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Abstract
Several pathways and pathologies have been suggested as connections between obesity and
diabetes, including inflammation of adipose and other tissues, toxic lipids, endoplasmic reticulum
stress, and fatty liver. One specific proposal is that insulin resistance induces a vicious cycle in
which hyperinsulinemia increases hepatic lipogenesis and exacerbates fatty liver, in turn further
increasing insulin resistance. Here I suggest that reversing this cycle via suppression of the
lipogenic transcription factor SREBP-1c is a common thread that connects the antidiabetic effects
of a surprising number of nuclear hormone receptors, including CAR, LRH-1, TRβ, ERα and
FXR/SHP.

The diverse members of the nuclear receptor superfamily exert a wide range of metabolic
regulatory effects. Within the context of insulin resistance and type 2 diabetes, the best
known may be the classic hyperglycemic and diabetogenic effects of glucocorticoids (Ingle,
1941; Ingle et al., 1945; Long et al., 1940; Munck, 1971), and GR has been found more
recently to directly downregulate key components of the insulin signaling cascade (Rose et
al., 2010). Glucorticoids can be produced outside the adrenal, and local production by
visceral adipose tissue is thought to be a contributor to insulin resistance in obesity
(Gathercole and Stewart, 2010). In the liver, glucocorticoid excess promotes steatosis (Rose
et al., 2010), and glucocorticoids have emerged more recently as modulators of additional
hepatic metabolic pathways, including bile acid homeostasis (Rose et al., 2011).

Activation of the oxysterol receptors LXRα and LXRβ may also have negative effects, since
they are well known inducers of hepatic lipogenesis and fatty liver, and double knockouts do
not become insulin resistant when fed a high fat diet (Kalaany et al., 2005; Kalaany and
Mangelsdorf, 2005). They are essential for the activation of SREBP-1c expression by insulin
(Horton et al., 2002; Repa et al., 2000; Yoshikawa et al., 2001), and the elevated expression
of LXRα observed in human subjects with non-alcoholic fatty liver disease (NAFLD) is
correlated with increased expression of SREBP-1c and its downstream lipogenic targets
(Higuchi et al., 2008). However, synthetic LXR agonists can have antidiabetic effects in
some cases (Cao et al., 2003; Commerford et al., 2007; Grefhorst et al., 2005; Herzog et al.,
2007; Laffitte et al., 2003; Liu et al., 2006). Such effects have been attributed to promotion
of peripheral glucose uptake, particularly by inducing Glut4 expression in adipose tissues,
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and suppression of hepatic gluconeogenesis via repression of hepatic GR and gluconeogenic
gene expression.

The bile acid receptor FXR may also have conflicting effects in different contexts. Loss of
FXR results in steatosis (Sinal et al., 2000) and insulin resistance (Ma et al., 2006; Zhang et
al., 2006) in mice fed normal chow, and there are reports of beneficial effects of both bile
acids and synthetic FXR ligands on insulin sensitivity (Cipriani et al., 2010; Sanyal et al.,
2009; Watanabe et al., 2006; Zhang et al., 2006). However, FXR deficiency reportedly
improves glucose homeostasis in mouse models of obesity (Prawitt et al., 2011), and long
term FXR activation via a synthetic agonist induces obesity and insulin resistance, perhaps
via suppression of endogenous bile acid pools (Watanabe et al., 2011).

