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Abstract

Protein-protein interaction (PPI) networks provide insights into understanding of biological processes, function and the
underlying complex evolutionary mechanisms of the cell. Modeling PPI network is an important and fundamental problem
in system biology, where it is still of major concern to find a better fitting model that requires less structural assumptions
and is more robust against the large fraction of noisy PPIs. In this paper, we propose a new approach called t-logistic
semantic embedding (t-LSE) to model PPI networks. t-LSE tries to adaptively learn a metric embedding under the simple
geometric assumption of PPI networks, and a non-convex cost function was adopted to deal with the noise in PPI networks.
The experimental results show the superiority of the fit of t-LSE over other network models to PPI data. Furthermore, the
robust loss function adopted here leads to big improvements for dealing with the noise in PPI network. The proposed
model could thus facilitate further graph-based studies of PPIs and may help infer the hidden underlying biological
knowledge. The Matlab code implementing the proposed method is freely available from the web site: http://home.ustc.
edu.cn/,yzh33108/PPIModel.htm.
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Introduction

Proteins are crucial for almost all of functions in the cell.

Usually, they rarely perform their functions alone, but cooperate

with each other by forming a huge network of protein-protein

interactions (PPIs). In the past decades, many innovative

techniques for detecting PPIs have been developed [1–4].

Benefited from the progress in large-scale experimental technol-

ogies such as yeast two-hybrid (Y2H) screens [1,5], tandem affinity

purification (TAP) [2] and mass spectrometric protein complex

identification (MS-PCI) [3], a large amount of PPI data for

different species has been accumulated [1–3,5–7]. PPI data are

usually represented in term of graph (network), where nodes in the

graph represent proteins, and there is an edge between two nodes

if the corresponding proteins interact with each other. PPI

networks provide a comprehensive view of the global interaction

structure of an organism’s proteome, as well as detailed

information on specific interactions [8]. Analyzing its structure

could lead to new knowledge about complex biological mecha-

nisms.

To analyze the PPI networks, an important step is to find an

adequate model which could generate networks that closely

replicate the structure of real PPI data [9]. It could give insights

into understanding and replicating the biological processes and the

underlying complex evolutionary mechanisms that created the

networks [10,11], it will also be helpful for understanding

biological function, disease and cell’s evolution.

On the other hand, up to now there is no complete and highly

reliable PPI network of any organism available. Even the most

studied PPI network of yeast is very noisy and far from being

complete [12–14]. A good PPI network model can be used as a

convenient mathematical framework for dealing with one of the

biggest challenges in PPI networks research: detection of huge

levels of false positives and false negatives protein interactions [15].

In addition, due to the NP-hard nature of many global systems

biology problems, most of graph-theoretic approaches have been

proven to be computationally infeasible for biological network

analysis in comprehensive genome-scale. However, special classes

of graphs usually have given network properties, which makes

settling many problems on such graph classes practicable.

Therefore, modeling PPI networks by some special graph classes

could simplify the computational manipulation and make it easier

to extract biological knowledge which is encoded in the network

structure. Furthermore, a well-fitting network model can be used

to guide biological experiments in a cost and time optimal way.

For example, Lapp et al. used the scale-free model of human PPI

network to optimize their biological experiments, by which up to

90% of the human interactome can be detected with less than one-

third of the proteome used as bait in large-scale pull down

experiments [16].
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Currently, many network models have been proposed to

describe PPI networks. The very first attempts began with

Erdos-Renyi(ER) random graphs, the earliest network model

[17]. In a random graph with n vertices, each of the possible edges

between pairs of vertices are distributed uniformly at random with

same probability p, which means that all vertices have nearly the

same degree, i.e. the probability of two vertices to interact equals p

in ER model. The clustering coefficient of two vertices also equals

to p which is much smaller than that in many real PPI networks.

Therefore, the ER model fails to reproduce even the simplest

network properties of PPI networks. Other better fitting models for

PPI network, therefore, were introduced recently. In generalized

random graphs (ER-DD), the edges are randomly chosen as in ER

graphs, but the degree distribution is constrained to match the

degree distribution of the real networks [18]. Small world (SW)

networks are characterized by small diameters and large clustering

coefficients [19]. Modeling the PPI network data by scale-free (SF)

network, a network whose degree distribution follows a power-law,

is based on the assumption that the degree distribution is one of

the most important network properties that a network model

should capture [20]. However, it has been shown that two

networks with exactly the same degree distribution can have

completely different network structures [9]. Higham et al. propose

to model PPI networks based on stickiness index [21], where

vertices with high stickiness index mimic proteins with many

complimentary physical aspects. It is shown that fitting a stickiness

model can produce better results than simply choosing a degree-

matching graph uniformly at random.

