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Abstract
Recent genome-wide association studies have described many loci implicated in type 2 diabetes
(T2D) pathophysiology and beta-cell dysfunction, but contributed little to our understanding of the
genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance
pathways may be uncovered by accounting for differences in body mass index (BMI) and
potential interaction between BMI and genetic variants. We applied a novel joint meta-analytical
approach to test associations with fasting insulin (FI) and glucose (FG) on a genome-wide scale.
We present six previously unknown FI loci at P<5×10−8 in combined discovery and follow-up
analyses of 52 studies comprising up to 96,496non-diabetic individuals. Risk variants were
associated with higher triglyceride and lower HDL cholesterol levels, suggestive of a role for these
FI loci in insulin resistance pathways. The localization of these additional loci will aid further
characterization of the role of insulin resistance in T2D pathophysiology.

Introduction
In contrast to the recent progress in the discovery of genetic variants underlying type 2
diabetes (T2D) pathophysiology and beta-cell function, our understanding of the genetic
basis of insulin resistance remains limited1. Partly because early case-control studies of T2D
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were designed to maximize the likelihood of detecting variants increasing T2D risk directly
rather than through mediation of adiposity, most of the associated loci discovered in these
studies uncovered genes related to beta cell dysfunction2. More recently, we have shown
that the genetic architecture of quantitative indices of beta-cell function and of insulin
resistance differs markedly: given the same individuals, sample sizes and biochemical
measurements, we described a larger number of signals for beta cell function than for insulin
resistance3,4. While this observation is consistent with the higher reported heritability of
insulin secretion compared to resistance, overall heritability estimates of insulin resistance in
individuals of European ancestry of 25%–44% suggest that many loci remain to be
discovered and that novel strategies are required for their localization5.

Obesity is an important determinant of insulin resistance6. It was postulated that adiposity
might modulate the genetic determinants of insulin resistance and contribute to the
heterogeneity of T2D etiology. Wang et al. demonstrated that heritability of insulin
resistance increases with higher body mass index (BMI)7, while some candidate gene studies
have observed that genetic effect size varies with adiposity level8–10: findings compatible
with the presence of underlying interaction between BMI and genetic variants for insulin
resistance. Furthermore, hormones, adipokines and proinflammatory cytokines produced by
adipose tissue can influence insulin signaling via diverse mechanisms11,12, which may
interact with genetic variants influencing insulin resistance pathways. Therefore, to localize
variants associated with insulin resistance it may also be important to account for gene
variant by BMI interaction, which would allow for the potential of adiposity levels to
perturb the physiological milieu in which genetic variants in insulin signaling pathways
operate. Adiposity may also hinder the localization of genetic variants influencing insulin
resistance by introducing extra variance in the outcome that is not attributable to genetic
variation5, suggesting that adjustment for adiposity per se may be necessary.

Kraft et al. proposed a joint test that investigates the association between an outcome and a
genetic variant, while allowing for possible effect modification by an environmental
variable13. Manning et al. developed a statistical method that extends this joint test to a
meta-analysis context14. This enabled us to simultaneously test both the genetic main effect,
adjusted for BMI, and potential interaction between each genetic variant and BMI. This joint
meta-analysis (JMA) approach can provide increased power for detecting the genetic loci
when underlying interaction effects are suspected but unknown13 and importantly, as
demonstrated in simulation studies, does not lose power to detect genetic main effects in the
absence of interaction14. Within the Meta-Analyses of Glucose- and Insulin-related traits
Consortium (MAGIC), we implemented this approach and performed a genome-wide JMA
to search for SNPs significantly associated with glycemic traits while simultaneously
adjusting for BMI and allowing for interaction with BMI. Using this method, we
successfully identify loci that are associated with fasting insulin at genome-wide levels of
significance.

Results
As a first phase, we conducted discovery genome-wide JMA of SNP main effects and SNP
by BMI (SNP×BMI) interaction for four diabetes-related quantitative traits: fasting insulin,
fasting glucose, and surrogate measures of beta-cell function (HOMA-B) and insulin
resistance (HOMA-IR)15; fasting insulin, HOMA-B and HOMA-IR were log transformed.

The fasting insulin discovery-stage JMA of approximately 2.4 million SNPs in 51,750 non-
diabetic individuals from 29 studies (Supplementary Table 1) showed previously reported
associations of variants in IGF1 and GCKR with fasting insulin at genome-wide significance
(Figure 1a, Supplementary Table 2), and revealed 31 previously unreported loci tentatively
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associated (P<10−5) with fasting insulin (Figure 1a, Supplementary Table 3a;
Supplementary Figure 1)3. The fasting glucose discovery JMA in 58,074 individuals showed
association of 16 loci previously described in MAGIC meta-analyses of fasting glucose
(Figure 1b, Supplementary Table 2; Supplementary Figure 1), and revealed 20 previously
unreported loci tentatively associated with fasting glucose (P<10−5) (Figure 1b,
Supplementary Table 3b). The JMA approach revealed an excess of previously undetected
signals relative to the number expected by chance (Supplementary Figure 1). The SNPs that
showed association P<10−5 in the discovery JMA for HOMA-IR and HOMA-B largely
overlapped with those localized for fasting insulin and fasting glucose, without describing
additional loci. We therefore focused all subsequent analyses on fasting insulin and fasting
glucose. Results for associations with HOMA-IR and HOMA-B are available in
Supplementary Table 4.