In contrast to these diabetogenic effects, activation of surprisingly large number of other
nuclear receptors has beneficial effects on insulin sensitivity (Table 1). Some, such as the
antidiabetic actions of agonist ligands for PPARγ and PPARα, are very well recognized
(Lalloyer and Staels, 2010; Lehrke and Lazar, 2005). Others are less so, including the clear
beneficial impact of estrogen receptor activation (Mauvais-Jarvis, 2011), and the well
documented insulin sensitizing effects of phenobarbital in human type 2 diabetes (Lahtela et
al., 1985; Sotaniemi and Karvonen, 1989). The beneficial impact of HNF-4α is revealed by
the genetic consequences of its mutation in human patients with Mature Onset Diabetes of
the Young type 1 (MODY-1) (Vaxillaire and Froguel, 2008), and also in mice with β-cell
specific deletion of HNF-4α (Gupta et al., 2005; Miura et al., 2006). The potential
antidiabetic effects of vitamin D in human patients remain controversial (Takiishi et al.,
2010). Finally, there are reports of antidiabetic effects of specific RXR agonists (Pinaire and
Reifel-Miller, 2007), although it remains unclear whether these effects are due to activation
of RXR alone or a heterodimer. All-trans retinoic acid treatment can also have positive
metabolic effects in mice, including weight loss and improved glucose tolerance (Amengual
et al., 2010; Berry and Noy, 2009; Manolescu et al., 2010), suggesting that one or more of
the retinoic acid receptor (RAR) isoforms could exert antidiabetic effects. More broadly,
however, retinoids are associated with negative effects in humans (Gerber and Erdman,
1982), and the association of distinct components of the vitamin A – retinol - retinoic acid
axis with insulin sensitivity is both complex and contradictory. Thus, while specific
antidiabetic effects may exist, none of the 6 retinoid receptors are included in the table.

Overall, however, it is clear that activation of a remarkably large number of nuclear
receptors improves insulin sensitivity. This striking functional convergence raises a simple
question: despite their very diverse physiologic roles, does a common mechanistic thread
connect their antidiabetic effects?

Twenty years ago, the late Denis McGarry provocatively suggested that dysregulation of
fatty acid metabolism is more important than altered glucose homeostasis in the
development of type 2 diabetes (McGarry, 1992). The crux of his argument was that the
elevation of insulin levels in the early stages of insulin resistance results in increased
lipogenesis and lipid deposition. This results in increased insulin resistance that drives
insulin levels yet higher, resulting overall in a self-reinforcing vicious cycle (Fig. 1,
counterclockwise, red). Although he also focused on skeletal muscle and other peripheral
tissues, the tight correlation of hepatic steatosis with insulin resistance in humans (Fabbrini
et al., 2010; Korenblat et al., 2008; Petersen et al., 2005; Samuel et al., 2010) suggests a
central role for the liver in his basic proposal. In accord with this, increased lipogenesis
contributes significantly to the elevated liver triglycerides in insulin resistant human subjects
with nonalcoholic fatty liver disease (Donnelly et al., 2005).
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McGarry was very aware of the lipogenic impact of insulin, but his mechanistic views were
based on acute allosteric effects on metabolic pathways and the Randle cycle. Only a year
after his commentary appeared, however, his University of Texas Southwestern Medical
Center colleagues Michael Brown and Joe Goldstein (Briggs et al., 1993), and also Bruce
Spiegelman ((Tontonoz et al., 1993) as ADD1), first described the transcription factor
SREBP-1c, which we now know drives the lipogenic response to insulin in the liver (Horton
et al., 2002). Much more recently, Brown and Goldstein described a mechanism that could
explain the seemingly paradoxical observations that the insulin resistant liver loses the
ability to shut down gluconeogenesis in response to elevated insulin levels, while at the
same time maintaining elevated SREBP-1c expression (Brown and Goldstein, 2008; Li et
al., 2010). They identified a bifurcation in the insulin signaling pathway in which the
induction of lipogenesis, but not the gluconeogenic response, is under the control of the
mTOR pathway. Thus, the mTOR inhibitor rapamycin blocked SREBP-1c induction in
response to insulin, but did not prevent insulin suppression of PEPCK expression. Both
responses were blocked by the PI3kinase/AKT inhibitor wortmannin, placing this early
target in the insulin signaling cascade upstream of the divergent mTORC1 - SREBP-1c and
FoxO1 - PEPCK branches.