The above-mentioned models were introduced to capture

specific network properties or mimic the way that the networks

might be evolved. However, they do not utilize the connectivity

information of the PPI networks to learn the networks topological

structures. Przulj et al. proposed a new model [15,22] which can

exploit the entire connectivity information of a PPI network to

learn its structure. Their approach is based on the geometric

assumption of PPI networks, i.e., in a PPI network nodes

correspond to points in a metric space and edges are created

between pairs of nodes if the corresponding points are close

enough in the metric space according to some distance norm

[23,24]. The geometric assumption is justified by the demonstra-

tion that PPI networks can be explicitly embedded into a low-

dimensional geometric space [15,23,25]. On the other hand, it has

been approved that all biological entities, including genes and

proteins as gene products, exist in some multidimensional(likely

metric) biochemical space. It is also likely to include as dimensions

phenomena such as post-translational modifications, small mole-

cule bindings, etc. Mathematically, we can consider these

properties to be dimensions of some abstract metric space [11].

Given the connectivity matrix of a PPI network, Przulj’s model

(denoted as MDS-GEO henceforth) firstly constructs a distance

matrix between the proteins which satisfy the geometric assump-

tions. Then the proteins are embedded into a low-dimensional

space using multidimensional scaling (MDS), i.e., the spectral

decomposition of the distance matrix [15]. Experiments show that

they achieved a substantial improvement in the fit of their model

to PPI networks over all other currently commonly used random

graph models [25].

MDS-GEO has also been successfully applied to identify the

false positive links in the PPI networks: after the embedding is

learned, a pair of proteins that is connected in the original PPI

network will be assigned an interaction if and only if they are close

to each other in the embedded space. Although only the

topological information of PPI networks was utilized in MDS-

GEO, its overall performance is competitive with that of biological

experimental techniques and methods that combine additional

information [22].

Despite the advantages of MDS-GEO model, its performance is

limited by some drawbacks: (1) MDS-GEO seeks to preserve a

predefined metric. Obviously, beside the geometric assumption,

MDS-GEO enforces more structural assumptions on the embed-

ding and may deteriorate the fitting performance. (2) The PPI

networks are known to contain a lot of noise [22]. However this

problem is not well addressed in MDS based methods [12].

Equipped with the 2-norm cost function, MDS is known to be

sensitive to outliers [26]. Furthermore, MDS-GEO uses the

shortest path-lengths on the graph to define the similarity between

nodes, which is also sensitive to the false-positive links in the graph

[27].

In this paper, we propose a novel approach, t-logistic semantic

embedding (t-LSE), to model PPI networks. Like in MDS-GEO,

our approach is also based on the geometric assumption and

requires only the connectivity information of the PPI network.

However, t-LSE does not seek to preserve a predefined metric.

Instead, we adaptively learn a metric embedding under the

criterion that it can better satisfy the geometric assumption. Under

this flexible learning framework, the experimental results show

that t-LSE can embed PPI network into low dimensional metric

space more successfully than MDS-GEO in terms of various

evaluation metrics.

On the other hand, inspired by recent work in machine learning

domains like robust classification [28,29], we adopt a non-convex

cost function to deal with the noise in PPI networks. To the best of

our knowledge, this is the first work that uses this technology to

learn robust graph embedding from noisy connectivity informa-

tion. The experimental results show that t-LSE can identify the

topology of the original PPI network under various levels of

random perturbation. Moreover, it is further successfully applied

to assess false-positive PPI links. The experimental results

demonstrated the present method can achieve a big performance

improvement in dealing with the noise in PPI network.

Results and Discussion

Data Sources and Evaluation Metric
In this work, physical PPI networks of three eukaryotic

organisms: human Homo sapiens, yeast Saccharomyces cerevisiae,

and fruitfly Drosophila melanogaster are analyzed. There are a

total of 5 PPI networks, three of which are human, one is yeast,

and one is fruitfly.

