
Multi-Scale Modeling of Tissues Using CompuCell3D

Maciej H. Swat*, Gilberto L. Thomas*,†, Julio M. Belmonte*, Abbas Shirinifard*, Dimitrij
Hmeljak*, and James A. Glazier*

*Department of Physics, Biocomplexity Institute, Indiana University, Bloomington, Indiana, USA
†Instituto de Física, Universidade Federal do Rio Grande do Sul, C.P. 15051, Porto Alegre, Brazil

Abstract
The study of how cells interact to produce tissue development, homeostasis, or diseases was, until
recently, almost purely experimental. Now, multi-cell computer simulation methods, ranging from
relatively simple cellular automata to complex immersed-boundary and finite-element mechanistic
models, allow in silico study of multi-cell phenomena at the tissue scale based on biologically
observed cell behaviors and interactions such as movement, adhesion, growth, death, mitosis,
secretion of chemicals, chemotaxis, etc. This tutorial introduces the lattice-based Glazier–Graner–
Hogeweg (GGH) Monte Carlo multi-cell modeling and the open-source GGH-based
CompuCell3D simulation environment that allows rapid and intuitive modeling and simulation of
cellular and multi-cellular behaviors in the context of tissue formation and subsequent dynamics.
We also present a walkthrough of four biological models and their associated simulations that
demonstrate the capabilities of the GGH and CompuCell3D.

I. Introduction
A key challenge in modern biology is to understand how molecular-scale machinery leads to
complex functional structures at the scale of tissues, organs, and organisms. While
experiments provide the ultimate verification of biological hypotheses, models and
subsequent computer simulations are increasingly useful in suggesting both hypotheses and
experiments to test them. Identifying and quantifying the cell-level interactions that play
vital roles in pattern formation will aid the search for treatments for developmental diseases
like cancer and for techniques to develop novel cellular structures.

Unlike experiments, models are fast to develop, do not require costly apparatus, and are easy
to modify. However, abstracting the complexity of living cells or tissues into a relatively
simple mathematical/computational formalism is difficult. Creating mathematical models of
cells and cell–cell interactions that can be implemented efficiently in software requires
drastic simplifications: no complete model could be solved within a reasonable time period.

Consequently, the quality and reliability of mathematical models depend on how well
complex cell behaviors can be represented using simplified mathematical approaches.

Tissue-scale models explain how local interactions within and between cells lead to complex
biological patterning. The two main approaches to tissue modeling are (1) Continuum
models, which use cell-density fields and partial differential equations (PDEs) to model cell
interactions without explicit representations of cells, and (2) Agent-based models, which
represent individual cells and interactions explicitly. Agent-based in silico experiments are

Copyright 2012, Elsevier Inc. All rights reserved.

NIH Public Access
Author Manuscript
Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

Published in final edited form as:
Methods Cell Biol. 2012 ; 110: 325–366. doi:10.1016/B978-0-12-388403-9.00013-8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



gaining popularity because they allow control of the level of detail with which individual
cells are represented.

II. Glazier-Graner-Hogeweg (GGH)Modeling
The GGH model (Glazier and Graner, 1992; Graner and Glazier, 1993) provides an intuitive
mathematical formalism to map observed cell behaviors and interactions onto a relatively
small set of model parameters – making it attractive both to wet-lab and computational
biologists.

Like all models, the GGH technique has a typical application domain: modeling soft tissues
with motile cells at single-cell resolution. The GGH has been continuously and successfully
applied to model biological and biomedical processes, including Tumor growth (Dormann et
al., 2001; dos Reis et al., 2003; Drasdo et al., 2003; Holm et al., 1991; Turner and Sherratt,
2002), Gastrulation (Drasdo and Forgacs, 2000; Drasdo et al., 1995; Longo et al., 2004),
Skin pigmentation (Collier et al., 1996; Honda et al., 2002; Wearing et al., 2000),
Neurospheres (Zhdanov and Kasemo, 2004a,b), Angiogenesis (Ambrosi et al., 2004;
Ambrosi et al., 2005; Gamba et al., 2003; Merks et al., 2008; Merks and Glazier, 2006;
Murray, 2003; Pierce et al., 2004; Serini et al., 2003), the Immune system (Kesmir and de
Boer, 2003; Meyer-Hermann et al., 2001), Yeast colony growth (Nguyen et al., 2004;
Walther et al., 2004), Myxobacteria (Alber et al., 2006; Arlotti et al., 2004; Börner et al.,
2002; Bussemaker et al., 1997; Dormann et al., 2001), Stem cell differentiation (Knewitz
and Mombach, 2006; Zhdanov and Kasemo, 2004a,b), Dictyostelium discoideum (Marée
and Hogeweg, 2001, 2002; Marée et al., 1999a,b; Savill and Hogeweg, 1997), Simulated
evolution (Groenenboom and Hogeweg, 2002; Groenenboom et al., 2005; Hogeweg, 2000;
Johnston, 1998; Kesmir et al., 2003; Pagie and Mochizuki, 2002), General developmental
patterning (Honda and Mochizuki, 2002; Zhang et al., 2011), Convergent extension (Zajac,
2002; Zajac et al., 2002; Zajac et al., 2003), Epidermal formation (Savill and Sherratt, 2003)
Hydra regeneration (Mombach et al., 2001; Rieu et al., 2000), Plant growth, (Grieneisen et
al., 2007), Retinal patterning (Mochizuki, 2002; Takesue et al., 1998), Wound healing
(Dallon et al., 2000; Maini et al., 2002; Savill and Sherratt, 2003), Biofilms (Kreft et al.,
2001; Picioreanu et al., 2001; Poplawski et al., 2008; Van Loosdrecht et al., 2002), Limb
bud development (Chaturvedi et al., 2004; Poplawski et al., 2007), somite segmentation
(Glazier et al., 2008; Hester et al., 2011), vascular system development (Merks and Glazier,
2006), choroidal neovascularization, lumen formation, cellular intercalation (Zajac et al.,
2000, 2003), etc.….

The GGH model represents a single region in space by multiple regular lattices (the cell
lattice and optional field lattices). Most GGH model objects live on one of these lattices. The
most fundamental GGH object, a generalized cell, may represent a biological cell, a
subcellular compartment, a cluster of cells, or a piece of non-cellular material or surrounding
medium. Each generalized cell is an extended domain of lattice pixels in the cell lattice that
share a common index (referred to as the cell index σ). A biological cell can be composed of
one or more generalized cells. In the latter case, the biological cell is defined as a cluster of
generalized cells called subcells, which can describe cell compartments, complex cell
shapes, cell polarity, etc.…. For details on subcells, see Walther et al., 2004; Borner et al.,
2002; Glazier et al., 2007; Walther et al., 2005.

Each generalized cell has an associated list of attributes, e.g., cell type, surface area and
volume, and more complex attributes describing its state, biochemical networks, etc.….
Interaction descriptions and dynamics define how GGH objects behave.

The effective energy (H) Eq. (1) implements most cell properties, behaviors and interactions
via constraint terms in H (Glazier et al., 1998; Glazier and Graner, 1993; Glazier, 1993,

Swat et al. Page 2

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



1996; Glazier et al., 1995; Graner and Glazier, 1992; Mombach et al., 1995; Mombach and
Glazier, 1996). Since the terminology has led to some confusion in the past, we emphasize
that the effective energy is simply a way to produce a desired set of cell behaviors and does
not represent the physical energy of the cells.

In a typical GGH model, cells have defined volumes area, and interact via contact adhesion,
so H is:

(1)

The first sum, over all pairs of neighboring lattice sites i ⃑ and j⃑, calculates the boundary or
contactenergy between neighboring cells to implement adhesive interactions. J(τ(σi⃑),
τ(σi⃑))is the boundary energy per unit contact area for a pair of cells, with σi⃑ of type τ(σi⃑)
occupying cell-lattice site i⃑ and σi⃑ of type τ(σi⃑) occupying cell-lattice site j⃑. The delta
function restricts the contact-energy contribution to cell-cell interfaces. We specify J(τ(σi⃑),
τ(σi⃑)) as a matrix indexed by the cell types. In practice, the range of cell types - τ(σi⃑)-is
quite limited, whereas the range of cell indexes σi⃑ can be quite large, since σ enumerates all
generalized cells in the simulation. Higher contact energies between cells result in greater
repulsion between cells and lower contact energies result in greater adhesion between cells.

The second sum in (1), over all generalized cells, calculates the effective energy due to the
volume constraint. Deviations of the volume area of cell σ from its target value (Vt(σ)),
increase the effective energy, penalizing these deviations. On average, a cell will occupy a
number of pixels slightly smaller than its target volume due to surface tension from the
contact energies (J). The parameter λvol behaves like a Young’ s modulus, or inverse
compressibility, with higher values reducing fluctuations of a cell’s volume about its target
value. The volume constraint defines P = 2λvol(σ)(v(σ) − (Vt(σ)) as the pressure inside the
cell. In similar fashion we can implement a constraint on cell’s surface or membrane area.

Cell dynamics in the GGH model provide a simplified representation of cytoskeletally-
driven cell motility using a stochastic modified Metropolis algorithm (Cipra, 1987)
consisting of a series of index-copy attempts (see Figs. 1 and 2). Before each attempt, the
algorithm randomly selects a target site in the cell lattice, i⃑, and a neighboring source site i⃑′.
If different generalized cells occupy these sites, the algorithm sets σi⃑ = σi⃑′ with probability
P(σi⃑ → σi⃑′), given by the Boltzmann acceptance function (Metropolis et al., 1953):

(2)

where ΔH is the change in the effective energy if the copy occurs and Tm is a parameter
describing the amplitude of cell-membrane fluctuations. Tm can be specified globally or be
cell specific or cell-type specific.