Despite the insulin resistance of the gluconeogenic arm, persistently elevated SREBP-1c
expression in response to hyperinsulinemia, or potentially other signals (Ferre and Foufelle,
2010), could neatly account for the induction of lipogenesis and increased hepatic steatosis
in insulin resistant liver. Consistent with this, elevated expression of SREBP-1c and its
downstream lipogenic targets is positively correlated with insulin resistance in subjects with
steatosis (Pettinelli et al., 2009). Expression of SREBP-1c and its targets was also markedly
elevated in the livers of morbidly obese, hyperinsulinemic human patients prior to gastric
bypass, relative to the patients who experienced massive weight loss and reversal of insulin
resistance after bypass (Elam et al., 2010).

The involvement of mTOR in SREBP-1c activation and steatosis in response to western diet
feeding in mice was confirmed in liver specific knockouts of raptor, the defining mTORC1
component (Peterson et al., 2011). Increases in both hepatic triglycerides and the SREBP-1c
target fatty acid synthase (FAS) in response to the diet were completely absent in these Li-
RapKO mice. However, mTORC1 activation is not sufficient to drive SREBP-1c activation
and steatosis. Thus, recent results demonstrate that the loss of Akt2 in the liver of refed mice
prevents the induction of lipogenesis by refeeding, despite activation of the mTORC1 -
SREBP-1c pathway (Wan et al., 2011). Moreover, the constitutive, insulin independent
activation of mTORC1 in liver specific knockouts of the inhibitor Tsc1 blocks, rather than
promotes SREBP-1c activation and steatosis (Yecies et al., 2011). In accord with the Akt2
knockout results, this block was reversed by expression of a constitutively active form of
Akt2. These results suggest that Akt has additional downstream lipogenic targets, and raise
interesting questions about the relationship of the mTOR and Akt pathways to the LXRs,
which are required for insulin dependent activation of SREBP-1c (Repa et al., 2000), and
also directly target downstream lipogenic genes (Kalaany and Mangelsdorf, 2005).

In McGarry’s vicious cycle, inappropriate activation of SREBP-1c in the context of insulin
resistance drives lipogenesis and fatty liver, which is then linked to further increases in
insulin resistance. Fatty liver is now widely recognized as a consequence of insulin
resistance (Abdelmalek and Diehl, 2007; Malhi and Gores, 2008). Nonetheless, it is also
quite clear from a number of rodent models (Anstee and Goldin, 2006; Lan et al., 2003;
Monetti et al., 2007), as well as some human examples (Amaro et al., 2010; Romeo et al.,
2008) that simply elevating liver triglycerides is not sufficient to produce insulin resistance.
The intriguing phenomenon of obese but metabolically normal individuals (Pataky et al.,
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2010) is consistent with this, although there is evidence that such individuals have markedly
lower liver fat than those who are obese and insulin resistant (Stefan et al., 2008).

Nonetheless, many of the cases in which liver triglycerides are dissociated from insulin
resistance represent unusual genetic variations, or situations that may not reflect more
normal physiology or pathophysiology, and could be considered exceptions to the general
pattern. Thus, there is no doubt that human population studies demonstrate a strong
correlation of increased steatosis with insulin resistance (Fabbrini et al., 2010; Korenblat et
al., 2008; Samuel et al., 2010), which is independent of body weight (Seppala-Lindroos et
al., 2002), and various high fat or hypercaloric diets reproducibly induce both steatosis and
insulin resistance in rodent models, which is associated with increased SREBP-1c
expression (Biddinger et al., 2005; Shimomura et al., 1999). In the opposite direction,
fasting serum glucose was normalized in human subjects with type 2 diabetes after the loss
of only a small amount of body weight, and this was correlated with a marked decrease in
intrahepatic lipid content but no effect on peripheral glucose uptake (Petersen et al., 2005).
Improved insulin sensitivity in response to decreased steatosis is also observed in numerous
mouse models (Tilg and Moschen, 2008), including those described below.