At each locus that reached P<10−5 in the discovery JMA, an index SNP was chosen to
represent the association signal in the genomic region. A total of 50 SNPs (30 SNPs
associated with fasting insulin, 19 SNPs associated with fasting glucose, and 1 SNP
associated with both) were taken forward to the second phase follow-up analysis. The
follow-up analysis included 23 studies with fasting glucose data, 22 of which also had
measurements of fasting insulin, and comprised up to 38,422 and 33,823 individuals for
fasting glucose and fasting insulin, respectively (Supplementary Table 1). We combined
study-specific results from both the discovery (phase 1) and the follow-up (phase 2) studies
for the 50 index SNPs (Supplementary Table 3), for total sample sizes of 96,496 for fasting
glucose and 85,573for fasting insulin. In the combined JMA, we describe six loci associated
with fasting insulin and seven loci associated with fasting glucose at genome-wide levels of
significance (P<5×10−8), including PPP1R3B, which was associated with both fasting
insulin and fasting glucose (Table 1; Figure 1; Supplementary Table 3). Descriptions of
interesting genes around each association signal appear in Box 1 and Box 2 and to facilitate
discussion of the quantitative trait loci, gene names are used as labels in the text, tables and
figures.

BOX 1

Genes of biological interest within 500kb of Fasting Insulin index SNPs

COBLL1-GRB14

The index SNP (rs7607980) identifies a missense mutation that induces a change in
amino acid (N [Asn] ®D [Asp]) in position 939 of cordon-bleu protein-like 1, encoded
by COBBL1. Cordon-bleu is a protein involved in neural tube development31. The FI-
raising allele at the index SNP was associated with higher expression of COBLL1 (P =
0.02) in skeletal muscle in the Malmo Exercise Study (personal communication, O.
Hansson). A SNP at this locus (rs10195252) is associated with waist-hip-ratio17 but is in
low LD with the index SNP (r2=0.148). GRB14 encodes growth factor receptor-bound
protein 14, which inhibits signaling of the insulin receptor(OMIM number: 601524) 32.
In addition to being associated with triglyceride levels33, rs10195252 is reported to have
a cis acting association with transcript level of GRB14 in omental fat (p= 1.0×10−13)18.

IRS1

IRS1 encodes insulin receptor substrate 1, a critical docking protein in the insulin
signaling cascade, which, when phosphorylated by the insulin receptor, activates
downstream signaling pathways34. SNPs in or near IRS1 are associated with T2D,
HOMA-IR, FI and CAD3,35,36 but have not previously been shown to be associated with
FI at the genome-wide level of significance. The index SNP reported here (rs2943634) is
the same intergenic SNP associated with CAD36 and is in LD with the nearby insulin
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resistance and T2D SNP rs29436413 (r2 = 0.782) and T2D SNP rs75783264 (r2=0.815).
The variant identified by the lipid GWAS (rs2972146; associated with both TG and
HDL) is also reported to have a cis acting association with transcript level of IRS1 in
omental adipose tissue (p =2.0 × 10−8)17 and this SNP is in strong LD with the index
SNP (r2=0.751). Furthermore, the index SNP (rs2943634) is in moderate LD (r2=0.438)
with three SNPs (rs1849878, rs2673148, rs2713547) that tag a known CNV
(CNVR1152.1) (r2= 0.51, 0.52, 0.51, respectively).

PPP1R3B-TNKS

This locus is associated with both FI and FG in the present study. PPP1R3B encodes
protein phosphatase 1 regulatory (inhibitor) subunit 3B, which prevents glycogen
breakdown by regulating the interaction of phosphorylase protein 1 (PP1) with glycogen
metabolism enzymes (OMIM number: 610541)32. Two SNPs in/near PPP1R3B are also
associated with lipids (rs998728918 and rs212625937) and C-reactive protein
(rs998728921) and these are both in strong LD with the index SNP [r2 = 1.0 (rs9987289)
and r2= 0.803 (rs2126259), respectively]. SNP rs9987289 is also reported to have a cis
acting association with transcript level of PPP1R3B in human liver (p = 1 × 10−14)18. In
the present study, we observed that SNP rs19334, associated with expression of
PPP1R3B (p= 2.34 × 10−12) in the liver eQTL dataset38, is in low LD with the index SNP
(r2= 0.001) but showed moderate association with fasting insulin in the discovery sample
(p = 2.87 × 10−4). TNKS encodes TRF1-interacting, ankyrin-related ADP-ribose
polymerase which interacts with TRF1 (telomeric repeat binding factor 1) to regulate
telomere length39 and also interacts with insulin-responsive amino peptidase (IRAP) in
GLUT4 vesicles (OMIM number: 603303)40. Tankyrases are also thought be involved in
the wnt signaling pathway41.

PEPD-CEBPA-KCTD15

PEPD encodes peptidase D, an enzyme responsible for the recycling of proline and likely
essential for collagen production (OMIM number: 613230)42. A SNP in PEPD
(rs731839) is associated with adiponectin levels (personal communication, B. Richards)
and is in strong LD with the index SNP (r2 = 0.77). The index SNP is associated with
PEPD expression in the adipocyte eQTL dataset (p =9.96 × 10−10)43, but most likely this
association is driven by the association between rs17226118 and PEPD expression (p
=2.2 × 10−55) despite the weak LD between the index SNP and rs17226118 (r2=0.145).
CEBPA encodes CCAAT/enhancer binding protein (C/EBP), alpha, which may control
the expression of leptin, an adipokine implicated in weight regulation (OMIN number:
116897)44. KCTD15 encodes potassium channel tetramerisation domain containing 15. A
SNP in/near this gene (rs29941) is associated with BMI16, but is in very low LD with the
index SNP (r2=0.015).