We denote by H_InAct, H_Bind, H_BioGrid the human PPI

networks from curated databases IntAct [30], BIND [31], and

BioGrid [32], respectively (They were downloaded on February

10, 2010). Similarly, Y_Tong and F_BioGrid denote the yeast and

fruitfly PPI networks from [32,33]. Thus, we are using PPI

networks of different confidence levels that come from a range of

Table 1. Characteristics of five protein interaction data.

Networks Organisms Number of Nodes Number of Edges

Y_Tong Yeast 2171 7622

F_BioGrid Fruitfly 6675 19970

H_InAct Human 4486 13807

H_Bind Human 3276 6474

H_BioGrid Human 7493 27045

doi:10.1371/journal.pone.0058368.t001

t-LSE: A Geometric Method for Modeling PPI Networks
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high throughput PPI detection technologies as well as from human

curation. The characteristics of five protein interaction data are

listed in Table 1.

As is defined in [28], the parameter t of the t-logistic loss

function should take value between 1 and 2. With t close to 1, the

t-logistic loss function is similar to the convex logistic loss function,

since we propose using non-convex loss function in t-LSE, we

mainly evaluate the results when t takes 2 at extreme points. As is

illustrated in Figure 1, the difference between t-logistic loss

function with t = 1.9 and t-logistic loss function with t approaching

2(e.g., t = 1.999) is very small, therefore t is set to 1.9 during the

experiments unless clearly stated.

We adopted three measurements, i.e., graphlet degree distribu-

tion (GDD) agreement [25], receiver operator characteristic

(ROC) curve and probability density function, to evaluate the

performance of t-LSE, and then assess its robustness via its ability

in identifying false positives in real PPI networks.

GDD Agreement Comparison of Various Models
A well fitting network model should generate graphs which

closely resemble the structure of original PPI networks. To

evaluate the fit of proposed network model to PPI data, we should

compare the model networks with the original PPI networks.

However, direct comparisons of large networks is computationally

infeasible due to the NP-completeness of the underlying subgraphs

isomorphism problem. Instead, it usually rely on heuristics which

are commonly called network properties [25]. The heuristics could be

divided into two groups: global and local properties. Global

properties include different kinds of network centralities, such as

degree distribution, clustering coefficient, et al. Local properties

include network motifs and graphlets, both of which indicate the

occurrence of small subgraphs in a large network. Because current

PPI networks are unfortunately incomplete and rife with noise

[13], global properties of such dirty data might be biased or even

contain misleading information, whereas local properties are likely

to be valid and meaningful. On the other hand, cell biology is

thought of as modular; many pathways and feedback loops are

inherently seen as detachable modules [34]. Although it has been

proven that network motifs alone do not determine function in

general, there is the possibility of a close connection between

subgraphs and biological functionality [35]. Therefore, we employ

local network similarity GDD agreement [25,36] to compare the

model network with the original PPI networks.

The GDD agreement is a similarity measure between the GDDs

of two networks, where GDD measures the percentage of nodes

‘touching’ a specific number of graphlets. The GDD agreement

ranges from 0 to 1. If it is close to 1, it denotes that two networks

have similar GDDs, and otherwise, their GDDs are different.

We compare t-LSE with five commonly used network models

listed in Table 2. The model network generators are implemented

as follows: ER graphs are generated by the LEDA random graph

generator [37]. ER-DD graphs are generated by using the ‘‘stubs

method’’ [38]: the number of ‘‘stubs’’ (to be filled by edges) is

assigned to each node in the model network according to the

degree distribution of the original PPI network being modeled;

edges are created between pairs of nodes picked at random; after

an edge is created, the number of ‘‘stubs’’ left available at the

corresponding ‘‘endnodes’’ of the edge is decreased by one. SF

networks are generated by using the Barabási-Albert preferential

attachment model [20]. In our implementation, we use Graph-

Crunch [24] to calculate the GDD agreement. Each network

models matched the number of nodes and edges in the

corresponding PPI network.

Figure 2 presents GDD agreements between the data and the

model networks. We can see that our new model shows an

improved fit over all other network models in all of five datasets

used. This suggests that our model can successfully fit PPI

networks in terms of structural similarity.