One relatively simple resolution of this apparent paradox is that triglyceride accumulation is
not by itself the cause of the metabolic imbalance initiated by insulin resistance, but is rather
a symptom or an associated comorbidity. In this scenario, lipid metabolism could somehow
be balanced in the exceptional cases, perhaps by detoxification of free fatty acids via
incorporation into triglycerides (Choi and Diehl, 2008) or sequestration of lipids into stable
droplets (Greenberg et al., 2011), while other lipids or signaling molecules would drive
metabolic imbalance in the context of insulin resistance. The simplest “culprit” might be
free fatty acids, which are elevated via increased lipolysis in insulin resistance and are, of
course, also the immediate products of lipogenesis. Elevated levels of free fatty acids are
associated with insulin resistance in the liver and also in peripheral tissues (Boden, 2011). In
accord with this, plasma free fatty acids were higher in individuals with type 2 diabetes and
fatty liver than in diabetics who did not show evidence for fatty liver, and this elevation was
associated with increased insulin resistance (Kelley et al., 2003). A more recent study of
both normal subjects and those with type 2 diabetes found correlations of elevated liver fat
and free fatty acids with the worsening of many metabolic parameters, including fasting
plasma glucose and insulin levels, hepatic insulin resistance index, and, in the euglycemic
clamp, decreased glucose clearance (Gastaldelli et al., 2007). There are a number of other
candidates in addition to free fatty acids, including diacylglycerol (Samuel et al., 2010),
ceramides (Haus et al., 2009; Holland and Summers, 2008; Yang et al., 2009) and hepatic
cytokines (Cai et al., 2005; Solinas et al., 2007), all of which are known to be increased in
the context of steatosis. Inappropriately elevated hepatic production and serum accumulation
of any of these known insulin signaling inhibitors could contribute to whole body insulin
resistance.

I suggest that inhibition of SREBP-1c is a common mechanistic thread that connects at least
a subset of the antidiabetic effects in Table 1. This thread is particularly evident in our recent
studies on the insulin sensitizing effects of agonist ligands for the nuclear receptors CAR
(Dong et al., 2009) and LRH-1 (Lee et al., 2011). We demonstrated that CAR activation can
account for the insulin sensitizing effects of phenobarbital first described by Sotaniemi and
colleagues in human patients (Lahtela et al., 1985; Sotaniemi and Karvonen, 1989), and also
in ob/ob mice (Karvonen et al., 1989). A similar impact of CAR activation was observed
independently by Xie and colleagues (Gao et al., 2009). We also found that a novel LRH-1
agonist, dilauroyl phosphatidylcholine, exerts antidiabetic effects in mice that are strikingly
similar to those of phenobarbital. In particular, activation of either nuclear receptor
repressed expression of SREBP-1 mRNA, as well as that of its downstream lipogenic targets
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including fatty acid synthase, stearoyl CoA desaturase-1, and acetyl CoA carboxylase. In
addition to the decrease in lipogenesis expected from these responses, we showed that CAR
activation also increases fatty acid β-oxidation (Dong et al., 2009). This is likely due to
decreased malonyl-CoA, the product of acetyl CoA carboxylase, which McGarry showed is
a potent inhibitor of fatty acid uptake into mitochondria via the carnitine dependent shuttle
(McGarry and Foster, 1980). The net result in both cases is a striking decrease in hepatic
steatosis, but not overall body weight, which is associated with improved whole body insulin
sensitivity. The lack of significant expression of either CAR or LRH-1 in other key
metabolic target tissues, particularly skeletal muscle and adipose (Bookout et al., 2006), and
the loss of the LRH-1 response in liver specific knockouts (Lee et al., 2011) highlight the
central role of the liver in both antidiabetic effects.