UHRF1BP1-PPARD

UHRF1BP1 encodes Ubiquitin-like containing PHD and RING finger domains 1
(UHRF1)-binding protein 1. UHRF1 is a protein necessary for DNA methylation (OMIM
number: 607990)45. The index SNP in UHRF1BP1 (rs4646949) is in strong LD
(r2=0.724) with a SNP (rs2293242) that causes a nonsense change in ANKS1A. The
same index SNP is in moderate LD (r2 = 0.363) with a coding SNP that results in a
missense change (M1098T) in UHRF1BP1 that is considered damaging based on
analysis of homologous sequences46 (Supplementary Table 6). Index SNP rs4646949 in
UHRF1BP1 is in strong LD (r2 = 0.95) with two perfect proxies (rs2477508 and
rs2814922) for a known CNV (CNVR2857.1). A liver tissue eQTL dataset revealed that
SNP rs12173920 is associated with UHRF1BP1 and STEAP4 (six transmembrane
epithelial antigen of prostate 4) expression levels (P=9.56×10−6 and P= 2.91×10−8,
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respectively) and is in moderate LD (r2= 0.334) with the index SNP38. Another SNP in
the region, rs2814944, is associated with HDL levels and is reported to have a cis acting
association with transcript level of UHRF1BP1 in both omental (p =3.0 × 10−25) and
subcutaneous (p=2.0 × 10−18) adipose tissues18. PPARD encodes peroxisome
proliferator-activated receptor-delta, a protein involved in the breakdown of fat(OMIM
number: 600409)47.

PDGFC-GLRB

PDGFC encodes platelet derived growth factor C, a ligand that binds to specific PDGF
receptors (alphaalpha and alphabeta) and has a growth factor domain homologous to
VEGF (OMIM number: 608452)48. Tyrosine phosphorylation is activated by the binding
of these growth factors to receptors. GLRB encodes glycine receptor, beta, a subunit of
glycine receptors (neurotransmitter-gated ion channels) likely involved in glycine
receptor structure (OMIM number: 138492)49.

LYPLAL1- SLC30A10

LYPLAL1 encodes lysophospholipase-like 1, a protein that may be involved in adiposity
and fat distribution17,50−52. A SNP near LYPLAL1 (rs4846567) is associated with waist-
hip-ratio and is in strong LD with the index SNP (r2= 0.796). Furthermore, a variant in
this vicinity (rs3001032) is associated with adiponectin levels (personal communication,
B. Richards) and is in strong LD with the index SNP (r2=0.828). SLC30A10 encodes
solute carrier family 30, member 10 of the zinc transporter subfamily of cation-diffusion
facilitators that allows for the outward flow of zinc from cells (OMIM number:
611146)53.

BOX 2

Genes of biological interest within 500kb of Fasting Glucose index SNPs

PCSK1

PCSK1 encodes proprotein convertase, subtilisin/kexin-type, 1. This protein initiates
proinsulin processing to insulin. The expression of this protein is regulated by glucose
(OMIM number: 162150)54. The nonsynonymous variant rs6232, which encodes N221D,
and rs6234-rs6235, a pair of variants that encode Q665E-S690T, have been shown to be
associated with obesity in children and adults55. The index SNP is in strong LD with
rs6234 (r2 =0.814). A report from MAGIC demonstrated that rs6235 in PCSK1 is
associated with proinsulin levels at a genome-wide level of significance29.

OR4S1-PTPRJ

OR4S1 encodes olfactory receptor, family 4, subfamily S, member 1. These receptors set
off neuronal responses for smell perception. PTPRJ encodes protein tyrosine
phosphatase (PTP), receptor type, J. By hindering phosphorylation, this protein is thought
to inhibit T cell receptor signaling.

ARAP1-INPPL1-STARD10

A SNP in this region, rs1552224 is associated with T2D4 and is in perfect LD with the
index SNP (r2 =1.0). The genetic variant associated with increased risk of T2D is also
associated with lower fasting proinsulin (adjusted for insulin levels) suggesting that the
variant might cause a defect in the early steps of insulin production29. ARAP1 encodes
ankyrin repeat, and pleckstrin homology domains-containing protein 1 that controls
ARF-, RHO-, and CDC42-dependent cell functions56. INPPL1 encodes inositol
polyphosphate phosphatase like−1. In vivo mouse studies indicate that this protein is a
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negative regulator of insulin signaling and sensitivity (OMIM number: 600829)57.
STARD10 encodes StAR-related lipid transfer (START) domain containing 10, a protein
thought to be involved in sperm cell maturation but highly expressed in liver and
pancreas tissues58 (NF Expression Atlas 2 Data from U133A and GNF1H Chips). Levels
of STARD10 expression are stronger in pancreatic and islet tissue than in any other
human tissue type29.

FOXA2

FOXA2 encodes forkhead box A2, a DNA-binding protein which regulates the
expression of key genes active in glucose sensing in beta cells (OMIM number: 600288).
When FOXA2 was continually activated in mice, this led to increases in neuronal MCH
and orexin expression, insulin sensitivity, food consumption and metabolism59. It has
previously been suggested that mutations in FOXA2 may affect glucose homeostasis79.

GRB10

GRB10 encodes growth factor receptor-bound protein 10 (OMIM number: 601523). This
protein forms a complex with insulin receptors and inhibits their signaling60. This protein
also interacts with GIGYFs (Grb10 interacting GYF proteins) to regulate insulin-like
growth factor receptor 1 signaling61. The risk allele at rs2237457 showed an association
with T2D (P=1.1×10−5) and glucose excursion during OGTT (P=0.001) in the Old Order
Amish Study19.