The average value of the ratio ΔH/Tm for a given generalized cell determines the amplitude
of fluctuations of the cell boundaries. High ΔH/Tm results in rigid, barely- or non-motile
cells and little cell rearrangement. For low ΔH/Tm, large fluctuations allow a high degree of
cell motility and rearrangement. For extremely low ΔH/Tm, cells may fragment in the
absence of a constraint sufficient to maintain the integrity of the borders between them.
Because ΔH/Tm is a ratio, we can achieve appropriate cell motilities by varying either Tm or
ΔH. Varying Tm allows us to explore the impact of global changes in cytoskeletal activity.

Swat et al. Page 3

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Varying ΔH allows us to control the relative motility of the cell types or of individual cells
by varying, for example, cells’ inverse compressibility (λvol), the target volume (Vt) or the
contact energies (J).

An index copy that increases the effective energy, e.g., by increasing deviations from target
values for cell volume or surface area or juxtaposing mutually repulsive cells, is improbable.
Thus, the cell pattern evolves in a manner consistent with the biologically-relevant
“guidelines” incorporated in the effective energy: cells maintain volumes close to their
target values, mutually adhesive cells stick together, mutually repulsive cells separate, etc.
…. The Metropolis algorithm evolves the cell-lattice configuration to simultaneously satisfy
the constraints, to the extent to which they are compatible, with perfect damping (i.e.,
average velocities are proportional to applied forces). Thus, the average time-evolution of
the cell lattice corresponds to that achievable deterministically using finite-element or
center-model methodologies with perfect damping.

A Monte Carlo Step (MCS) is defined as N index-copy attempts, where N is the number of
sites in the cell lattice, and sets the natural unit of time in the model. The conversion
between MCS and experimental time depends on the average value of ΔH/Tm. In
biologically-meaningful situations, MCS and experimental time are proportional (Alber et
al., 2002, 2004; Novak et al., 1999; Cickovski et al., 2007).

In addition to generalized cells, a GGH model may contain other objects such as chemical
fields and biochemical networks as well as auxiliary equations to describe behaviors like cell
growth, division and rule-based differentiation. Fields evolve due to secretion, absorption,
diffusion, reaction and decay according to appropriate PDEs. While complex coupled-PDEs
are possible, most models require only secretion, absorption, diffusion and decay.
Subcellular biochemical networks are usually described by ordinary differential equations
(ODEs) inside individual generalized cells.

Extracellular chemical fields and subcellular networks affect generalized-cell behaviors by
modifying the effective energy (e.g., changes in cell target volume due to chemical
absorption, chemotaxis in response to a field gradient or cell differentiation based on the
internal state of a genetic network).

From a modeler’s viewpoint the GGH technique has significant advantages compared to
other methods. A single processor can run a GGH simulation of tens to hundreds of
thousands of cells on lattices of up to 10243 sites. Because of the regular lattice, GGH
simulations are often much faster than equivalent adaptive-mesh finite element simulations
operating at the same spatial granularity and level of modeling detail. For smaller
simulations, the speed of the GGH allows fine-grained sweeps to explore the effects of
parameters, initial conditions, or details of biological models. Adding biological
mechanisms to the GGH is as simple as adding new terms to the effective energy. GGH
solutions are usually structurally stable, so accuracy degrades gracefully as resolution is
reduced. The ability to model cells as deformable entities allows modelers to explore
phenomena such as apical constriction leading to invagination, which are much harder to
model using, for example, center models. However, the lattice-based representation of cells
has also some drawbacks. The cell surface is pixelated, complicating measurements of
surface area and curvature. The fixed discretization makes explicit modeling of fibers or
membranes expensive, since the lattice constant must be set to the smallest scale to be
explicitly represented. Cell membrane fluctuations are also caricatured as a result of the
fixed spatial resolution. However, the latest versions of CC3D support a layer of finite-
element links which have length but zero diameter. These can be used to represent fibers or
membranes, allowing a simulation to combine the advantages of both methods at the cost of

Swat et al. Page 4

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



increased model complexity. In addition, the maximum speed with which cells can move on
the cell lattice is approx. 0.1 pixel per MCS, which often fixes a finer time resolution than
needed for other processes in a simulation. A more fundamental issue is that CC3D
generalized cells move by destroying pixels and creating pixels, so rigid-body motion and
advection are absent unless they are implemented explicitly. CC3D provides tools for both.
The rigid-body simulators in CC3D are increasingly popular, but the advection solvers have
so far been little used.

The canonical formulation of the GGH is derived from statistical physics. Consequently
some of its terminology and concepts may initially seem unnatural to wet-lab biologist. To
connect experimentally measured quantities to simulation parameters we employ a set of
experimental and analysis techniques to extract parameter values. For example, even though
the GGH intrinsic cell motility is not accessible in an experiment, the diffusion constant of
cells in aggregates can be measured in both simulation and experiments. We can then adjust
the GGH motility to make the diffusion constants match. Similarly, we can determine the
effective form and strength of a cell’s chemotaxis behavior from experimental dose response
curves of net cell migration in response to net concentration gradients of particular
chemoattractant. For example, if a cell of given type in a given gradient in a given
environment moves with a given velocity, we can then fit the GGH chemotaxis parameters
so the simulated cells reproduce that velocity. The GGH contact energies between cells can
also be set to provide the experimentally accessible surface tensions between tissues
(Glazier and Graner, 1992; Graner and Glazier, 1993; Glazier et al., 2008; Steinberg, 2007).
When experimental parameter values are not available, we perform a series of simulations
varying the unknown parameter(s) and fit to match a macroscopic dynamic pattern which we
can determine experimentally.

To speed execution, CompuCell3D models often reduce 3D simulations to their 2D analogs.
While moving from 3D to 2D or vice versa is much easier in CC3D than in an adaptive
mesh finite element simulation, the GGH formalism still requires rescaling of most model
parameters. At the moment, such rescaling must be done by hand. E.g. in 2D, a pixel on a
regular square lattice has 4 nearest neighbors, while in 3D it has 6 nearest neighbors.
Therefore all parameters which involve areas surface (e.g. the surface area constraint, or
contact energies) have to be rescaled. To simplify diffusion calculations, we often assume
that diffusion takes place uniformly everywhere in space, with cells secreting or taking up
chemicals at their centers of mass. This approach caricatures real diffusion, where chemicals
are secreted through cell membranes and diffuse primarily in the extracellular space, which
may itself have anisotropic or hindered diffusion. Since most CC3D simulations neglect
intercellular spaces smaller than one or two microns, we connect to real extracellular
diffusion by choosing the CC3D diffusion coefficient so that the effective diffusion length in
the simulation corresponds to that measured in the experiment.

Overall, despite these issues, the mathematical elegance and simplicity of the GGH
formalism has led to substantial popularity.

III. CompuCell3D
CC3D allows users to build sophisticated models more easily and quickly than does
specialized custom code. It also facilitates model reuse and sharing.

A CC3D model consists of CC3DML scripts (an XML-based format), Python scripts, and
files specifying the initial configurations of the cell lattice and of any fields. The CC3DML
script specifies basic GGH parameters such as lattice dimensions, cell types, biological
mechanisms, and auxiliary information, such as file paths. Python scripts primarily monitor

Swat et al. Page 5

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the state of the simulation and implement changes in cell behaviors, for example, changing
the type of a cell depending on the oxygen partial pressure in a simulated tumor.

CC3D is modular, loading only the modules needed for a particular model. Modules that
calculate effective energy terms or monitor events on the cell lattice are called plugins.
Effective-energy calculations are invoked every pixel-copy attempt, while cell-lattice
monitoring plugins run whenever an index copy occurs. Because plugins are the most
frequently called modules in CC3D, most are coded in C++ for speed.

Modules called steppables usually perform operations on cells, not on pixels. Steppables are
called at fixed intervals measured in MCS. Steppables have three main uses: (1) to adjust
cell parameters in response to simulation events,1 (2) to solve PDEs, (3) to load simulation
initial conditions or save simulation results. Most steppables are implemented in Python.
Much of the flexibility of CC3D comes from user-defined Python steppables.

The CC3D kernel supports parallel computation in shared-memory architectures (via
OpenMP), providing substantial speedups on multi-core computers.

Besides the computational kernel of CC3D, the main components of the CC3D environment
are (1) Twedit++-CC3D – a model editor and code generator, (2) CellDraw – a graphical
tool for configuring the initial cell lattice, (3) CC3D Player – a graphical tool for running,
replaying, and analyzing simulations.

Twedit++-CC3D provides a Simulation Wizard that generates draft CC3D model code
based on high-level specification of simulation objects such as cell types and their
behaviors, fields and interactions. Currently, the user must adjust default parameters in the
autogenerated draft code, but later versions will provide interfaces for parameter
specification. Twedit++-CC3D also provides a Python code-snippet generator, which
simplifies coding Python CC3D modules.

CellDraw (Fig. 3) allows users to draw regions that it fills with cells of user-specified types.
It also imports microscope images for manual segmentation, and automates the conversion
of segmented regions – from TIFF sequences generated by 3rd party tools such as Fiji/
ImageJ/TrakEM2 – for importing into CC3D.

CC3D Player is a graphical interface that loads and executes CC3D models. It allows users
to change model parameters during execution (steering), define multiple 2D and 3D
visualizations of the cell lattice and fields and conduct real-time simulation analysis. CC3D
Player also supports batch mode execution on clusters.

IV. Building CC3D Models
This section presents some typical applications of GGH and CC3D. We use Twedit++-
CC3D code generation and explain how to turn automatically generated draft code into
executable models. All of the parameters appearing in the autogenerated simulation scripts
are set to their default values.

A. Cell-Sorting Model
Cell sorting due to differential adhesion between cells of different types is one of the basic
mechanisms creating tissue domains during development and wound healing and in

1We will use the word model to describe the specification of a particular biological system and simulation to refer to a specific
instance of the execution of such a model.