TRβ is the best studied of at least 3 other antidiabetic nuclear receptors that also repress
SREBP-1c. Activation of both thyroid hormone receptor isoforms in hyperthyroidsm
decreases insulin sensitivity in humans (Dimitriadis et al., 1985). However, selective liver/
TRβ activation decreases serum triglycerides and cholesterol in both rodent models and
humans (Angelin and Rudling, 2010). A number of studies show that SREBP-1c expression
is repressed by activation of TRβ via T3, or by the selective agonists GC-1, KB-141,
MB07344 and MB07811 (Angelin and Rudling, 2010; Bryzgalova et al., 2008a; Erion et al.,
2007). This is thought to be due to direct repression of SREBP-1c promoter activity
(Hashimoto et al., 2006; Johansson et al., 2005). Although studies with these compounds
have primarily focused on their effects on serum lipids and body weight, KB-141 decreased
hepatic triglycerides and improved insulin sensitivity in ob/ob mice (Bryzgalova et al.,
2008a), and both KB-141 and MB07811 repressed SREBP-1c expression and decreased
hepatic triglycerides and serum glucose in the diet induced obesity mouse model of insulin
resistance (Erion et al., 2007). In both of these studies, the antidiabetic effects were also
correlated with decreased body weight.

The impact of FXR on insulin resistance appears complex, as noted above, but FXR
activation can have positive effects (Cipriani et al., 2010; Sanyal et al., 2009; Watanabe et
al., 2006; Zhang et al., 2006). Auwerx and collaborators attributed the beneficial effects of
modestly elevated bile acids to suppression of SREBP-1c expression via induction of the
nuclear receptor corepressor SHP (Watanabe et al., 2004). In human subjects with non-
alcoholic fatty liver disease, increased expression of SREBP-1c and its downstream
lipogenic targets was recently correlated with decreased FXR expression (Yang et al., 2010).

Estrogen also has well established antidiabetic effects in women (Mauvais-Jarvis, 2011).
Studies in rodent models indicate that estradiol suppresses hepatic expression of SREBP-1c
or its downstream targets (Bryzgalova et al., 2008b; Paquette et al., 2008). This could be
linked to its ability to induce SHP (Gao et al., 2008), or the reported ability of ERβ selective
ligands to suppress expression of the site 1 protease required for SREBP activation in the
endoplasmic reticulum (Shin et al., 2007).

Finally, a report suggesting that hepatic Nur77 overexpression suppresses SREBP-1c
activity (Pols et al., 2008), and another indicating that a general Nur77 knockout increases
steatosis and insulin resistance in high fat fed mice (Chao et al., 2009) raise the possibility
that this common thread may extend to other nuclear receptors.

I propose that the antidiabetic effects of these diverse nuclear receptor ligands reverse
McGarry’s vicious cycle (Fig. 1, clockwise, green). In this “reverse McGarry effect,” the
inversion of that pathologic response generates a positive cycle that is also self-reinforcing.
This starts with direct suppression of SREBP-1c expression, which decreases steatosis and
improves insulin sensitivity. This results in decreased insulin levels and a further decrement

Moore Page 5

Cell Metab. Author manuscript; available in PMC 2013 May 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in SREBP-1c expression, followed by further improvements in steatosis and insulin
resistance that reinforce the decrease in SREBP-1c (Fig. 1, clockwise, green). From this
perspective, the loss of metabolic balance that is initiated by insulin resistance in McGarry’s
vicious cycle is restored by its equally self-reinforcing reversal.

A prediction of this model is that inhibiting SREBP-1c expression via other avenues should
suppress steatosis and improve insulin sensitivity. Total (Yahagi et al., 2002) or selective
SREBP-1c knockout (Moon et al., 2012) in ob/ob mice resulted in decreased steatosis, but
did not improve insulin sensitivity. However, interpretation of the phenotypic consequences
of these knockouts is complicated by a compensatory increase in hepatic SREBP-2
expression (Liang et al., 2002; Shimano et al., 1997). Consistent with this, inactivation of
both SREBP-1a/c and SREBP-2 by liver specific knockout of SCAP, which is required for
processing and activation of all 3 isoforms, decreased liver triglycerides further (Moon et al.,
2012). This more extreme double SREBP knockout also did not improve insulin sensitivity,
perhaps due to increased lipogenesis in adipose and other tissues in response to the near total
loss of hepatic lipogenesis in the SCAP deficient mice (Moon et al., 2012).