DPYSL5-KHK-PPM1G

DPYSL5 encodes dihydropyrimidinase-like 5 and is thought to be involved in directing
neuronal growth cones in development(OMIM number 608383). KHK encodes
ketohexokinase and is the first enzyme acting in the breakdown of fructose(OMIM
number: 229800). PPM1G encodes protein phosphatase, magnesium-dependent, 1 which
carries out a dephosphorylation event essential for forming the spliceosome (OMIM
number: 605119)62. There is moderate LD (r2 = 0.404) between the index SNP in
DPYSL5 (rs1371614) and a SNP (rs2384572) that causes a missense change (I116I or
I20I [depending on transcript]) in CGREF1 (cell growth regulator with EF-hand domain
1) that is considered damaging based on analysis of homologous and orthologous
sequences46 (Supplementary Table 6).

PDX1

PDX1 encodes pancreatic and duodenal homeobox 1 and is responsible for the
development of the pancreas, determining maturation and differentiation of common
pancreatic precursor cells (OMIM number: 600733). As pancreatic morphogenesis
proceeds, PDX1 action is eventually restricted to beta and delta cells of the islets, where
it appears to regulate expression of the insulin and somatostatin genes, respectively. A
deletion (FS123TER) and missense changes (Glu164Asp, Glu178Lys) in PDX1 are
associated with pancreas agenesis63. While the deletion FS123TER causes pancreas
agenesis in homozygotes, heterozygosity is associated with MODY464. The variant
Glu224Lys (E224K) was also shown to cause MODY465. Other variants were suspected
in increased risk of T2D in some family studies.

PPP1R3B/TNKS

see summary in Box 1

As the JMA simultaneously tests both genetic main effects and interaction effects, in order
to further characterize the association signals observed using the JMA, we performed
additional analyses to examine main effects and interaction effects separately. These
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additional analyses included meta-analyzed regression models of main effects, with and
without adjustment for BMI, univariate meta-analysis of interaction effects using continuous
BMI, and SNP main effects meta-analyses in strata defined by a BMI cut-off of 28 kg/m2,
chosen based on the median BMI of the largest cohorts included in our discovery stage JMA
(BMI strata are categorized as “leaner” where BMI < 28 kg/m2 and “heavier” where BMI ≥
28 kg/m2).

Associations with fasting insulin
The follow-up loci associated with fasting insulin (natural log transformed) at genome-wide
levels of significance in the combined JMA are presented in Table 1 and described in Box 1.
SNP rs7607980 located near COBLL1-GRB14 provided the strongest signal for fasting
insulin, with a JMA P value of 4.3×10−20. Analyses performed to characterize this
association further revealed that the significant association of rs7607980 with fasting insulin
was driven primarily by a BMI-adjusted genetic main effect (P = 1.7×10−16), and showed
some suggestion of interaction with BMI (P for interaction = 1.6×10−4; Figure 2;
Supplementary Table 3a). Modeled from the combined JMA, the estimated effect size of the
genetic variant was greater at a BMI of 30 kg/m2 (JMA β=0.039) compared a BMI of 25 kg/
m2 (JMA β=0.023; Table 1). These estimates were supported by BMI-stratified analyses: the
genetic effect was larger in heavier (main genetic effect β=0.041, P=2.98×10−10) than in
leaner individuals (main genetic effect β= 0.018, P=1.77×10−5; P value for difference
between strata = 0.02; Figure 2).

In addition to COBLL1-GRB14, the combined JMA showed five loci to be associated with
fasting insulin (IRS1, PPP1R3B, PDGFC, LYPLAL1, UHRF1BP1) at genome-wide
significance levels (Table 1; Supplementary Figure 2). For these loci, the additional models
to characterize the association demonstrated that the JMA association signals were largely
driven by their main genetic effects, adjusted for BMI (P < 5.5×10−9), and showed little
evidence of interaction (P > 0.02; Supplementary Table 3a). Additionally, the combined
JMA at the PEPD locus showed evidence suggestive of association, albeit just below the
conventional significance threshold (P=8.69×10−8). The results of the JMA and the
additional meta-analyses for all loci included in the follow-up (phase 2) are presented in
Supplementary Table 3a.

As we were interested in identifying loci associated with insulin resistance, we investigated
associations between genome-wide significant variants and other traits related to insulin
resistance in genome-wide meta-analysis results provided by other consortia: the Diabetes
Genetics Replication And Meta-analysis Consortium (DIAGRAM)4, the Genomewide
Investigation of ANThropometric measures (GIANT)16,17 consortium, and the Global Lipid
Genetic Consortium (GLGC)18 (Table 2). At five out of six loci associated with fasting
insulin, the insulin-raising allele was associated with both lower HDL cholesterol and higher
triglycerides – a dyslipidemic profile typical of insulin resistance. The insulin-raising alleles
near COBLL1-GRB14, LYPLAL1 and PPP1R3B were also associated with a greater waist-
hip ratio (WHR adjusted for BMI). Individuals carrying insulin-raising alleles at the index
SNP in or near COBLL1-GRB14, LYPLAL1, IRS1 or PDGFC were at increased risk of
T2D, albeit with relatively small odds ratios (Table 2).

Associations with fasting glucose
Genetic variants associated with fasting glucose at genome-wide significance in the
combined JMA are presented in Table 1 and described in Box 2: index SNPs were in or near
ARAP1, PCSK1, FOXA2, DPYSL5, OR4S1, PDX1, and PPP1R3B. The combined JMA
results for the index SNP near GRB10 demonstrated a suggestive association with fasting
glucose, but the P value did not reach genome-wide significance (P=8.3×10−8).
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Interestingly, a SNP in GRB10 (rs2237457) was previously found to be associated with T2D
(P=1.1×10−5) in the Old Order Amish19.