Swat et al. Page 6

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



maintaining domains in homeostasis. In a classic in vitro cell sorting experiment to
determine relative cell adhesivities in embryonic tissues, mesenchymal cells of different
types are dissociated, then randomly mixed and reaggregated. Their motility and differential
adhesivities then lead them to rearrange to reestablish coherent homogenous domains with
the most cohesive cell type surrounded by the less-cohesive cell types (Armstrong and
Armstrong, 1984; Armstrong and Parenti, 1972). The simulation of the sorting of two cell
types was the original motivation for the development of GGH methods. Such simple
simulations show that the final configuration depends only on the hierarchy of adhesivities,
whereas the sorting dynamics depends on the ratio of the adhesive energies to the amplitude
of cell fluctuations.

To invoke the simulation wizard to create a simulation, we click CC3DProject → New
CC3D Project in the Twedit++-CC3D menu bar (see Fig. 4). In the initial screen, we specify
the name of the model (cellsorting), its storage directory (C:\CC3DProjects), and whether
we will store the model as pure CC3DML, Python, and CC3DML or pure Python. This
tutorial will use Python and CC3DML.

On the next page of the Wizard (see Fig. 5), we specify GGH global parameters, including
cell-lattice dimensions, the cell-membrane fluctuation amplitude, the duration of the
simulation in MCS and the initial cell-lattice configuration.

In this example, we specify a 100 × 100 × 1 cell lattice, that is, a 2D model, a fluctuation
amplitude of 10, a simulation duration of 10,000 MCS, and a pixel-copy range of 2.
BlobInitializer initializes the simulation with a disk of cells of specified size.

On the next Wizard page (see Fig. 6), we name the cell types in the model. We will use two
cell types: Condensing (more cohesive) and NonCondensing (less cohesive). CC3D by
default includes a special generalized cell type, Medium, with unconstrained volume that
fills otherwise unspecified space in the cell lattice.

We skip the Chemical Field page of the Wizard and move to the Cell Behaviors and
Properties page (see Fig. 7). Here, we select the biological behaviors we will include in our
model. Objects in CC3D (for example, cells) have no properties or behaviors unless we
specify then explicitly. Since cell sorting depends on differential adhesion between cells, we
select the Contact Adhesion module from the Adhesion section (1) and give the cells a
defined volume using the Volume Flex module from Constraints and Forces section.

We skip the next page related to Python scripting, after which Twedit++-CC3D generates
the draft simulation code. Double-clicking on cellsorting.cc3d opens both the CC3DML
(cellsorting.xml) and Python scripts for the model. Because the CC3DML file contains the
complete model in this example, we postpone discussion of the Python script. A CC3DML
file has three distinct sections. The first, the Lattice Section (lines 2–7) specifies global
parameters like the cell-lattice size. The Plugin Section (lines 8–30) lists all the plugins
used, for example, CellType and Contact. The Steppable Section (lines 32–39) lists all
steppables; here we use only BlobInitializer.

All parameters appearing in the autogenerated CC3DML script have default values inserted
by Simulation Wizard. We must edit the parameters in the draft CC3DML script to build a
functional cell-sorting model (Listing 1). The CellType plugin (lines 9–13) already provides
three generalized cell types: Condensing (C), NonCondensing (N), and Medium (M), so we
need not change it.

However, the boundary-energy (contact energy) matrix in the Contact plugin (lines 22–30)
is initially filled with identical values, which prevents sorting. For cell sorting, Condensing

Swat et al. Page 7

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



cells must adhere strongly to each other (so we set JCC=2), Condensing and NonCondensing
cells must adhere more weakly (here, we set JCN=11), and all other adhesions must be very
weak (we set JNN=JCM=JNM=16), as discussed in Section III. The value of JMM = 0 is
irrelevant, since the Medium generalized cell does not contact itself.

To reduce artifacts due to the anisotropy of the square cell lattice we increase the neighbor
order range in the contact energy to 2 so the contact energy sum in Eq. (1) will include
nearest and second-nearest neighbors (line 29).

In the Volume plugin, which calculates the volume-constraint energy given in Eq. (1) the
attributes CellType, LambdaVolume, and TargetVolume inside the
<VolumeEnergyParameters> tags specify λ(τ) and Vt(τ) for each cell type. In our
simulations, we set Vt(τ) = 25 and λ(τ) = 2.0 for both cell types.

We initialize the cell lattice using the BlobInitializer, which creates one or more disks (solid
spheres in 3D) of cells. Each disk (sphere) created is enclosed between <Region> tags. The
<Center> tag with syntax <Center x= “x_position” y= “y_position” z= “z_position”/>
specifies the position of the center of the disk. The <Width> tag specifies the size of the
initial square (cubical in 3D) generalized cells and the <Gap> tag creates space between
neighboring cells. The <Types> tag lists the cell types to fill the disk. Here, we change the
Radius in the draft BlobInitializer specification to 40. These few changes produce a working
cell-sorting simulation.

To run the simulation, we right click cellsorting.cc3d in the left panel and choose the Open
In Player option. We can also run the simulation by opening CompuCellPlayer and selecting
cellsorting.cc3d from the File-> Open Simulation File dialog.

Fig. 8 shows snapshots of a simulation of the cell-sorting model. The less-cohesive
NonCondensing cells engulf the more cohesive Condensing cells, which cluster and form a
single central domain. By changing the boundary energies we can produce other cell-sorting
patterns (Glazier and Graner, 1993; Graner and Glazier, 1992). In particular, if we reduce
the contact energy between the Condensing cell type and the Medium, we can force inverted
cell sorting, where the Condensing cells surround the NonCondensing cells. If we set the
heterotypic contact energy to be less than either of the homotypic contact energies, the cells
of the two types will mix rather than sort. If we set the cell-medium contact energy to be
very small for one cell type, the cells of that type will disperse into the medium, as in cancer
invasion. With minor modifications, we can also simulate the scenarios for three or more
cell types, for situations in which the cells of a given type vary in volume, motility or
adhesivity, or in which the initial condition contains coherent clusters of cells rather than
randomly mixed cells (engulfment).

B. Angiogenesis Model
Vascular development is central to both development and cancer progression. We present a
simplified model of the earliest phases of capillary network assembly by endothelial cells
based on cell adhesion and contact-inhibited chemotaxis. This model does a good job of
reproducing the patterning and dynamics which occur if we culture human umbilical vein
endothelial cells (HUVEC) on matrigel in a quasi-2D in vitro experiment (Merks and
Glazier, 2006; Merks et al., 2006, 2008). In addition to generalized cells modeling the
HUVEC, we will need a diffusing chemical object, here, vascular endothelial growth factor
(VEGF), cell secretion of VEGF, and cell-contact-inhibited chemotaxis to VEGF.

Swat et al. Page 8

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We will use a 3D voxel (pixel) with a side of 4 μm, that is, a volume of 64 μm3. Since the
experimental HUVEC speed is about 0.4 μm/min and cells in this simulation move at an
average speed of 0.1 pixel/MCS, one MCS represents 1 min.

In the Simulation Wizard, we name the model ANGIOGENESIS, set the cell- and field-
lattice dimensions to 50 × 50 × 50, the membrane fluctuation amplitude to 20, the pixel-
copy range to 3, the number of MCS to 10,000, and select BlobFieldInitializer to produce
the initial cell-lattice configuration. We have only one cell type – Endothelial.

In the Chemical Fields page (see Fig. 9), we create the VEGF field and select
FlexibleDiffusionSolverFE from the Solver pull-down list.

Next, on the CellPropertiesandBehaviors page (see Fig. 10), we select the Contact module
from the Adhesion-behavior group and add Secretion, Chemotaxis, and Volume-constraint
behaviors by checking the appropriate boxes.

Because we have invoked Secretion and Chemotaxis, the Simulation Wizard opens their
configuration screens. On the Secretion page (see Fig. 11), from the pull-down list, we select
the chemical to secrete by selecting VEGF in the Field pull-down menu and the cell type
secreting the chemical (Endothelial), and enter the rate of 0.013 (50 pg/(cell h) = 0.013 pg/
(voxel MCS), compare to Leith and Michelson, 1995). We leave the Secretion Type entry
set to Uniform, so each pixel of an endothelial cell secretes the same amount of VEGF at the
same rate. Uniform volumetric secretion or secretion at the cell’s center of mass may be
most appropriate in 2D simulations of planar geometries (e.g., cells on a petri dish or agar)
where the biological cells are actually secreting up or down into a medium that carries the
diffusant. CC3D also supplies a secrete-on-contact option to secrete outward from the cell
boundaries and allows specification of which boundaries can secrete, which is more realistic
in 3D. However, users are free to employ any of these methods in either 2D or 3D,
depending on their interpretation of their specific biological situation. CC3D does not have
intrinsic units for fields, so the amount of a chemical can be interpreted in units of moles,
number of molecules, or grams. We click the Add Entry button to add the secretion
information, then proceed to the next page to define the cells’ chemotaxis properties.

On the Chemotaxis page, we select VEGF from the Field pull-down list and Endothelial for
the cell type, entering a value for Lambda of 5000. When the chemotaxis type is regular, the
cell’s response to the field is linear; that is the effective strength of chemotaxis depends on
the product of Lambda and the secretion rate of VEGF, for example, a Lambda of 5000 and
a secretion rate of 0.013 has the same effective chemotactic strength as a Lambda of 500 and
a secretion rate of 0.13. Since endothelial cells do not chemotax at surfaces where they
contact other endothelial cells (contact inhibition), we select Medium from the pull-down
menu next to the Chemotax Towards button and click this button to add Medium to the list
of generalized cell types whose interfaces with Endothelial cells support chemotaxis. We
click the Add Entry button to add the chemotaxis information, then proceed to the final
Simulation Wizard page Fig. 12.