In contrast, a number of other studies have linked beneficial effects on both steatosis and
glucose homeostasis to more modest inhibition of SREBP-1c. For example, hepatic
overexpression of the suppressors of cytokine signaling SOCS-1 and SOCS-3 in normal
chow fed mice is sufficient to induce both whole body insulin resistance and steatosis, which
is linked to increasing SREBP-1c expression (Ueki et al., 2004). In contrast, antisense
knockdown of the elevated expression of SOCS-3 in db/db mice normalized the increased
expression of SREBP-1c, and dramatically improved hepatic steatosis and insulin sensitivity
(Ueki et al., 2004). PGC-1 reportedly coactivates the ability of SREBP-1c to induce its own
expression (Lin et al., 2005), and the improvements in both steatosis and whole body insulin
sensitivity that resulted from knockdown of hepatic PGC-1α expression were attributed to
decreased SREBP-1c expression (Nagai et al., 2009). In a very different model, based on the
fact that SREBP-1c activation depends on the same regulated intramembrane proteolytic
pathway that is activated by endoplasmic reticulum stress, overexpression of the chaperone
GRP78 in ob/ob mouse liver decreased SREBP-1c expression and steatosis, and improved
overall insulin sensitivity (Kammoun et al., 2009).

In addition to the effects of nuclear receptor ligands, a number of other pharmacologic
interventions have been described in which improved metabolic outcomes are linked with
decreased SREBP-1c expression (eg. (Del Bas et al., 2008; Kim et al., 1999; Li et al., 2011;
Park et al., 2008; Ponugoti et al., 2010). Many are natural products, raising issues regarding
specificity and mechanism of action. Others, such as metformin, are much better
characterized. However, while metformin and the more specific AMP kinase activator
AICAR clearly lower the expression of SREBP-1c (Zhou et al., 2001), they exert many
other effects that presumably also contribute to their well known metabolic effects. Finally,
and in accord with the proposed role of the mTOR pathway in lipogenesis, rapamycin
inhibits the acute activation of SREBP-1c expression in response to insulin and refeeding (Li
et al., 2010; Yecies et al., 2011). In one study of high fat fed mice, chronic rapamycin
treatment decreased steatosis and lowered serum insulin levels (Chang et al., 2009).
However, mTOR has additional and complex effects on insulin signaling and other
pathways, and other rapamycin studies have indicated deleterious results (Fraenkel et al.,
2008; Houde et al., 2010). Rapamycin treatment for immunosuppression in human patients
are associated with hyperlipidemia and glucose intolerance (Stallone et al., 2009).

More broadly, the focus here on this hepatocentric mechanism is not meant to discount the
fundamental impact of adipose tissue inflammation or other mechanisms in the development
of insulin resistance and diabetes (Hotamisligil, 2006; Shoelson et al., 2006). In addition, it
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is apparent that this mechanism cannot account for all of the antidiabetic effects of nuclear
receptor agonists. PPARγ agonists primarily target adipocytes, and potentially
macrophages, although this may result in a less direct impact on steatosis that could
contribute to their insulin sensitizing effects (Lehrke and Lazar, 2005; Olefsky and Glass,
2010; Tontonoz and Spiegelman, 2008). PPARα and PPARδ/β agonists directly induce fatty
acid β-oxidation in multiple tissues (Barish et al., 2006), although this could also decrease
steatosis and contribute indirectly to insulin sensitivity. Potential effects of vitamin D may
be due to its anti-inflammatory actions (Takiishi et al., 2010), and the NR4A receptors may
directly regulate expression of glucose homeostatic genes in skeletal muscle and other
tissues (Pearen and Muscat, 2010). The most obvious exception, as noted above, is the
antidiabetic effects of LXR agonists (Cao et al., 2003; Commerford et al., 2007; Grefhorst et
al., 2005; Herzog et al., 2007; Laffitte et al., 2003; Liu et al., 2006), which are based on
other pathways that somehow overcome their well-known ability to induce SREBP-1c.
Finally, based on the very different physiologic functions of the antidiabetic nuclear
receptors that exhibit the reverse McGarry effect, it is apparent that each must have
additional targets and functions, notably the effects of TRβ selective agonists on body
weight, and the ability of Nur77 and the other NR4A members to increase hepatic glucose
output (Pearen and Muscat, 2010). Thus, other pleiotropic activities of these receptors may
be just as important - or in some cases even more important – than the inhibition of
lipogenesis in mediating their anti-diabetic effects.