Additional characterization analyses revealed that genetic main effects were the main
contributors to these associations (P<3.6×10−8) (Supplementary Table 3b), with little
evidence observed for interaction at these loci (P values for interaction>0.06). The combined
results of the JMA and the additional meta-analyses for all loci included in the follow-up
(phase 2) are presented in Supplementary Table 3b.

In contrast to associations observed at fasting insulin loci, fasting glucose index SNPs did
not show compelling associations with insulin resistance related metabolic traits (Table 2),
but fasting glucose-raising alleles near PCSK1 and PPP1R3B showed nominal associations
with lower 2-hour glucose levels; see Supplementary Table 4.

Functional exploration, the results of expression and eQTL lookups, and conditional
analyses based on available databases are presented in the Supplementary Note.

Discussion
Our study demonstrates that insulin resistance loci exist and can be localized when
appropriate analysis methods are used to control for the influence of adiposity on insulin
resistance. In a discovery dataset that was approximately 35% larger than our previous meta-
analysis, we describe six loci not previously known to be associated with fasting insulin,
adding substantially to the two loci that were observed using standard association analyses
without adjustment for BMI. We also describe seven additional loci associated with fasting
glucose. In addition, we detected all previously reported associations for fasting glucose (16
loci) and insulin (2 loci) (Supplementary Table 2)3. With the initial explosion in the number
of loci found to be associated with T2D1, we expected to discover similar numbers of loci
implicated in insulin resistance and insulin secretion, which has not been the case until now.
Our approach was successful at revealing loci implicated in insulin resistance in numbers
proportional to those implicated in insulin secretion. Our results underline the importance of
taking adiposity into account to understand the heterogeneity of T2D etiology.

The association of fasting insulin with the genetic variant located at the COBLL1-GRB14
locus is of particular interest, based on its concomitant and directionally consistent
association with insulin resistance-related traits and its plausible mechanism of action.
GRB14 is a tissue-specific negative regulator of insulin receptor signaling (see also Box 1).
The risk allele at the index SNP rs7607980 is associated with higher triglycerides and lower
HDL cholesterol levels, a dyslipidemic profile characteristic of the insulin resistant state,
advocating for a putative role in insulin resistance pathways. Furthermore, this pattern of
association was observed for nearly all index SNPs associated with fasting insulin,
increasing our confidence that our approach localized genetic loci involved in insulin
resistance pathogenesis. As shown in a previous GIANT report17, risk alleles at COBLL1-
GRB14 and LYPLAL1 were also associated with increased waist-hip ratio (WHR) adjusted
for BMI (Table 2), suggesting that they could be influencing the regulation of adipose tissue
distribution to induce insulin resistance. In line with plausible biological actions in adipose
tissue, eQTL results in omental adipose tissue demonstrated that expression of GRB14 is
associated with SNP rs10195252 (r 2=0.17 with the index SNP rs7607980) in the report
from GLGC18.

Our results suggest a SNP×BMI interaction with fasting insulin at COBLL1-GRB14, with a
larger genetic effect estimate in heavier individuals, compatible with the notion that some
genetic variants implicated in insulin resistance pathways are more likely to be found when
studying genetic effects in an ‘obesogenic’ environment. Our observation supports the
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analyses in the TwinsUK study reporting greater heritability estimates for insulin resistance
traits at higher levels of BMI7. Moreover, some candidate gene studies demonstrated that
genetic variants implicated in insulin signaling pathways are more readily observable in
heavier populations20. Prudente et al. proposed that higher BMI potentiates the effect of
genetic variants on insulin resistance pathways and suggested that this effect could be due to
tissue specific response to the obesogenic environment5. It is currently unknown how a
genetic variant could influence a different response to an obesogenic exposure within
specific tissues – liver, muscles, adipose or even central nervous system – but our data add
to the current literature by identifying one potential example and arguing for functional
studies to pursue the hypothesis proposed by Prudente et al.5.

Among the other loci, PPP1R3B is likely to act via hepatic metabolism to influence fasting
insulin and glucose, as well as lipid profile (HDL, LDL, total cholesterol) and CRP levels21.
PEPD encodes peptidase D and is likely to have a role in adipokine biology supported by
eQTL data in adipose tissue (Supplementary Table 5) and an observed association with
adiponectin levels (ADIPOgen consortium, B. Richards, personal communication).
Adiponectin is suspected to act as an insulin sensitizer with low levels conferring T2D risk
only among individuals who are also insulin resistant22; the independent PEPD associations
with this adipokine are supportive of a direct role in insulin resistance. Additionally, other
genes located near the loci reported in Table 1 also represent plausible biologic candidates to
be involved in various processes related to insulin resistance (see Box 1).

The JMA approach has the potential to reveal genetic variants whose effects differ
depending on levels of adiposity, with interactions being tested in either direction. As
pointed out previously, a search for T2D genes in leaner populations is more likely to reveal
genes implicated in beta-cell function by focusing on pathophysiologic mechanisms
independent of adiposity and insulin resistance23. As a corollary of this observation, insofar
as adiposity and insulin resistance have a stronger environmental component, main effect
sizes for beta-cell function loci may tend to be larger in leaner individuals, although this was
equivocal in our findings (Supplementary Table 2).

There have been few previous efforts investigating SNP×BMI interaction and its impact on
the risk of T2D or related glycemic traits at a genome-wide level. Timpson et al.
investigated genetic variants associated with T2D in the Wellcome Trust Case Control
Consortium by dividing the cases into strata of obese and non-obese individuals: in addition
to TCF7L2 (of larger effect in non-obese cases), the only other signal they detected and
replicated was the well-known obesity-mediated FTO association with T2D in the obese
strata24. As expected, we did not detect an association between FTO and fasting insulin or
glucose because the JMA approach includes an intrinsic adjustment for BMI.