Embedding Quality Comparison between t-LSE and MDS-
GEO

Both t-LSE and MDS-GEO utilize the connectivity information

for fitting PPI networks and output a low-dimensional embedding

which can be used to reconstruct the original network by choosing

a distance cutoff. Under this scenario, in order to compare the

embedding performance of t-LSE and MDS-GEO for embedding

PPI network, we first learn the following two conditional

probability density functions based on the original PPI networks

and its embedding space: p(Distance|Interaction) and p(Distan-

ce|Non-interaction), where p(Distance|Interaction) describes the

distribution of pairwise distances in the embedding space between

interacting protein pairs (i.e., form edges in the PPI network) and

p(Distance|Non-interaction) describes the distribution of pairwise

Figure 1. The t-logistic loss function. The t-logistic loss function (left) and its gradient (right), with t = 1, we recover the logistic loss.
doi:10.1371/journal.pone.0058368.g001

t-LSE: A Geometric Method for Modeling PPI Networks
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distances between pairs of proteins which do not interact with each

other.

In Figure 3, we present the probability density functions given

by embedding the components of the 5 PPI networks into 20-

dimensional Euclidean space using t-LSE and MDS-GEO. The x

axis denotes the distance between pairs of points in the embedding

space and the y axis denotes the value of conditional probability

density function. As can be seen, for all of the five PPI networks, t-

LSE can achieve a significant improvement over MDS-GEO in

terms of the separation between p(Distance|Interaction) and

p(Distance|Non-interaction). This means that compared with

MDS-GEO, t-LSE can better classify the pairs of nodes in the PPI

network into interactions and non-interactions based on the

similarity between them in the embedding space, the topological

structure of the network can thereby be more faithfully preserved.

As in [15], we further use a ROC curve analysis to evaluate the

embedding quality. Figure 4 demonstrates the ROC curves for the

five PPI datasets. For each PPI network, the five ROC curves for

different embedding space dimensions are constructed by varying

the distance threshold from 0 to the maximum distance between

the points in the corresponding embedding space. The x axis of

ROC curve is defined as 1-specificity (or false positive rate) and the

y axis is defined as sensitivity (or true positive rate). Specificity and

sensitivity are two commonly used measures of the performance of

a binary classification test, and they are defined as follows.

specificity~
TN

FPzTN
, sensitivity~

TP

TPzFN

where TP (True Positive) is the number of true interacting

protein pairs which are predicted to be interacting (the distance

between point pair in the embedding space is less than a given

distance threshold). TN (True Negative) is the number of non-

interacting protein pairs that are predicted to be non-interacting

(the distance between point pair in embedding space is larger than

a given distance threshold). FP (False Positive) is the number of

non-interacting protein pairs which are predicted to be interacting,

and FN (False Negative) is the number of interacting protein pairs

which are predicted to be non-interacting. It is well known that a

ROC curve depicts relative trade-offs between true positive

(benefits) and false positive (costs). The best possible ROC curve

would contain a point in the upper left corner or coordinate (0, 1)

of the ROC space, representing 100% sensitivity (no false

negatives) and 100% specificity (no false positives). From

Figure 4, we can see that the performance of t-LSE is significantly

Table 2. Models used to model PPI networks.

Network Model Reference Input Information

ER Erdos-Renyi random graph model [17] The number of edges and nodes

ER-DD ER model with the same degree distribution as in original data [18] The number of edges and nodes and the degree distribution

MDS-GEO [15] The connectivity matrix

SF Scale-free Barabasi-Albert preferential attachment model [20] The number of edges and nodes and the degree distribution

Sticky Stickiness-index based model [21] The number of edges and nodes and the degree of each individual node

doi:10.1371/journal.pone.0058368.t002

Figure 2. The GDD-agreement between the original PPI networks and the model networks. The horizontal axis denotes five different PPI
networks described in Table 1 and vertical axis presents the value of GDD-agreement between the original networks and model networks from each
model. Lines with different labels correspond to different model networks described in Table 2.
doi:10.1371/journal.pone.0058368.g002

t-LSE: A Geometric Method for Modeling PPI Networks
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better than MDS-GEO. For example, For Y_Tong network, the

sensitivity and specificity of ROC curve of t-LSE can reach 97%

and 96% respectively when PPI network is embedded into the 6

dimensional space. This corresponds to the false negative rate

b~1{sensitivity~3% and the false positive rate

a~1{specificity~4%. On the other hand, for dimension 6 of

the embedding space, the sensitivity and specificity of ROC curve

of MDS-GEO can only reach 90% and 80%.