Overall, however, it is apparent that inhibition of SREBP-1c expression is a common thread
that connects the antidiabetic effects of a surprising number of nuclear hormone receptors.
As McGarry said: “According to this formulation, hyperinsulinemia is an early event and
serves to drive hepatic lipogenesis and VLDL synthesis. … The progress of these events
leads from simple insulin resistance to glucose intolerance with elevated glucose levels
causing even greater postprandial hyperinsulinemia, which sets up a vicious cycle.”
Repressing SREBP-1c to run McGarry’s vicious cycle backwards, via nuclear receptor
activation or other strategies, is an attractive approach to treating steatosis and type 2
diabetes.
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Figure 1. Proposed model for McGarry’s lipogenic vicious cycle, and its reversal
In the red, counterclockwise cycle, insulin resistance generates a self-reinforcing negative
regulatory loop in which elevated insulin levels increase SREBP-1c expression and
steatosis. This further decreases insulin sensitivity and increases in serum insulin levels to
continue the negative cycle. Several NRs, including ERα CAR, LRH-1 TRβ and FXR/SHP
act to decrease SREBP-1c expression, lowering steatosis and setting up a positive, anti-
lipogenic cycle to improved insulin sensitivity.
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Table 1

Diverse impact of nuclear receptors on insulin resistance.

Impacts of Nuclear Receptors on Insulin Resistance

Mouse models Human patients

GR − −

LXRα/β +/− ?

FXR +/− +?

PPARα/γ/δ +/+/+ +/+/?

ERα/β + +

CAR + +

HNF-4α +* +*

VDR + ?

TRβ + ?

LRH-1 + ?

NR4A1–3 + ?

+ indicates significant evidence for antidiabetic effects, −, evidence for deleterious effects, ?, no evidence, or suggestive but inconclusive evidence.
PPARs (Barish et al., 2006; Lalloyer and Staels, 2010; Lehrke and Lazar, 2005); ERα (Bryzgalova et al., 2008b; Mauvais-Jarvis, 2011); CAR
(Dong et al., 2009; Lahtela et al., 1985; Sotaniemi and Karvonen, 1989); FXR (Cipriani et al., 2010; Sanyal et al., 2009; Watanabe et al., 2006;
Zhang et al., 2006); HNF-4α (* revealed by impact of MODY mutations in humans (Vaxillaire and Froguel, 2008) and pancreatic knockouts in
mice (Gupta et al., 2005; Miura et al., 2006)), VDR (Takiishi et al., 2010); TRβ (Amorim et al., 2009; Bryzgalova et al., 2008a); LRH-1 (Lee et al.,
2011); LXRα/β (Cao et al., 2003; Commerford et al., 2007; Grefhorst et al., 2005; Herzog et al., 2007; Laffitte et al., 2003; Liu et al., 2006);
NR4A (Chao et al., 2009; Pols et al., 2008) (note – NR4A effects are based on induction or loss of receptor expression rather than ligand
responses).

Cell Metab. Author manuscript; available in PMC 2013 May 02.