Strengths and potential limitations
The major strengths of our study are the large sample size, that all cohorts were composed of
individuals from European descent, and importantly, that we used a validated statistical
approach and successfully applied it at genome-wide level for the first time. Importantly, we
identify all previously described associations with fasting insulin and fasting glucose, which
highlights the utility of the JMA approach even in the absence of underlying gene-
environment interaction.

We used a two-phase analytical approach, using the conventional P<5.0×10−8 significance
threshold in combined analyses to determine genome-wide significance for the identified
SNPs. This approach has been shown to have greater power when the size of the follow-up
sample is smaller than the discovery phase25,26 and has previously been successful applied
by our group27–29 and others30. All 12 loci described in Table 1 show consistent directions
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of effect in the follow-up phase. However, employing a replication strategy that declares
statistical significance on the basis of the follow-up phase alone, only 4 of the 12 loci would
reach conventional statistical significance accounting for multiple testing
(P<0.05/51=0.00098; with significance threshold α/N1, where N1 is the number of SNPs
taken forward for replication and one SNP is identified for both fasting glucose and fasting
insulin).

Only 12 significant loci were identified after the second stage, despite the fact that 50 loci
were taken forward from the discovery stage and only 2 or 3 associations at P<0.00001
would be expected per trait under the hypothesis of no association. Among the reasons for
the fewer than expected significant associations is most importantly the size of the follow-up
sample. To maximize sample size we took advantage of studies that offered either de novo
genotyping, access to genome-wide SNP arrays or had performed genotyping on the
Metabochip. While our study represents the largest effort of its kind, it should be
acknowledged that the follow-up sample size is still approximately one half of the size of the
discovery sample and that false negatives may remain amongst those loci not reaching
genome-wide significance.

We used the JMA as the primary model and further characterized only those loci in
additional models that reached genome-wide significance. However, consideration of results
from the follow-up stage alone showed that the interaction term at the COBBL1-GRB14
locus did not reach statistical significance in additional models, although we observed
consistency in direction and effect size in phases 1 and 2.

Our main JMA model assumes a linear interaction, where the per allele effect of a SNP
changes across the continuous spectrum of BMI. If the interaction effect is nonlinear, or a
threshold effect exists, in which case the association would only be present in one extreme
of the BMI distribution, the interaction test with continuous BMI might not agree with that
of dichotomous BMI. This could explain the inconsistencies of the interaction results with
IRS1, PCSK1 and OR4S1, where we do observe some suggestion of interactions in the
stratified models not supported by models including BMI as a continuous variable.

We used the JMA approach to test for SNP main effects adjusted for BMI and to allow for
interaction between BMI and SNPs, but the results we observed might be due to one of
many factors correlated with BMI, including lifestyle. Additionally, although we identify
genes that highlight potential new pathways to insulin resistance and T2D development, we
recognize that we have not localized the associations to specific genes.

Conclusion
Previous attempts to identify loci associated with insulin resistance have been hindered
partly by methodological limitations. In the present study, by using the newly developed
JMA approach, we observed six additional loci associated with fasting insulin and other
insulin resistance-associated traits. We used the JMA approach because we hypothesized
that the degree of adiposity may mask, positively confound, or modify the association
between genetic variants and insulin resistance traits. While the associations we observed
resulted mainly from adjustment for BMI, the JMA method allowed the flexibility and
power to observe these main effect-driven associations, whilst allowing us to simultaneously
test our hypothesis of interaction. The identification of these loci offers the potential to
further characterize the etiology and causality of T2D and the role of insulin resistance in
that process.
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Online Methods
Cohorts

We recruited 29 studies involved in MAGIC (Meta-Analysis of Glucose and Insulin related
traits Consortium) for the first phase of discovery analysis, totaling up to 58,070 individuals
of European ancestry. Many of these studies were involved in the previous MAGIC effort on
fasting glucose and fasting insulin3. In the second phase, follow-up included 23 cohorts with
fasting glucose data and 22 cohorts with fasting insulin data, comprising up to 38,422and
33,823 non-diabetic individuals of European ancestry, respectively (detailed discovery and
follow-up cohort characteristics are presented in Supplementary Table 1). We excluded
individuals with T2D on the basis of known T2D or anti-diabetic treatment, and/or a fasting
glucose ≥7 mmol/L so as to remove their influence on misclassification of trait levels66.
Local research ethic committees approved all studies and all participants gave informed
consent to each original study.

Phenotypes/Quantitative Traits
Fasting glucose and fasting insulin were measured from whole blood, plasma or serum using
assays specific for each cohort (Supplementary Table 1). Homeostatic model assessment
indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) were derived
from fasting glucose and fasting insulin15. Fasting insulin, HOMA-B, and HOMA-IR were
log transformed for analyses. Anthropometric measurements such as body mass index (BMI,
kg/m2) were obtained in each cohort following standardized procedures. Trait values were
not imputed and outliers were not excluded.

Phase 1: Discovery Genotyping
All cohorts included in the discovery phase had genome-wide arrays performed, details of
which are specified in Supplementary Table 1. We implemented the following quality
control inclusion criteria for the SNPs in all cohorts: 1) Hardy-Weinberg equilibrium
P>10−6, 2) minor allele frequency >1%, and 3) SNP call rate >95%. Imputation was
performed using MACH67,68 (r2 >0.3) or IMPUTE69,70 (proper_info>0.3) based on the
HapMap CEU population (build 36). Both genotyped and imputed SNPs were used in the
analysis, with priority given to genotyped SNPs when both were available. Consequently, up
to 2.4 million SNPs (genotyped or imputed) were included in the discovery phase meta-
analyses.