Next, we adjust the parameters of the draft model. Pressure from chemotaxis to VEGF
reduces the average endothelial cell volume by about 10 voxels from the target volume. So,
in the Volume plugin, we set TargetVolume to 74 (64+10) and LambdaVolume to 20.0.

In experiments, in the absence of chemotaxis no capillary network forms and cells adhere to
each other to form clusters. We therefore set JMM=0, JEM=12, and JEE=5 in the Contact
plugin (M: Medium, E: Endothelial). We also set the NeighborOrder for the Contact energy
calculations to 4.

Swat et al. Page 9

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The diffusion equation that governs VEGF (V(x⃗)) field evolution is

(3)

where δ(τ(σ(x⃗)), EC) = 1 inside Endothelial cells and 0 elsewhere and δ(τ(σ(x⃗)), M) = 1
inside Medium and 0 elsewhere. We set the diffusion constant DVEGF = 0.042 μm2/s (0.16
voxel2/MCS, about two orders of magnitude smaller than experimental values),4 the decay
coefficient γVEGF =1 h−1 [130,131] (0.016 MCS−1) for Medium pixels and γVEGF = 0
inside Endothelial cells, and the secretion rate SEC = 0.013 pg/(voxel MCS).

In the CC3DML script, describing FlexibleDiffusionSolverFE (Listing 2, lines 38–47) we
set the values of the <DiffusionConstant> and <DecayConstant> tags to 0.16 and 0.016,
respectively. To prevent chemical decay inside endothelial cells, we add the line
<DoNotDecayIn>Endothelial</DoNotDecayIn> inside the <DiffusionData> tag pair.

Finally, we edit BlobInitializer (lines 49–56) to start with a solid sphere 10 pixels in radius
centered at x = 25, y = 25, z = 25 with initial cell width 4, as in Listing 2.

The main behavior that drives vascular patterning is contact-inhibited chemotaxis (Listing 2,
lines 26–30). VEGF diffuses away from cells and decays in Medium, creating a steep
concentration gradient at the interface between Endothelial cells and Medium. Because
Endothelial cells chemotax up the concentration gradient only at the interface with Medium,
the Endothelial cells at the surface of the cluster compress the cluster of cells into vascular
branches and maintain branch integrity.

We show screenshots of a simulation of the angiogenesis model in Fig. 13 (Merks et al.,
2008; Shirinifard et al., 2009). We can reproduce either 2D or 3D primary capillary network
formation and the rearrangements of the network agree with experimentally observed
dynamics. If we eliminate the contact inhibition, the cells do not form a branched structure
(as observed in chick allantois experiments, Merks et al., 2008). We can also study the
effects of surface tension, external growth factors, and changes in motility and diffusion
constants on the pattern and its dynamics. However, this simple model does not include the
strong junctions HUVEC cells make with each other at their ends after a period of prolonged
contact. It also does not attempt to model the vacuolation and linking of vacuoles that leads
to a connected network of tubes.

Since real endothelial cells are elongated, we can include the Cell-elongation plugin in the
Simulation Wizard to better reproduce individual cell morphology. However, excessive cell
elongation causes cell fragmentation. Adding either the Global or Fast Connectivity
Constraint plugin prevents cell fragmentation.

C. Overview of Python Scripting in CompuCell3D
In the models we presented above, all cells had parameter values fixed in time. To allow cell
behaviors to change, we need to be able to adjust cell properties during a simulation. CC3D
can execute Python scripts (CC3D supports Python versions 2.x) to modify the properties of
cells in response to events occurring during a simulation, such as the concentration of a
nutrient dropping below a threshold level, a cell reaching a doubling volume, or a cell
changing its neighbors. Most such Python scripts have a simple structure based on print

4FlexibleDiffusionSolverFE becomes unstable for values of DVEGF > 0.16 voxel2/MCS. For larger diffusion constants, we must call
the algorithm multiple times per MCS (See the Three-Dimensional Vascular Solid Tumor Growth section).

Swat et al. Page 10

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



statements, if-elif-else statements, for loops, lists, and simple classes and do not require in-
depth knowledge of Python to create.

This section briefly introduces the main features of Python in the CC3D context. For a more
formal introduction to Python, see Lutz (2011) and http://www.python.org.

Python defines blocks of code, such as those appearing inside if statements or for loops (in
general after “:”), by an increased level of indentation. This chapter uses two spaces per
indentation level. For example, in Listing 3, we indent the body of the if statement by two
spaces and the body of the inner for loop by additional two spaces. The for loop is executed
inside the if statement, which checks if we are in the second MCS of the simulation. The
command pixelOffset=10 assigns to the variable pixelOffset a value of 10. The for loop
assigns to the variable x values ranging from 0 through self.dim.x-1, where self.dim.x is a
CC3D internal variable containing the size of the cell lattice in the x-direction. When
executed, Listing 3 prints consecutive integers from 10 to 10+self.dim.x-1.

One of the advantages of Python compared to older languages like Fortran is that it can also
iterate over members of a Python list, a container for grouping objects. Listing 4 executes a
for loop over a list containing all cells in the simulation and prints the type of each cell.

Lists can combine objects of any type, including integers, strings, complex numbers, lists,
and, in this case, CC3D cells. CC3D uses lists extensively to keep track of cells, cell
neighbors, cell pixels, etc.

CC3D allows users to construct custom Python code as independent modules called
steppables, which are represented as classes. Listing 5 shows a typical CC3D Python
steppable class. The first line declares the class name together with an argument
(SteppableBasePy) inside the parenthesis, which makes the main CC3D objects, including
cells, lattice properties, etc., available inside the class. The def
__init__(self,_simulator,_frequency=1): declares the initializing function __init__ which is
called automatically during class object instantiation. After initializing the class and
inheriting CC3D objects, we declare three main functions called at different times during the
simulation: start is called before the simulation starts; step is called at specified intervals in
MCS throughout the simulation; and finish is called at the end of the simulation. The start
function iterates over all cells, setting their target volume and inverse compressibility to 25
and 5, respectively. Generically, we use the start function to define model initial conditions.
The step function increases the target volumes of all cells by 0.001 after the tenth MCS, a
typical way to implement cell growth in CC3D. The finish function prints the cell volumes
at the end of the simulation.

The start, step, and finish functions have default implementations in the base class
SteppableBasePy. Therefore, we only need to provide definition of those functions that we
want to override. In addition, we can add our own functions to the class.

The next section uses Python scripting to build a complex CC3D model.

D. Three-Dimensional Vascular Tumor Growth Model
The development of a primary solid tumor starts from a single cell that proliferates in an
inappropriate manner, dividing repeatedly to form a cluster of tumor cells. Nutrient and
waste diffusion limits the diameter of such avascular tumor spheroids to about 1 mm. The
central region of the growing spheroid becomes necrotic, with a surrounding layer of cells
whose hypoxia triggers VEGF-mediated signaling events that initiate tumor
neovascularization by promoting growth and extension (neoangiogenesis) of nearby blood

Swat et al. Page 11

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.python.org


vessels. Vascularized tumors are able to grow much larger than avascular spheroids and are
more likely to metastasize.

Here, we present a simplified 3D model of a generic vascular tumor that can be easily
extended to describe specific vascular tumor types and host tissues. We begin with a cluster
of proliferating tumor cells, P, and normal vasculature. Initially, tumor cells proliferate as
they take up diffusing glucose from the field, GLU, which the preexisting vasculature
supplies (in this model, we neglect possible changes in concentration along the blood vessels
in the direction of flow and set the secretion parameters uniformly over all blood-vessel
surfaces). We assume that the tumor cells (both in the initial cluster and later) are always
hypoxic and secrete a long-diffusing isoform of VEGF-A, L_VEGF. When GLU drops
below a threshold, tumor cells become necrotic, gradually shrink and finally disappear. The
initial tumor cluster grows and reaches a maximum diameter characteristic of an avascular
tumor spheroid. To reduce execution time in our demonstration, we choose our model
parameters so that the maximum spheroid diameter will be about 10 times smaller than in
experiments. A few preselected neovascular endothelial cells, NV, in the preexisting
vasculature respond both by chemotaxing toward higher concentrations of proangiogenic
factors and by forming new blood vessels via neoangiogenesis. The tumor-induced
vasculature increases the growth rate of the resulting vascularized solid tumor compared to
an avascular tumor, allowing the tumor to grow beyond the spheroid’s maximum diameter.
Despite our rescaling of the tumor size, the model produces a range of biologically
reasonable morphologies that allow study of how tumor-induced angiogenesis affects the
growth rate, size, and morphology of tumors.

We use the basic angiogenesis simulation from the previous section to simulate both
preexisting vasculature and tumor-induced angiogenesis, adding a set of finite-element links
between the endothelial cells to model the strong junctions that form between endothelial
cells in vivo. We denote the short-diffusing isoform of VEGF-A, S_VEGF. Both endothelial
cells and neovascular endothelial cells chemotax up gradients of S_VEGF, but only
neovascular endothelial cells chemotax up gradients of L_VEGF.

In the Simulation Wizard, we name the model TumorVascularization, set the cell- and field-
lattice dimensions to 50 × 50 × 80, the membrane fluctuation amplitude to 20, the pixel-
copy range to 3, the number of MCS to 10,000, and choose UniformInitializer to produce
the initial tumor and vascular cells, since it automatically creates a mixture of cell types. We
specify four cell types: P: proliferating tumor cells; N: necrotic cells; EC: endothelial cells;
and NV: neovascular endothelial cells.

On the Chemical Fields page (see Fig. 14), we create the S_VEGF and L_VEGF fields and
select FlexibleDiffusionSolverFE for both from the Solver pull-down list. We also check
Enable multiple calls of PDE solvers to work around the numerical instabilities of the PDE
solvers for large diffusion constants.