A commonly used assessment metric for ROC curve is the area

under the ROC curve (AUC) [15], in Figure 5 we plot the evolving

curves of the AUC value as functions of embedding dimensions for

t-LSE and MDS-GEO. We can see that the AUC value achieved

by t-LSE is consistently better than MDS-GEO. Figure 5 also

shows that for t-LSE, the increasing of the embedding space

dimension after it exceeds 10 can only slightly improve the AUC.

Therefore, the PPI network is well modeled by low dimensional

embedding metric space using t-LSE.

Denoising of PPI Networks Using t-LSE and MDS-GEO
The experimental results reported in previous sections confirm

that the proposed t-LSE model can accurately preserves the graph

topology of the original PPI network. Unfortunately, the noise

levels inherent in all current PPI networks are usually very high,

our concern is that a well fitting model may be sensitive to noise

and have over-fitting problems.

We first investigate the robustness of our model against

simulated random noises. More specifically, we randomly remove

a subset of connections and randomly insert a subset of

connections for the simulation of noisy PPI networks. We

generated 20 perturbed networks of each type (corresponding to

the percentages of noise), embedded them in the metric space, and

computed the AUC using the original unperturbed networks.

In Figure 6, we plot the means and standards deviations of the

AUC achieved by t-LSE and MDS-GEO with different levels of

noise. Beside the default t-logistic loss (t = 1.9) used in previous

sections, we also report the results of t-LSE with t = 1.0, where t-

logistic loss reduces to the standard convex logistic loss function.

For graph embedding algorithm, the AUC can be interpreted as

the probability that a connected pair of nodes is given a higher

score than a unconnected pair of nodes [27]. A random predictor

will give AUC of score 0.5, and the extent to which the AUC

exceeds 0.5 reflects how one predicting method is better than

random guess. In Figure 6, the comparison of two methods shows

that t-LSE method is consistently better than that of MDS-GEO in

predicting true PPIs indicated by the higher values of AUC. We

also notice that after the level of noise exceeds 5%, the

performance of MDS-GEO is close to a random predictor,

indicated by the AUC value (near 0.5), while t-LSE with t = 1.9 still

performs reasonably. This test confirms that for all three networks,

t-LSE provides a distinct advantage (especially with t = 1.9) over

MDS-GEO.

The above experiments prove that our model is robust against

random perturbations. However, the real noise properties in PPI

data can be different from the simulated random deletions and

insertions. Based on the robustness of t-LSE, next we evaluate its

performance for identifying unreliable links in the PPI networks.

A number of approaches have been introduced for eliminating

unreliable interactions and increasing the reliability of protein

Figure 3. Comparison of the conditional probability density functions learned from embedding the components of 5 networks
using t-LSE and MDS-GEO.
doi:10.1371/journal.pone.0058368.g003

t-LSE: A Geometric Method for Modeling PPI Networks
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interactome. Among them, the network-topology-based methods

attracted extensive attention. The representative algorithms

include interaction generality (IG) [39,40], Czekanowski-Dice

distance (CD-Dist) [14], and functional similarity weight

(FSWeight) [13]. As in t-LSE and MDS-GEO, these approaches

are promising as they only require the input from the PPI network

topology. Unlike t-LSE and MDS-GEO however, they are not

model-based and the main idea of these methods is to rank the

reliability of an interacting protein pair based on the topology of

the interactions between the protein pair and their neighbors

within a short radius [41].

In the following experiments, CD-Dist, FSWeight and IG are

also included for comparison. As in [13,41], we utilize the degree

of functional homogeneity and localization coherence of protein

pairs as the measure to evaluate the performance.

It is well known that the strategy of ‘guilt by association’

provides the evidence that interacting proteins are likely to share a

common function and cellular localization [42], which means true

interacting protein pairs should share at least a common functional

role or they should at least be at a common cellular localization if a

pair of proteins to be interacting in vivo. Since both t-LSE and

MDS-GEO assume that the distance between two proteins in the

embedding space is a monotonically decreasing function of the

probability that they interact, it is expected that if we only consider

protein pairs with smaller distance in the latent space to be have

true positive interaction, the proportion of interacting proteins

with functional homogeneity and localization coherence should

increase correspondingly.

In the study, the Gene Ontology (GO) based annotations is used

to evaluate the functional homogeneity and localization coher-

ence. The GO is one of the most important ontology within the

bioinformatics community (see http://www.geneontology.org/).