Phase 2: Follow-up Genotyping
Studies were invited to participate in the follow-up phase of the analysis through either in
silico lookups with existing genotype data or de novo genotyping. A large percentage of the
follow-up cohorts used the Illumina Cardio-Metabo Chip. Study-specific details for follow-
up genotyping are described in Supplementary Table 1.

Statistical Models
Each study submitted regression summary statistics for the meta-analyses, all of which
assumed an additive genetic effect and were adjusted for age, sex and study-level covariates
at a minimum (Supplementary Table 1). The first regression model included SNP, BMI and
SNP×BMI product terms to allow for SNP×BMI interaction effects (Model 1). This
regression model was used in the JMA, which is described below, and is considered the
primary analysis. Additional regression models were meta-analyzed, solely to characterize
the associations observed in the JMA as being driven by either SNP main effects or by SNP
by BMI interactions. Main effects models estimating the effect of each SNP on the
dependent variables were performed, both with (Model 2) and without (Model 3) adjustment
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for BMI. Additionally, the continuous BMI measure was dichotomized at 28 kg/m2; this cut-
off was chosen based on the median BMI in of the largest cohorts included in our discovery
analysis. An interaction model using the dichotomized BMI was fit (Model 4) and stratified
models were used to obtain stratum specific estimates in leaner (BMI <28 kg/m2, Model 5)
and heavier individuals (BMI ≥28 kg/m2, Model 6). For Models 1 and 4, both the SNP and
SNP×BMI regression coefficients and their covariance matrix were reported by each study
and robust variance estimates were used to correct the observed inflation of the false
positive rate observed for the interaction P-value71.

In phase 1, models 1, 2 and 3 were performed genome-wide, while models 4, 5 and 6 were
performed on SNPs with discovery JMA P values less than 10−5. For phase 2, models 1–6
were performed using SNPs taken forward to the follow-up. Regression statistics were
obtained with R, SAS, Quicktest (http://toby.freeshell.org/software/quicktest.shtml) or
ProbABEL72 (Supplementary Table 1).

The models were fit as:

Model 1. Y = β0 + βC × Cov + βSNP × SNP + βBMI × BMI + βSNP×BMI × SNP×BMI +
ε. (BMI as continuous variable)

Model 2. Y = β0 + βC × Cov + βSNP × SNP + ε.

Model 3. Y = β0 + βC × Cov + βSNP × SNP + βBMI × BMI + ε.

Model 4. Y = β0 + βC × Cov + βSNP × SNP + βBMI-di × BMI + βSNP×BMI-di ×
SNP×BMI + ε. (BMI as a dichotomous variable)

Model 5. Y = β0 + βC × Cov + βSNP × SNP + ε. (in individuals of BMI < 28)

Model 6. Y = β0 + βC × Cov + βSNP × SNP + ε. (in individuals of BMI ≥ 28)

Phase 1 and 2 Meta-analyses
Our objective was to identify genetic loci associated with fasting insulin, as a surrogate for
insulin resistance, which may be masked by variation in, or interaction with, BMI. In the
primary analysis we performed a joint meta-analysis (JMA) of both the SNP effect and the
SNP×BMI interaction effect from Model 1, using a recently developed method14. The JMA
is an effective screening tool when the underlying interaction model is unknown and,
importantly, retains power when there is no interaction effect. The JMA provides estimates
of βSNP and βSNP×BMI and allows for a 2 degree of freedom joint test of the null hypothesis
H0: βSNP =βSNP×BMI =0, as well as a test of heterogeneity of regression coefficients.
Additionally, the JMA detects association in the presence of either a significant SNP effect,
adjusted for BMI, or a SNP×BMI interaction effect. We implemented the JMA method in
METAL (v. 2010-02-08 http://www.sph.umich.edu/csg/abecasis/Metal/ with patch provided
by Manning et al.14). SNPs that reached a discovery threshold in the JMA of P<10−5 with
Pheterogeneity >0.001 and were available in at least one third of the total sample size were
taken forward to follow-up analyses. In order to characterize the association signals
observed in the JMA, additional meta-analyses were performed that examined main effects
and interaction effects separately. The inverse-variance weighted meta-analyses73 approach
and heterogeneity test74 were used in the univariate meta-analyses of the SNP main effects
in Models 2, 3, 5 and 6 and the SNP×BMI interaction effect from models 1 and 4.

In each genomic region identified from the JMA, the index SNP was chosen as the SNP with
the strongest association (lowest P value) unless the region contained a SNP known to be
associated with a metabolic condition or trait (and with P<10−5), in which case the latter
SNP was selected. In case a follow-up cohort was not able to provide results for an index
SNP, several proxy SNPs were chosen using LD information from HapMap (http://
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hapmap.ncbi.nlm.nih.gov) and the 1000 Genomes project75. SNPs identified by the JMA,
but which had previously reported associations with diabetes and/or diabetes-related
quantitative traits in MAGIC were not selected for follow-up and are reported in
Supplementary Table 2.

Models 1–6 were performed within each follow-up study and the SNPs were meta-analyzed
within the follow-up cohorts and in a combined meta-analysis with the discovery cohorts
using the methods detailed above. Meta-analyses were performed with proxy SNPs if the
index SNP was not available. A SNP was considered significant if the JMA in the combined
sample yielded a P value less than 5×10−8. Effect estimates described in the results and
displayed in Supplementary Table 3 were obtained from a combined meta-analysis that
excluded proxy SNPs.