On the Cell Behavior and Properties page (see Fig. 15) we select both the Contact and
FocalPointPlasticity modules from the Adhesion group, and add Chemotaxis, Growth, and
Mitosis, Volume Constraint, and GlobalConnectivity by checking the appropriate boxes. We
also track the Center-of-Mass (to access field concentrations) and Cell Neighbors (to
implement contact-inhibited growth). Unlike in our angiogenesis simulation, we will
implement secretion as a part of the FlexibleDiffusionSolverFE syntax.

In the Chemotaxis page (see Fig. 16), for each cell-type/chemical-field pair we click the Add
Entry button to add the relevant chemotaxis information, for example, we select S_VEGF
from the Field pull-down list and EC and NV from the cell-type list and set Lambda to 5000.
To enable contact inhibition of EC and NV chemotaxis, we select Medium from the pull-

Swat et al. Page 12

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



down menu next to the Chemotax Towards button and click the button to add Medium to the
list. We repeat this process for the T and N cell types, so that NV cells chemotax up
gradients of L_VEGF. We then proceed to the final Simulation Wizard page.

Twedit++ generates three simulation files – a CC3DML file specifying the energy terms,
diffusion solvers, and initial cell layout, a main Python file that loads the CC3DMLfile, sets
up the CompuCell environment and executes the Python steppables and a Python steppables
file. The main Python file is typically constructed by modifying the standard template in
Listing 6. Lines 1–12 set up the CC3D simulation environment and load the simulation.
Lines 14–20 create instances of two steppables – MitosisSteppable and
VolumeParamSteppable – and register them with the CC3D kernel. Line 22 starts the main
CC3D loop, which executes MCSs and periodically calls the steppables.

Next, we edit the draft autogenerated simulation CC3DML file in Listing 7.

In Listing 7, in the Contact plugin (lines 36–53), we set JMM=0, JEM=12, and JEE=5 (M:
Medium, E: EC) and the NeighborOrder to 4. The FocalPointPlasticity plugin (lines 57–80)
represents adhesion junctions by mechanically connecting the centers-of-mass of cells using
a breakable linear spring (see Shirinifard et al., 2009). EC–EC links are stronger than EC–
NV links, which are, in turn, stronger than NV–NV links (see the CC3D manual for details).
Since the Simulation Wizard creates code to implement links between all cell-type pairs in
the model, we must delete most of them, keeping only the links between EC–EC, EC–NV,
and NV–NV cell types.

We assume that L_VEGF diffuses 10 times faster than S_VEGF, so DL_VEGF=0.42 μm2/s
(1.6 voxel2/MCS). This large diffusion constant would make the diffusion solver unstable.
Therefore, in the CC3DML file (Listing 7, lines 108–114), we set the values of the
<DiffusionConstant> and <DecayConstant> tags of the L_VEGF field to 0.16 and 0.0016,
respectively, and use nine extra calls per MCS to achieve a diffusion constant equivalent to
1.6 (lines 87–89). We instruct P cells to secrete (line 116) into the L_VEGF field at a rate of
0.001 (3.85 pg/(cell h) = 0.001 pg/(voxel MCS)). Both EC and NV absorb L_VEGF. To
simulate this uptake, we use the <SecretionData> tag pair (lines 117, 118).

Since the same diffusion solver will be called 10 times per MCS to solve S_VEGF, we must
reduce the diffusion constant of S_VEGF by a factor of 10, setting the <DiffusionConstant>
and <DecayConstant> tags of S_VEGF field to 0.016 and 0.0016, respectively. To prevent
S_VEGF decay inside EC and NV cells, we add <DoNotDecayIn>EC</DoNotDecayIn>
and <DoNotDecayIn>NV</DoNotDecayIn> inside the <DiffusionData> tag pair (lines 99,
100). We define S_VEGF to be secreted (lines 102–105) by both the EC and NV cells types
at a rate of 0.013 per voxel per MCS (50 pg/(cell h) = 0.013 pg/(voxel MCS), compared to
Leith and Michelson (1995).

The experimental glucose diffusion constant is about 600 μm2/s. We convert the glucose
diffusion constant by multiplying by appropriate spatial and temporal conversion factors:
600 μm2/s × (voxel/4 μm)2 × (60 s/MCS)=2250 voxel2/MCS. To keep our simulation times
short for this example, we use a simulated glucose diffusion constant 1500 smaller, resulting
in much steeper glucose gradients and smaller maximum tumor diameters. We could use the
steady-state diffusion solver for the glucose field to be more realistic.

Experimental GLU uptake by P cells is ~0.3 μmol/g/min. We assume that stromal cells
(represented here without individual cell boundaries by Medium) take up GLU at a slower
rate of 0.1 μmol/g/min. A gram of tumor tissue has about 108 tumor cells, so the glucose
uptake per tumor cell is 0.003 pmol/MCS/cell or about 0.1 fmol/MCS/voxel. We assume
that (at homeostasis) the preexisting vasculature supplies all the required GLU to Medium,

Swat et al. Page 13

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



which has a total mass of 1.28 × 10−5 grams and consumes GLU at a rate of 0.1 fmol/MCS/
voxel, so the total GLU uptake (in the absence of a tumor) is 1.28 pmol/MCS. For this
glucose to be supplied by 24 EC cells, their GLU secretion rate must be 0.8 fmol/MCS/
voxel. We distribute the total GLU uptake (in the absence of a tumor) over all the Medium
voxels, so the uptake rate is ~1.28 pmol/MCS/(~20,000 Medium voxels)=6.4 × 10−3 fmol/
MCS/voxel.

We specify the uptake of GLU by Medium and P cells in lines 131 and 132 and instruct NV
and EC cells to secrete GLU at the rate 0.4 and 0.8 pg/(voxel MCS), respectively (lines 129,
130).

We use UniformInitializer (lines 137–170) to initialize the tumor cell cluster and two
crossing vascular cords. We also add two NV cells to each vascular cord, 25 pixels apart.

In the Python Steppable script in Listing 8, we set the initial target volume of both EC and
NV cells to 74 (64 + 10) voxels and the initial target volume of tumor cells to 32 voxels
(lines 14–21). All λvol are 20.0.

To model tumor cell growth, we increase the tumor cells’ target volumes (lines 38–47)
according to:

(4)

where GLU(x⃗) is the GLU concentration at the cell’s center-of-mass and GLU0 is the
concentration at which the growth rate is half its maximum. We assume that the fastest cell
cycle time is 24 h, so Gmax is 32 voxels/24 h = 0.022 voxel/MCS.

To account for contact-inhibited growth of NV cells, when their common surface area with
other EC and NV cells is less than a threshold, we increase their target volume according to:

(5)

where L_VEGF(x⃗) is the concentration of L_VEGF at the cell’s center-of-mass, L_VEGF0
is the concentration at which the growth rate is half its maximum, and Gmax is the maximum
growth rate for NV cells. We calculate the common surface area between each NV cell and
its neighboring NV or EC cells in lines 32–35. If the common surface area is smaller than
45, then we increase its target volume (lines 36, 37). When the volume of NVand P cells
reaches a doubling volume (here, twice their initial target volumes), we divide them along a
random axis, as shown in the MitosisSteppable (Listing 8, lines 54–75). The snapshots of the
simulation are presented in Fig. 17

With this simple model we can easily explore the effects of changes in cell adhesion,
nutrient availability, cell motility, sensitivity to starvation or dosing with chemotherapeutics
or antiangiogenics on the growth and morphology of the simulated tumor.

E. Subcellular Simulations Using BionetSolver
While our vascular tumor model showed how to change cell-level parameters like target
volume, we have not yet linked macroscopic cell behaviors to intracellular molecular
concentrations. Signaling, regulatory, and metabolic pathways all steer the behaviors of
biological cells by modulating their biochemical machinery. CC3D allows us to add and
solve subcellular reaction-kinetic pathway models inside each generalized cell, specified

Swat et al. Page 14

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



using the SBML format (Hucka et al., 2003), and to use such models (e.g., of their levels of
gene expression) to control cell-level behaviors like adhesion or growth (Hester et al., 2011).

We can use the same SBML framework to implement classic physics-based
pharmacokinetic (PBPK) models of supercellular chemical flows between organs or tissues.
The ability to explicitly model such subcellular and supercellular pathways adds greatly to
the range of hypotheses CC3D models can represent and test. In addition, the original
formulation of SBML primarily focused on the behaviors of biochemical networks within a
single cell, whereas real signaling networks often involve the coupling of networks between
cells. BionetSolver supports such coupling, allowing exploration of the very complex
feedback resulting from intercell interactions linking intracellular networks, in an
environment where the couplings change continuously due to cell growth, cell movement,
and changes in cell properties.

As an example of such interaction between signaling networks and cell behaviors, we will
develop a multi-cellular implementation of Delta–Notch mutual inhibitory coupling. In this
juxtacrine signaling process, a cell’s level of membrane-bound Delta depends on its
intracellular level of activated Notch, which in turn depends on the average level of
membrane-bound Delta of its neighbors. In such a situation, the Delta–Notch dynamics of
the cells in a tissue sheet will depend on the rate of cell rearrangement and the fluctuations it
induces. Although the example does not explore the wide variety of tissue properties due to
the coupling of subcellular networks with intercellular networks and cell behaviors, it
already shows how different such behaviors can be from those of their non-spatial
simplifications. We begin with the ODE Delta–Notch patterning model of Collier et al.
(1996) in which juxtacrine signaling controls the internal levels of the cells’ Delta and Notch
proteins. The base model neglects the complexity of the interaction due to changing spatial
relationships in a real tissue:

(6)

(7)

where D and N are the concentrations of activated Delta and Notch proteins inside a cell, D̄
is the average concentration of activated Delta protein at the surface of the cell’s neighbors,
a and b are saturation constants, h and k are Hill coefficients, and v is a constant that gives
the relative lifetimes of Delta and Notch proteins.