The three organizing principles of Gene Ontology are cellular

component, biological process, and molecular function. Here we

used the first taxonomies of the GO terms for localization

coherence calculation, and the last two taxonomies of the GO

terms for functional homogeneity calculation. The GO terms are

organized hierarchically into functional subfamilies. Two different

GO terms may have a common parent or a common child in the

hierarchy. GO terms at high levels may occur in many genes (or

proteins), while GO terms at low levels appear in very few

proteins. In our experiment, we just choose those GO terms at

middle levels. More specifically, we choose the GO terms which

occur in at least 30 proteins, but none of its children appears in at

least 30 proteins.

We rank interactions of proteins according to their distance in

the embedding space from the lowest to highest, and measure the

functional homogeneity and localization coherence by computing

the rate of interacting protein pairs with common functional roles

and cellular localization. The experimental results on the three

datasets Y_Tong, H_Bind and H_InAct are respectively showed in

Figure 7–11. The vertical axis is the proportion of interacting

protein pairs which share a common function or cellular

localization. The horizontal axis is the coverage of the PPI

network comparing the original network.

As can be seen in Figure 7, t-LSE with t = 1.9 is the best in

assessing false positive interactions in the Y_Tong network: as

more interactions which were detected as potential false positive

interaction were removed from the interactions, the degree of

functional homogeneity and localization coherence in the resulting

Figure 4. ROC curves comparing the ability of recovering the original 5 networks using t-LSE and MDS-GEO with embedding space
dimensions of 2 to 6.
doi:10.1371/journal.pone.0058368.g004

t-LSE: A Geometric Method for Modeling PPI Networks
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interactome increases at a faster rate than using other methods.

92.9% of the top 40% of interacting protein pairs ranked by t-LSE

with t = 1.9 have a common functional role and 88.7% of them

have a common subcellular localization, while the corresponding

performance of the best competing method(CD-Dist) are 86.9%

and 83.1%.

For H_InAct and H_BioGrid, the conclusions are similar. On

the F_BioGrid and H_Bind networks, although t-LSE with t = 1.9

has no clear advantage over IG and FSWeight, it still achieves

comparable performance.

On the whole, t-LSE with t = 1.9 achieves highly competitive

and sometimes even the best performance as compared to the

other approaches for increasing the reliability of protein inter-

actomes, which confirms the usefulness of our method.

Materials and Methods

A PPI network can be naturally represented as a neighborhood

graph G* V ,Eð Þ, where the set of vertices V~ v1,v2, � � � ,vnf g are

the proteins, and the set of edges E~ eij

� �
indicate interaction

relationships between the proteins. The main idea of our approach

is to learn a mapping g : vi?W við Þ[R1|d ,1ƒiƒn which maps the

nodes of V into a d-dimensional vector space that captures their

‘‘semantic similarity’’, i.e., we would like the Euclidean distance

between node pairs that is known to interact to be smaller than a

given threshold e and the distances corresponding to non-

interacting pairs to be larger than e, and obtain a probabilistic

estimation of whether two nodes interact.

Using the Euclidean distance between W við Þand W vj

� �
, we

model the probability pinteract that protein pair vi,vj

� �
interact, i.e.,

eij[E, as:

pinteract vi,vj

� �
~p eij[EDW Vð Þ,e
� �

~f e2{ W við Þ{W vj

� ��� ��2

2

� �
ð1Þ

Correspondingly we model the probability pnon-interact that

protein pair vi,vj

� �
don’t interact as

pnon�interact vi,vj

� �
~p eij 6[E

		W Vð Þ,e
� �

~f W við Þ{W vj

� ��� ��2

2
{e2

� � ð2Þ

where W Vð Þ is a n|d matrix whose i-th row is W við Þ,1ƒiƒn, e
is a bias term and the function f xð Þ satisfies the properties:

P1. 0ƒf xð Þƒ1;

P2. f xð Þzf {xð Þ~1;

P3. f xð Þ is smooth and increasing.

