlier components such as Nf, P1, N1, and P2 was
observed. Following emotional exposure, retrospective reports of respiratory sensation were,
however, enhanced. Future studies that focus on respiratory patient groups will be important
in determining whether emotional attenuation of the neural processing of respiratory sensory
signals and evaluative reports are comparable in individuals suffering from affective
symptoms and/or respiratory disorders.
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Figure 1.
Schematic representation of the experimental set-up. The graphs superimposed on the head
demonstrate the group mean scalp topography of the respiratory-related evoked potential
averaged across all picture series according to standard sensor placements of the
International 10/20 System.
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Figure 2.
Mean ratings of hedonic valence (left upper panel), arousal (right upper panel), intensity of
respiratory occlusion (right lower panel) and mean skin conductance responses (left lower
panel) during pleasant, neutral, and unpleasant affective picture series. Error bars represent
standard deviations of the mean. *p < .05, **p < .01, ***p < .001.
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Figure 3.
Group mean respiratory-related evoked potential over the left hemispheric centro-parietal
region elicited by inspiratory occlusions during pleasant, neutral, and unpleasant affective
picture series. In addition, the group mean scalp topography for the P3 is shown, averaged
across the pleasant, neutral, and unpleasant series.
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Table 1

Baseline Characteristics of Participants (Means, SD)

Characteristics Data

Age (yrs) 19.7 (2.2)

Sex (female/male) 6/8

Weight (kg) 69.7 (13.1)

Height (cm) 177.3 (13.4)

Forced expiratory volume in 1 s (L) 3.75 (.67)

Forced expiratory volume in 1 s (% of predicted value) 95.3 (10.6)

Forced vital capacity (L) 4.43 (.96)

Forced vital capacity (% of predicted value) 97.1 (13.4)

Forced expiratory volume in 1 s/Forced vital capacity (%) 83.9 (8.13)

Depression 6.0 (4.3)

State anxiety 34.5 (7.4)

Trait anxiety 35.4 (6.9)
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