Notch activity increases with the levels of Delta in neighboring cells, whereas Delta activity
decreases with increasing Notch activity inside a cell (Fig. 18). When the parameters in the
ODE model are chosen correctly, each cell assumes one of two exclusive states: a primary
fate, in which the cell has a high level of Delta and a low level of Notch activity; and a
secondary fate, in which the cell has a low level of Delta and a high level of Notch.

To build this model in CC3D, we assign a separate copy of the ODE model (6–7) to each
cell and allow each cell to see the Delta concentrations of its neighbors. We use CC3D’s
BionetSolver library to manage and solve the ODEs, which are stored using the SBML
standard.

The three files that specify the Delta–Notch model are included in the CC3D installation and
can be found at <CC3D-installation-dir>/DemosBionetSolver/DeltaNotch: the main Python

Swat et al. Page 15

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



file (DeltaNotch.py) sets the parameters and initial conditions; the Python steppable file
(DeltaNotch_Step.py) calls the subcellular models; and the SBML file (DN_Collier.sbml)
contains the description of the ODE model. The first two files can be generated and edited
using Twedit++, the last can be generated and edited using an SBML editor like Jarnac or
JDesigner (both are open source). Listing 9 shows the SBML file viewed using Jarnac and
can be downloaded from http://sys-bio.org.

The main Python file (DeltaNotch.py) includes lines to define a steppable class
(DeltaNotchClass) to include the ODE model and its interactions with the CC3D generalized
cells (Listing 10).

The Python steppable file (Listing 11, DeltaNotch_Step.py) imports the BionetSolver library
(line 1), then defines the class, and initializes the solver inside it (lines 2–5).

The first lines in the start function (Listing 11, lines 9–12) specify the name of the model, its
nickname (for easier reference), the path to the location where the SBML model is stored,
and the time-step of the ODE integrator, which fixes the relation between MCS and the time
units of the ODE model (here, 1 MCS corresponds to 0.2 ODE model time units). In line 13,
we use the defined names, path and time-step parameter to load the SBML model.

In Listing 11, line 15 associates the subcellular model with the CC3D cells, creating an
instance of the ODE solver (described by the SBML model) for each cell of type TypeA.
Line 16 initializes the loaded subcellular models.

To set the initial levels of Delta (D) and Notch (N) in each cell, we visit all cells and assign
random initial concentrations between 0.9 and 1.0 (Listing 11, lines 18–26). Line 18 imports
the intrinsic Python random number generator. Lines 22 and 23 pass these values to the
subcellular models in each cell. The first argument specifies the ODE model parameter to
change with a string containing the nickname of the model, here DN, followed by an
underscore and the name of the parameter as defined in the SBML file. The second
argument specifies the value to assign to the parameter, and the last argument specifies the
cell id. For visualization purposes, we also store the values of D and N in a dictionary
attached to each cell (lines 25, 26).

Listing 12 defines a step function of the class, which is called by every MCS, to read the
Delta concentrations of each cell’s neighbors to determine the value of D (the average Delta
concentration around the cell). The first three lines in Listing 12 iterate over all cells. Inside
the loop, we first set the variables D and nn to zero. They will store the total Delta
concentration of the cell’s neighbors and the number of neighbors, respectively. Next, we
get a list of the cell’s neighbors and iterate over them. Line 9 reads the Delta concentration
of each neighbor (the first argument is the name of the parameter and the second is the id of
the neighboring cell) summing the total Delta and counting the number of neighbors. Note
the += syntax (e.g., nn+=1 is equivalent to nn=nn+1). Lines 3 and 7 skip Medium (Medium
has a value 0, so if (Medium) is false).

After looping over the cell’s neighbors, we update the variable D̄, which in the SBML code
has the name Davg, to the average neighboring Delta (D) concentration, ensuing that the
denominator, nn, is not zero (Listing 12, lines 10–12).

The remaining lines (Listing 12, lines 13–15) access the cell dictionary and store the cell’s
current Delta and Notch concentrations. Line 16 then calls BionetSolver and tells it to
integrate the ODE model with the new parameters for one integration step (0.2 time units in
this case).

Swat et al. Page 16

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://sys-bio.org


Fig. 19 shows a typical cell configurations and states for the simulation. The random initial
values gradually converge to a pattern with cells with low levels of Notch (primary fate)
surrounded by cells with high levels of Notch (secondary fate).

In Listing 13, lines 2–4 define two new visualization fields in the main Python file
(DeltaNotch.py) to visualize the Delta and Notch concentrations in CompuCell Player. To
fill the fields with the Delta and Notch concentrations, we call the steppable class,
ExtraFields (Listing 13, lines 6–9). This code is very similar to our previous steppable calls,
with the exception of line 8, which uses the function setScalarFields()to reference the
visualization Fields.

In the steppable file (Listing 14, DeltaNotch_Step.py) we use setScalarFields() to set the
variables self.scalarField1 and self. scalarField2 to point to the fields DeltaField and
NotchField, respectively. Lines 10 and 11 of the step function clear the two fields using
clearScalarValueCellLevel(). Line 12 loops over all cells, line 13 accesses a cell’s
dictionary, and lines 14 and 15 use the D and N entries to fill in the respective visualization
fields, where the first argument specifies the visualization field, the second the cell to be
filled, and the third the value to use.

The two fields can be visualized in CompuCell Player using the Field-selector button of the
Main Graphics Window menu (second-to-last button, Fig. 19).

As we illustrate in Fig. 20, the result is a roughly hexagonal pattern of activity with one cell
of low-Notch activity for every two cells with high Notch activity. In the presence of a high
level of cell motility, the identity of high and low Notch cells can change when the pattern
rearranges. We could easily explore the effects of Delta–Notch signaling on tissue structure
by linking the Delta–Notch pathway to one of its known downstream targets. For example,
if we wished to simulate embryonic feather-bud primordial in chicken skin or the formation
of colonic crypts, we could start with an epithelial sheet of cells in 3D on a rigid support,
and couple the growth of the cells to their level of Notch activity by having Notch inhibit
cell growth. The result would be clusters of cell growth around the initial low-Notch cells,
leading to a patterned 3D buckling of the epithelial tissue. Such mechanisms are capable of
extremely complex and subtle patterning, as observed in vivo.

V. Conclusion
Multi-cell modeling, especially when combined with subcell (or supercell) modeling of
biochemical networks, allows the creation and testing of hypotheses concerning many key
aspects of embryonic development, homeostasis, and developmental disease. Until now,
such modeling has been out of reach to all but experienced software developers. CC3D
makes the development of such models much easier, though it still does involve a minimal
level of hand editing. We hope the examples we have shown will convince readers to
evaluate the suitability of CC3D for their research.

Furthermore, CC3D directly addresses the current difficulty researchers face in reusing,
testing, or adapting both their own and published models. Most published multi-cell, multi-
scale models exist in the form of Fortran/C/C++ code, which is often of little practical value
to other potential users. Reusing such code involves digging into large code bases, inferring
their function, extracting the relevant code, and trying to paste it into a new context. CC3D
improves this status quo in at least three ways: (1) it is fully open source; (2) CC3D models
can be executed cross-platform and do not require compilation; (3) CC3D models are
modular, compact, and shareable. Because Python-based CC3D models require much less
effort to develop than does custom code programming: simulations are fast and easy to
develop and refine. Even with these convenience features, CC3D 3.6 often runs as fast or

Swat et al. Page 17

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



faster than custom code solving the same model. Current CC3D development focuses on
adding GPU-based PDE solvers, MPI parallelization, and additional cell behaviors. We are
also developing a high-level cell-behavior model description language that will compile into
executable Python, removing the last need for model builders to learn programming
techniques.

All examples presented in this chapter are included in the CC3D binary distribution and will
be curated to ensure their correctness and compatibility with future versions of CC3D.

Acknowledgments
We gratefully acknowledge support from the National Institutes of Health, National Institute of General Medical
Sciences grants R01 GM077138 and R01 GM076692, the Environmental Protection Agency, and the Office of
Vice President for Research, the College of Arts and Sciences, the Pervasive Technologies Laboratories, and the
Biocomplexity Institute at Indiana University. GLT acknowledges support from the Brazilian agencies Conselho
Nacional de Pesquisa e Desenvolvimento (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio Grande
do Sul (FAPERGS) under the grant PRONEX-10/0008-0. Indiana University’s University Information Technology
Services provided time on their BigRed cluster for simulation execution. Early versions of CompuCell and
CompuCell3D were developed at the University of Notre Dame by JAG, Dr. Mark Alber, and Dr. Jesus Izaguirre,
and collaborators with the support of National Science Foundation, Division of Integrative Biology, grant
IBN-00836563. Since the primary home of CompuCell3D moved to Indiana University in 2004, the Notre Dame
team have continued to provide important support for its development. We especially would like to thank our
current collaborators, Herbert Sauro and Ryan Roper, from University of Washington for developing the subcellular
reaction kinetics model simulator BionetSolver.

References
Alber MS, Jiang Y, Kiskowski MA. Lattice gas cellular automation model for rippling and aggregation

in myxobacteria. Physica D. 2004; 191:343–358.

Alber, MS.; Kiskowski, MA.; Glazier, JA.; Jiang, Y. On cellular automation approaches to modeling
biological cells. In: Rosenthal, J.; Gilliam, DS., editors. Mathematical Systems Theory in Biology,
Communication and Finance. Springer-Verlag; New York: 2002. p. 1-40.