Figure 5. Area under Curve (AUC) comparison. Area under Curve (AUC) comparison measuring the ability of recovering the original PPI
networks: (a) Y_Tong, (b) H_Bind, (c) H_InAct, (d) F_BioGrid, (e) H_BioGrid using embedding space dimensions of 1 to 20.
doi:10.1371/journal.pone.0058368.g005
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With properties (P1) and (P2) satisfied we can ensure that

pinteract vi,vj

� �
§0, pnon-interact vi,vj

� �
§0 and

pinteract vi,vj

� �
zpnon-interact vi,vj

� �
~1; Property (P3) can enforce

that a pair of proteins will more likely be assigned an interaction if

they are closer to each other in the latent space.

The training objective of t-LSE is based on maximum likelihood

estimation(MLE), i.e., we minimize the negative log-likelihood

function:

L W Vð Þ,eð Þ~
X
eij[E

l e2{ W við Þ{W vj

� ��� ��2

2

� �

z
X
eij=[E

l W við Þ{W vj

� ��� ��2

2
{e2

� � ð3Þ

where l xð Þ~{ log f xð Þ.
In order to learn a good embedding of G* V ,Eð Þ into semantic

space, we need to (I) define a robust loss function l xð Þ for

estimating whether two nodes interact, (II) propose a computa-

tionally tractable algorithm for optimizing (3) that can deal with

large scale protein networks.

The t-Logistic Loss Function
We first discuss the choice of l xð Þ. Although the widely used

logistic loss log exp {xð Þz1ð Þ and hinge loss max 1{x,0ð Þ [43]

can be used to define l xð Þ, as mentioned earlier, PPI data, as with

other high-throughput biological data, contain much noise. It is

known that learning algorithms based on convex loss functions

such as logistic loss and hinge loss tend to be sensitive to outliers

and are not robust in such noisy scenarios [44]. In order to

alleviate this problem, many researchers propose to use non-

convex loss functions instead [29,45].

Further inspection of the solution that minimize (3) can give us

more insights of the effect of a convex l xð Þ: the optimal W Vð Þ

should satisfy that
LL W Vð Þ,eð Þ

LW við Þ
~0,1ƒiƒn, which yields

Figure 6. Comparison of AUC values for various methods on 5 networks with different level of noises.
doi:10.1371/journal.pone.0058368.g006
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Figure 7. Comparison of various algorithms on Y_Tong network for assessing the reliability of interactions in term of functional
homogeneity and localization coherence.
doi:10.1371/journal.pone.0058368.g007

Figure 8. Comparison of various algorithms on H_Bind network for assessing the reliability of interactions in term of functional
homogeneity and localization coherence.
doi:10.1371/journal.pone.0058368.g008
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Figure 9. Comparison of various algorithms on H_InAct network for assessing the reliability of interactions in term of functional
homogeneity and localization coherence.
doi:10.1371/journal.pone.0058368.g009

Figure 10. Comparison of various algorithms on F_BioGrid network for assessing the reliability of interactions in term of functional
homogeneity and localization coherence.
doi:10.1371/journal.pone.0058368.g010
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{
Xn

j=i

Ll mij

� �
Lmij

yij W við Þ{W vj

� �� �
~0

[W við Þ~

Pn
j=i

Ll mij

� �
Lmij

yijW vj

� �
Pn
j=i

Ll mij

� �
Lmij

yij

,1ƒiƒn

ð4Þ

where mij~mji~yij e2{ W við Þ{W vj

� ��� ��2

2

� �
, yij~1 if the

protein pair vi,vj

� �
interact and 21 otherwise. In this form, the

i-th embedded data point W við Þ can be regarded as the weighted

average of other embedded points, while the value
Ll mij

� �
Lmij

yij can

be thought as the mixing coefficients and indicates the impact of

the link i*j on W Vð Þ. For noisy networks with many false links,

we clearly need to control the influence of a specific link, i.e., the

absolute value of
Ll mij

� �
Lmij

. However, if l xð Þ is convex and

decreasing, its gradient is an increasing and negative function.

This means that false links that tend to cause significant model

deviation (i.e., small mij ) would keep more influence on the

optimal solution of (3), which may result in the optimal W Vð Þ
deviating from the original noiseless position and thus deteriorate

the performance of the embedding method.

In this paper, we propose using a robust non-convex t-logistic

loss to limit the impact of noisy links, which has been successfully

applied to robust classification tasks and other machine learning

applications [28,46].