Two of the index SNPs (near CHL1 and TUBA3C) showed significant associations in the
discovery JMA. We excluded these loci from the combined analysis because we observed
low heterogeneity P values and because neither the main effects nor interaction models
supported the associations observed in the JMA at these loci.

Conditional Analyses
We conducted conditional analyses for index SNPs that were within approximately 1 Mb of
established SNPs (known associations with T2D or glycemic traits). We conditioned on the
established SNPs for a chromosome-specific analysis in the Framingham Heart Study, one
of the largest cohorts in the meta-analyses in which the associations of both the established
SNPs and the index SNP were observed. If the SNP retained nominal significance in the
conditional analysis, we considered the association signal to be not solely caused by LD
with the established SNPs. Because only one study was involved in this conditional analysis,
to account for the limited power we used a significance threshold of 0.05.

Associations with related metabolic traits
As we were interested in the effect of the index SNPs on insulin resistance-related traits,
associations of each index SNP with related glycemic traits and T2D were sought using
results from previous DIAGRAM and MAGIC meta-analyses: T2D4, 2-hour glucose27, and
glycated hemoglobin28. We also performed lookups of these SNPs in publicly available data
from previous meta-analyses of lipid quantitative traits18. Associations with BMI16 and
WHR adjusted for BMI17 were also sought from published GIANT meta-analyses.

Functional Exploration
To determine if any index SNPs were in LD with nearby functional coding variants, we used
SNPper76 (http://snpper.chip.org/) to extract all SNPs that fell within 500 kb of the index
SNP (1 Mb total). From this list we chose all coding SNPs and used SNAP (http://
www.broadinstitute.org/mpg/snap/ldsearch.php) to determine if any of these coding SNPs
were in LD (CEPH (Utah residents with ancestry from northern and western Europe) (CEU),
1000 Genomes Project, 500 kb distance) with the index SNP. We used the online tool SIFT
dbSNP (http://sift.jcvi.org/www/SIFT_dbSNP.html) to predict potential damage to the
protein.

To establish whether index SNPs are in LD with known copy number variants (CNVs), we
used a database of 7,411 SNPs that tag 3,188 CNVs from the Wellcome Trust Case Control
Consortium (WTCCC)77 in addition to a list of 422 SNPs tagging 261 deletions78. All
known SNPs in LD with these tagging SNPs were retrieved using the SNAP tool (http://
www.broadinstitute.org/mpg/snap/ldsearch.php) (CEU, 1000 Genomes, within 500 kb). We
determined if any index SNPs are in LD with those SNPs tagging CNVs.
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Expression Studies and EQTL
We searched for genes potentially implicated in glycemic regulation and insulin resistance
in the region flanking 500 kb on each side of index SNPs (1 Mb total). Functions of these
genes were investigated using online resources such as OMIM (http://
www.ncbi.nlm.nih.gov/omim) or GeneCards V3 (http://www.genecards.org/).

We examined expression levels of candidate genes nearest the index SNP and within 500 kb
of the index SNP using available online micro-array expression data (GNF Expression Atlas
2 Data from U133A and GNF1H Chips, http://genome.ucsc.edu). Potential fasting insulin
candidates were further pursued with eQTL studies in available datasets.

We queried all SNPs in the 1 Mb region surrounding the fasting insulin index SNPs to see if
they were associated with expression levels of any genes in a liver tissue gene expression
database38, which used a sample size of 427 subjects of European ancestry and where SNPs
with association p-values less than 0.003 were listed. We used the SNAP tool (http://
www.broadinstitute.org/mpg/snap/ldsearch.php) to determine if eQTLs were in LD with
fasting insulin index SNPs. Fasting insulin index SNPs were also queried in the MuTHER
(Multiple Tissue Human Expression Resource) expression database43 to determine if any
were eQTLs in subcutaneous adipose tissue (N=776). Further eQTL look-ups were
performed searching for top eQTL findings for any SNPs located within 1 Mb of each index
SNP (P values <10−3). Data were analyzed in genABEL and probABEL72. A genome-wide
FDR of 1% corresponded to a P-value threshold of 5.1×10−5 and data were corrected for
multiple testing.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Genome-wide plots of the discovery joint meta-analysis (JMA) for fasting insulin (1a top)
and fasting glucose (1b top): 17 loci with known associations were observed (red) and 50
loci were taken to the follow-up analysis (light and dark blue). Of these, 12 reached genome-
wide significance in the combined discovery and follow-up JMA (dark blue). The P values
of these 12 loci from the models fit in the combined discovery and follow-up analyses are
presented in Figure 1a (bottom) for fasting insulin and 1b (bottom) for fasting glucose: JMA
(red), main effects adjusting for BMI (orange), interaction with continuous BMI (green) and
interaction with dichotomous BMI (blue). * G6PC2 JMA P value: 1.7 × 10−113, ** GCK
JMA P value: 8.3 ×10−56, *** MTNR1B JMA P value: 4.38 × 10−105.
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Figure 2.
Regional plot of the COBLL1-GRB14 genomic locus. The left plot shows the discovery
JMA P values in the background and for the SNP taken forward to the follow-up analyses
(rs7607980), the P values of the discovery JMA (dark red) and the combined discovery and
follow-up JMA (light red), main effects adjusting for BMI (orange), interaction with
continuous BMI (green) and interaction with dichotomous BMI (blue). The right plot shows
the beta estimates with 95% confidence interval of the increasing allele in the two BMI
strata: BMI<28 and BMI≥28 kg/m2. Effect = Beta estimates from regression models of
ln(FI) adjusting for age, sex and other study-specific covariates.
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