Alber M, Chen N, Glimm T, Lushnikov P. Multiscale dynamics of biological cells with chemotactic
interactions: from a discrete stochastic model to a continuous description. Phys Rev E. 2006;
73:051901.

Armstrong PB, Armstrong MT. A role for fibronectin in cell sorting out. J Cell Sci. 1984; 69:179–197.
[PubMed: 6386836]

Armstrong PB, Parenti D. Cell sorting in the presence of cytochalasin B. J Cell Biol. 1972; 55:542–
553. [PubMed: 4676368]

Chaturvedi R, Huang C, Izaguirre JA, Newman SA, Glazier JA, Alber MS. A hybrid discrete-
continuum model for 3-D skeletogenesis of the vertebrate limb. Lect Notes Comput Sci. 2004;
3305:543–552.

Cickovski T, Aras K, Alber MS, Izaguirre JA, Swat M, Glazier JA, Merks RMH, Glimm T, Hentschel
HGE, Newman SA. From genes to organisms via the cell: a problem-solving environment for
multicellular development. Comput Sci Eng. 2007; 9:50. [PubMed: 19526065]

Cipra BA. An introduction to the Ising-model. Amer Math Monthly. 1987; 94:937–959.

Collier JR, Monk NAM, Maini PK, Lewis JH. Pattern formation by lateral inhibition with feedback: a
mathematical model of Delta–Notch intercellular signaling. J Theor Biol. 1996; 183:429–446.
[PubMed: 9015458]

Dallon J, Sherratt J, Maini PK, Ferguson M. Biological implications of a discrete mathematical model
for collagen deposition and alignment in dermal wound repair. IMA J Math Appl Med Biol. 2000;
17:379–393. [PubMed: 11270750]

Drasdo D, Kree R, McCaskill JS. Monte-Carlo approach to tissue-cell populations. Phys Rev E. 1995;
52:6635–6657.

Glazier JA. Cellular patterns. Bussei Kenkyu. 1993; 58:608–612.

Glazier JA. Thermodynamics of cell sorting. Bussei Kenkyu. 1996; 65:691–700.

Swat et al. Page 18

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Glazier JA, Graner F. Simulation of biological cell sorting using a two-dimensional extended Potts
model. Phys Rev Lett. 1992; 69:2013–2016. [PubMed: 10046374]

Glazier JA, Graner F. Simulation of the differential adhesion driven rearrangement of biological cells.
Phys Rev E. 1993; 47:2128–2154.

Glazier, JA.; Raphael, RC.; Graner, F.; Sawada, Y. The energetics of cell sorting in three dimensions.
In: Beysens, D.; Forgacs, G.; Gaill, F., editors. Interplay of Genetic and Physical Processes in the
Development of Biological Form. World Scientific Publishing Company; Singapore: 1995. p.
54-66.

Glazier, JA.; Balter, A.; Poplawski, N. Magnetization to morphogenesis: a brief history of the Glazier–
Graner–Hogeweg model. In: Anderson, ARA.; Chaplain, MAJ.; Rejniak, KA., editors. Single-
Cell-Based Models in Biology and Medicine. Birkhauser Verlag; Basel, Switzerland: 2007. p.
79-106.

Glazier JA, Zhang Y, Swat M, Zaitlen B, Schnell S. Coordinated action of N-CAM, N-cadherin,
EphA4, and ephrinB2 translates genetic prepatterns into structure during somitogenesis in chick.
Curr Top Dev Biol. 2008; 81:205–247. [PubMed: 18023729]

Graner F, Glazier JA. Simulation of biological cell sorting using a 2-dimensional extended Potts
model. Phys Rev Lett. 1992; 69:2013–2016. [PubMed: 10046374]

Grieneisen VA, Xu J, Maree AFM, Hogeweg P, Schere B. Auxin transport is sufficient to generate a
maximum and gradient guiding root growth. Nature. 2007; 449:1008–1013. [PubMed: 17960234]

Groenenboom MA, Hogeweg P. Space and the persistence of male-killing endosymbionts in insect
populations. Proc Biol Sci. 2002; 269:2509–2518. [PubMed: 12573064]

Groenenboom MA, Maree AFM, Hogeweg P. The RNA silencing pathway: the bits and pieces that
matter. PLoS Comput Biol. 2005; 1:55–165.

Hester SD, Belmonte JM, Gens JS, Clendenon SG, Glazier JA. A Multi-cell, Multi-scale Model of
Vertebrate Segmentation and Somite Formation. PLoS Comput Biol. 2011; 7:e1002155. [PubMed:
21998560]

Hogeweg P. Evolving mechanisms of morphogenesis: on the interplay between differential adhesion
and cell differentiation. J Theor Biol. 2000; 203:317–333. [PubMed: 10736211]

Holm EA, Glazier JA, Srolovitz DJ, Grest GS. Effects of lattice anisotropy and temperature on domain
growth in the two-dimensional Potts model. Phys Rev A. 1991; 43:2662–2669. [PubMed:
9905332]

Honda H, Mochizuki A. Formation and maintenance of distinctive cell patterns by coexpression of
membrane-bound ligands and their receptors. Dev Dynamics. 2002; 223:180–192.

Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D,
Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ,
Hodgman TC, Hofmeyr J-H, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le
Novère N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR,
Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K,
Tomita M, Wagner J, Wang J. The Systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models. Bioinformatics. 2003; 19:524–531.
[PubMed: 12611808]

Johnston DA. Thin animals. J Phys A. 1998; 31:9405–9417.

Kesmir C, de Boer RJ. A spatial model of germinal center reactions: cellular adhesion based sorting of
B cells results in efficient affinity maturation. J Theor Biol. 2003; 222:9–22. [PubMed: 12699731]

Kesmir C, van Noort V, de Boer RJ, Hogeweg P. Bioinformatic analysis of functional differences
between the immunoproteasome and the constitutive proteasome. Immunogenetics. 2003; 55:437–
449. [PubMed: 12955356]

Knewitz MA, Mombach JCM. Computer simulation of the influence of cellular adhesion on the
morphology of the interface between tissues of proliferating and quiescent cells. Comput Biol
Med. 2006; 36:59–69. [PubMed: 16324909]

Leith JT, Michelson S. Secretion rates and levels of vascular endothelial growth factor in clone A or
HCT-8 human colon tumour cells as a function of oxygen concentration. Cell Prolif. 1995;
28:415–430. [PubMed: 7548442]

Swat et al. Page 19

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Longo D, Peirce SM, Skalak TC, Davidson L, Marsden M, Dzamba B. Multicellular computer
simulation of morphogenesis: blastocoel roof thinning and matrix assembly in Xenopus laevis.
Dev Biol. 2004; 271:210–222. [PubMed: 15196962]

Lutz, M. Programming Python. O’Reilly & Associates, Inc; Sebastopol, CA: 2011.

Maini PK, Olsen L, Sherratt JA. Mathematical models for cell-matrix interactions during dermal
wound healing. Int J Bifurcation Chaos. 2002; 12:2021–2029.

Marée AFM, Hogeweg P. How amoeboids self-organize into a fruiting body: multicellular
coordination in Dictyostelium discoideum. Proc Natl Acad Sci USA. 2001; 98:3879–3883.
[PubMed: 11274408]

Marée AFM, Hogeweg P. Modelling Dictyostelium discoideum morphogenesis: the culmination. Bull
Math Biol. 2002; 64:327–353. [PubMed: 11926120]

Marée AFM, Panfilov AV, Hogeweg P. Migration and thermotaxis of Dictyostelium discoideum slugs,
a model study. J Theor Biol. 1999a; 199:297–309. [PubMed: 10433894]

Marée AFM, Panfilov AV, Hogeweg P. Phototaxis during the slug stage of Dictyostelium discoideum:
a model study. Proc Royal Soc Lond Ser B. 1999b; 266:1351–1360.

Merks RM, Brodsky SV, Goligorksy MS, Newman SA, Glazier JA. Cell elongation is key to in silico
replication of in vitro vasculogenesis and subsequent remodeling. Dev Biol. 2006; 289:44–54.
[PubMed: 16325173]

Merks RM, Glazier JA. Dynamic mechanisms of blood vessel growth. Nonlinearity. 2006; 19:C1–
C10. [PubMed: 19526066]

Merks RM, Perryn ED, Shirinifard A, Glazier JA. Contact-inhibited chemotactic motility can drive
both vasculogenesis and sprouting angiogenesis. PLoS Comput Biol. 2008; 4:e1000163. [PubMed:
18802455]

Metropolis N, Rosenbluth A, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by
fast computing machines. J Chem Phys. 1953; 21:1087–1092.

Meyer-Hermann M, Deutsch A, Or-Guil M. Recycling probability and dynamical properties of
germinal center reactions. J Theor Biol. 2001; 210:265–285. [PubMed: 11397129]

Mochizuki A. Pattern formation of the cone mosaic in the zebrafish retina: A cell rearrangement
model. J Theor Biol. 2002; 215:345–361. [PubMed: 12054842]

Mombach JCM, Glazier JA. Single cell motion in aggregates of embryonic cells. Phys Rev Lett. 1996;
76:3032–3035. [PubMed: 10060853]

Mombach JCM, de Almeida RMC, Thomas GL, Upadhyaya A, Glazier JA. Bursts and cavity
formation in Hydra cells aggregates: experiments and simulations. Physica A. 2001; 297:495–508.