The t-logistic loss is based on the t-exponential family of

functions, which is direct generalization of exponential function

and for (1,t,2) is defined as [47,48]:

expt xð Þ~
exp xð Þ t~1

1z 1{tð Þxð Þ1= 1{tð Þ
z otherwise

(
ð5Þ

where :½ �z~ max :,0ð Þ.
The inverse function of expt xð Þ is given by

logt xð Þ~
log xð Þ t~1

x1{t{1

1{t
otherwise

8<
: ð6Þ

As in [28], we then define the t-logistic loss function l xð Þ as

f xð Þ~ expt

x

2
{gt

x

2

� �� �
l xð Þ~{ log f xð Þð Þ

ð7Þ

where gt
:ð Þ is a function which enforces that f xð Þzf {xð Þ~1.

Although no closed form expression exists for gt xð Þ in general,

one can compute gt xð Þ for arbitrary x and t using efficient

numerical techniques [47,48].

Figure 11. Comparison of various algorithms on H_BioGrid network for assessing the reliability of interactions in term of functional
homogeneity and localization coherence.
doi:10.1371/journal.pone.0058368.g011
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It is worthy to note that if t~1, we have

l xð Þ~ log exp {xð Þz1ð Þand the t-logistic loss function reduces

to the standard convex logistic loss [19].

Figure 1 displays the t-logistic loss function and its gradient with

several different t. It is shown that compared to logistic loss, the t-

logistic loss (especially with larger t) increases more slowly when

mij decreases. The gradient
Ll mij

� �
Lmij

also become a decreasing

function as mij becomes small, which according to our previous

analysis, could cap the influence of false links that tend to cause

smaller mij .

The Learning Algorithm for t-LSE
The minimization of (3) is a smooth unconstrained optimization

problem. In principle, it can be solved using any off-the-shelf

solver. However, due to the non-convexity of t-logistic loss

function, we have noticed that standard methods like gradient

descent often lead to poor local minimum during the experiments,

thus we adopt an customized alternating projection strategy to

minimize L W Vð Þ,eð Þ until convergence. More specifically, each

time we optimize one parameter, such as W Vð Þ, with the other

parameters fixed.

The learning of e with W Vð Þ fixed is a simple single variant

optimization problem and we solve it using gradient descent

method, which works well in practice.

Then we learn W Vð Þ with e fixed. The partial derivative (4) can

be further written as the following compact form:

LL W Vð Þ,eð Þ
LW Vð Þ ~ LP{LQ

� �
W Vð Þ ð8Þ

where LP~diag
X

j

p1j , � � � ,
X

j

pnj

 !
{P,

LQ~diag
X

j

q1j , � � � ,
X

j

qnj

 !
{Q, the matrices P and Q are

defined as

pij~
{4

Ll mij

� �
Lmij

eij[E

0 else

,

8<
: qij~

{4
Ll mij

� �
Lmij

eij 6[E

0 else

8<
: ð9Þ

During the experiments, we have noticed that learning W Vð Þ
with the standard gradient descent direction (8) is very slow and

requires many tiny steps to converge. Letting (8) to zero, we

instead investigate several splits in an attempt to identify a fixed

point iteration method for t-LSE. For instance, we can consider.

LP{LQ

� �
W Vð Þ~0[W Vð Þ~ LPð Þ{1

LQW Vð Þ ð10Þ

Although this iteration is not fixed point iteration and does not

always converge, it does suggest using a new search direction

D~ LPð Þ{1
LQW Vð Þ{W Vð Þ along which we can decrease

L W Vð Þ,eð Þ with a line search W Vð Þ/W Vð ÞzaD for aw0. As is

proven in Text S1, D is a descent direction, i.e., the directional

derivative of the search direction always remains negative. Hence,

as a result of Zoutendijk’s theorem, we are guaranteed to converge

to a local optimum of L W Vð Þ,eð Þ if we use the search direction in

combination with a line-search that satisfies the Wolfe conditions

[49].

It is worthy to note that we can use an off-the-shelf linear system

solver to compute D and the matrix inversion LPð Þ{1
does not

need to be calculated explicitly. It is also easy to verify that the

cardinality of the matrix LP is nz2m, since PPI networks are

typically very sparse, with average degree of 7 or less [12], LP is

also very sparse. Therefore we use the sparse linear system solver

LSQR [50] to compute D, which is much more efficient than

dense linear system solvers like Cholesky decomposition based

methods [51].

Supporting Information

Text S1 The implementation details and convergence
results of t-LSE.

(PDF)
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