Mombach JCM, Glazier JA, Raphael RC, Zajac M. Quantitative comparison between differential
adhesion models and cell sorting in the presence and absence of fluctuations. Phys Rev Lett. 1995;
75:2244–2247. [PubMed: 10059250]

Nguyen B, Upadhyaya A, van Oudenaarden A, Brenner MP. Elastic instability in growing yeast
colonies. Biophys J. 2004; 86:2740–2747. [PubMed: 15111392]

Novak B, Toth A, Csikasz-Nagy A, Gyorffy B, Tyson JA, Nasmyth K. Finishing the cell cycle. J
Theor Biol. 1999; 199:223–233. [PubMed: 10395816]

Popławski NJ, Shirinifard A, Swat M, Glazier JA. Simulation of single-species bacterial-biofilm
growth using the Glazier–Graner–Hogeweg model and the CompuCell3D modeling environment.
Math Biosci Eng. 2008; 5:355–388. [PubMed: 18613738]

Popławski NJ, Swat M, Gens JS, Glazier JA. Adhesion between cells diffusion of growth factors and
elasticity of the AER produce the paddle shape of the chick limb. Physica A. 2007; 373:C521–
C532.

Rieu JP, Upadhyaya A, Glazier JA, Ouchi NB, Sawada Y. Diffusion and deformations of single hydra
cells in cellular aggregates. Biophys J. 2000; 79:1903–1914. [PubMed: 11023896]

Savill NJ, Hogeweg P. Modelling morphogenesis: from single cells to crawling slugs. J Theor Biol.
1997; 184:229–235.

Savill NJ, Sherratt JA. Control of epidermal stem cell clusters by Notch-mediated lateral induction.
Dev Biol. 2003; 258:141–153. [PubMed: 12781689]

Swat et al. Page 20

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Steinberg MS. Differential adhesion in morphogenesis: a modern view. Curr Opin Genet Dev. 2007;
17(4):281–286. [PubMed: 17624758]

Shirinifard A, Gens JS, Zaitlen BL, Poplawski NJ, Swat MH, Glazier JA. 3D multi-cell simulation of
tumor growth and angiogenesis. PLoS ONE. 2009; 4:e7190. [PubMed: 19834621]

Takesue A, Mochizuki A, Iwasa Y. Cell-differentiation rules that generate regular mosaic patterns:
modelling motivated by cone mosaic formation in fish retina. J Theor Biol. 1998; 194:575–586.
[PubMed: 9790831]

Turner S, Sherratt JA. Intercellular adhesion and cancer invasion: a discrete simulation using the
extended Potts model. J Theor Biol. 2002; 216:85–100. [PubMed: 12076130]

Walther T, Reinsch H, Grosse A, Ostermann K, Deutsch A, Bley T. Mathematical modeling of
regulatory mechanisms in yeast colony development. J Theor Biol. 2004; 229:327–338. [PubMed:
15234200]

Walther T, Reinsch H, Ostermann K, Deutsch A, Bley T. Coordinated growth of yeast colonies:
experimental and mathematical analysis of possible regulatory mechanisms. Eng Life Sci. 2005;
5:115–133.

Wearing HJ, Owen MR, Sherratt JA. Mathematical modelling of juxtacrine patterning. Bull Math Biol.
2000; 62:293–320. [PubMed: 10824431]

Zajac, M. PhD thesis. University of Notre Dame; 2002. Modeling convergent extension by way of
anisotropic differential adhesion.

Zajac M, Jones GL, Glazier JA. Model of convergent extension in animal morphogenesis. Phys Rev
Lett. 2000; 85:2022–2025. [PubMed: 10970673]

Zajac M, Jones GL, Glazier JA. Simulating convergent extension by way of anisotropic differential
adhesion. J Theor Biol. 2003; 222:247–259. [PubMed: 12727459]

Zhang Y, Thomas GL, Swat M, Shirinifard A, Glazier JA. Computer imulations of Cell Sorting Due to
Differential Adhesion. PLoS ONE. 2011; 6(10):e24999. [PubMed: 22028771]

Zhdanov VP, Kasemo B. Simulation of the growth and differentiation of stem cells on a heterogeneous
scaffold. Phys Chem Chem Phys. 2004a; 6:4347–4350.

Zhdanov VP, Kasemo B. Simulation of the growth of neurospheres. Europhys Lett. 2004b; 68:134–
140.

Swat et al. Page 21

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
GGH representation of an index-copy attempt for two cells on a 2D square cell lattice – The
“white” pixel (source) attempts to replace the “grey” pixel (target). The probability of
accepting the index copy is given by Eq. (2).

Swat et al. Page 22

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Flow chart of the GGH algorithm as implemented in CompuCell3D.

Swat et al. Page 23

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
CellDraw graphics tools and GUI. (For color version of this figure, the reader is referred to
the web version of this book.)

Swat et al. Page 24

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Invoking the CompuCell3D Simulation Wizard from Twedit++. (For color version of this
figure, the reader is referred to the web version of this book.)

Swat et al. Page 25

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Specification of basic cell-sorting properties in Simulation Wizard. (For color version of this
figure, the reader is referred to the web version of this book.)

Swat et al. Page 26

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Specification of cell-sorting cell types in Simulation Wizard. (For color version of this
figure, the reader is referred to the web version of this book.)

Swat et al. Page 27

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
Selection of cell-sorting cell behaviors in Simulation Wizard.2 (For color version of this
figure, the reader is referred to the web version of this book.)

2We have graphically edited the screenshots of Wizard pages to save space.

Swat et al. Page 28

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Snapshots of the cell-lattice configurations for the cell-sorting simulation in Listing 1. The
boundary-energy hierarchy drives NonCondensing (light grey) cells to surround Condensing
(dark grey) cells. The white background denotes surrounding Medium.

Swat et al. Page 29

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 9.
Specification of the angiogenesis chemical field in Simulation Wizard. (For color version of
this figure, the reader is referred to the web version of this book.)

Swat et al. Page 30

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 10.
Specification of angiogenesis cell behaviors in Simulation Wizard. (For color version of this
figure, the reader is referred to the web version of this book.)

Swat et al. Page 31

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 11.
Specification of angiogenesis secretion parameters in Simulation Wizard. (For color version
of this figure, the reader is referred to the web version of this book.)

Swat et al. Page 32

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 12.
Specification of angiogenesis chemotaxis properties in Simulation Wizard. (For color
version of this figure, the reader is referred to the web version of this book.)

Swat et al. Page 33

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 13.
An initial cluster of adhering endothelial cells forms a capillary-like network via sprouting
angiogenesis. (A) 0 h (0 MCS); (B) ~2 h (100 MCS); (C) ~5 h (250 MCS); (D): ~18 h (1100
MCS). (For color version of this figure, the reader is referred to the web version of this
book.)

Swat et al. Page 34

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 14.
Specification of vascular tumor chemical fields in the Simulation Wizard. (For color version
of this figure, the reader is referred to the web version of this book.)

Swat et al. Page 35

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 15.
Specification of vascular tumor cell behaviors in Simulation Wizard. (For color version of
this figure, the reader is referred to the web version of this book.)

Swat et al. Page 36

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 16.
Specification of vascular tumor chemotaxis properties in Simulation Wizard. (For color
version of this figure, the reader is referred to the web version of this book.)

Swat et al. Page 37

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 17.
Two-dimensional snapshots of the vascular tumor simulation taken at: (A) 0 MCS; (B) 500
MCS; (C) 2000 MCS; (D) 5000 MCS. Red and yellow cells represent endothelial cells and
neovascular endothelial cells, respectively. (See color plate.)

Swat et al. Page 38

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 18.
Diagram of Delta–Notch feedback regulation between and within cells.

Swat et al. Page 39

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 19.
Initial Notch (left) and Delta (right) concentrations in the Delta–Notch model. (For color
version of this figure, the reader is referred to the web version of this book.)

Swat et al. Page 40

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 20.
Dynamics of the Notch concentrations of cells in the Delta–Notch model. Snapshots taken at
10, 100, 300, 400, 450, and 600 MCS. (See color plate.)

Swat et al. Page 41

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Listing 1.
Simulation-Wizard-generated draft CC3DML (XML) code for cell sorting.3

3We use indent each nested block by two spaces in all listings in this chapter to avoid distracting rollover of text at the end of the line.
However, both Simulation Wizard and standard Python use an indentation of four spaces per block.

Swat et al. Page 42

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Swat et al. Page 43

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Listing 2.
CC3DML code for the angiogenesis model.

Swat et al. Page 44

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Listing 3.
Simple Python loop.

Swat et al. Page 45

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Listing 4.
Iterating over the inventory of CC3D cells in Python.

Swat et al. Page 46

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Listing 5.
Sample CC3D steppable class.

Swat et al. Page 47

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Listing 6.
The Main Python script initializes the vascular tumor simulation and runs the main
simulation loop.

Swat et al. Page 48

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Swat et al. Page 49

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Swat et al. Page 50

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Swat et al. Page 51

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Listing 7.
CC3DML specification of the vascular tumor model’s initial cell layout, PDE solvers, and
key cellular behaviors.

Swat et al. Page 52

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Listing 8.

Swat et al. Page 53

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Vascular tumor model Python steppables. The VolumeParametersSteppable adjusts the
properties of the cells in response to simulation events and the MitosisSteppable implements
cell division.

Swat et al. Page 54

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Listing 9.
Jarnac specification of the Delta–Notch coupling model in Fig. 17.

Swat et al. Page 55

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Listing 10.
Registering DeltaNotchClass in the main Python script, DeltaNotch.py in the Delta–Notch
model.

Swat et al. Page 56

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Listing 11.
Implementation of the _init_ and start functions of the DeltaNotchClass in the Delta–Notch
model.

Swat et al. Page 57

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Listing 12.
Implementation of a step function (continuation of the code from Listing 11) to calculate D̄
in the DeltaNotchClass in the Delta–Notch model.

Swat et al. Page 58

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Listing 13.
Adding extra visualization fields in the main Python script DeltaNotch.py in the Delta–
Notch model.

Swat et al. Page 59

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Listing 14.
Steppable to visualize the concentrations of Delta and Notch in each cell in the Delta–Notch
model.

Swat et al. Page 60

Methods Cell Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


