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Stress-induced adverse remodeling of the myocardium is a major mechanism leading to
heart failure, a leading and rapidly escalating source of morbidity and mortality
worldwide.1,2 As a result, much work is underway to dissect molecular mechanisms
governing cardiac remodeling in hopes of identifying novel therapeutic targets. In recent
years, much of this work has focused on the hypertrophic growth response of the cardiac
myocyte. Initially adaptive, cardiac hypertrophy compensates for declines in cardiac
performance and increases in wall stress; sustained hypertrophy, however, is a major risk
factor for emergence of systolic dysfunction and clinical heart failure.3 On the bright side,
numerous preclinical studies have demonstrated that abrogation of the hypertrophic response
is well tolerated, and even beneficial.4

One potential target of therapy in the pathologically remodeled, hypertrophied heart is the
transcription factor nuclear factor (NF)-κB. First discovered more than 20 years ago, NF-κB
has been linked to numerous neurohormonal, pathophysiological, and stress stimuli
responses, and it has been characterized most extensively in the immune system. In the
heart, activation of NF-κB–dependent transcription has been detected in numerous disease
contexts, including hypertrophy, ischemia/reperfusion injury, myocardial infarction,
allograft rejection, myocarditis, apoptosis, and more.5,6 Within coronary vessels, NF-κB has
been implicated in atherosclerosis and restenosis.5,6 However, parsing the specific role(s) of
NF-κB in these diverse disease processes has been hampered by the embryonic lethality of
inactivation of several NF-κB components.7–9

In heart, the NF-κB family of transcription factors comprises 4 members: p50, p52, p65, and
RelB. All are capable of multimerization, forming either homo- or heterodimers, but the
ubiquitously expressed p50 and p65 (herein termed NF-κB) are responsible for the majority
of NF-κB binding activity in the myocardium. Activation of cytoplasmic NF-κB requires
phosphorylation and subsequent proteasome-dependent degradation of its repressor,
inhibitor of κB (IκB). The essential step in this so-called canonical pathway, degradation of
IκB, is initiated by a multicomponent IκB kinase (IKK) complex, comprising a regulatory
scaffolding subunit NEMO (NF-κB essential modifier) (also known as IKKγ) and 2
catalytic subunits, IKKα and IKKβ. Then, the p50/p65 complex, released from the
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repressive influence of IκB, migrates to the nucleus, where it binds cognate DNA sequences
(κB sites) in target genes.

The NF-κB response is often transient, because it is governed by at least 2 negative
feedback loops. In one, the protein IκBα, a product of NF-κB transcription, binds NF-κB,
and the newly formed IκBα/NF-κB complex is translocated out of the nucleus, obviating
NF-κB–dependent gene transcription. In another, the NF-κB–responsive, zinc finger protein
A20 inhibits initiation of the NF-κB cascade by inactivating IKK in the cytoplasm. In
addition, p50/p50 homodimers can attenuate NF-κB transactivation.10,11 Thus, expression
of NF-κB-dependent genes is tightly regulated by multiple, interlacing control processes.

In the myocardium, it remains puzzling the extent to which NF-κB promotes cell survival or
cell death. Some evidence points to important cardioprotective effects. For example, NF-κB
activation attenuates the hypertrophic response to pressure overload,12 minimizes infarct
size during late-phase ischemic preconditioning,13 and lowers tumor necrosis factor-α–
dependent apoptotic myocyte death.14 By contrast, other evidence suggests that
cardioprotection can be brought about by blocking essential components of the NF-κB
pathway; suppression of the NF-κB cascade decreases cardiac hypertrophy15–17 and
prevents stress-induced ventricular dilation.15,16,18,19 In addition, NF-κB activation is
required for doxorubicin-induced cardiomyocyte apoptosis.20 Clearly, the multifaceted roles
of NF-κB in the heart require clarification.

NF-κB is so pleiotropic that it has traditionally been considered a “general,” nonspecific
transcription factor: a diverse array of stimuli activates NF-κB, and NF-κB, in turn,
regulates more than 200 genes. More recent evidence, however, suggests that NF-κB serves
as a nodal point of signaling, governing a network of circuits to integrate sundry inputs and
elicit precise outputs via specific downstream targets. Consistent with this is our ever-
growing understanding of the complexity of NF-κB feedback and feedforward control loops.
Very recently, microRNAs have entered the NF-κB control picture.21 This work has
uncovered an entire network of genes involved in cardiovascular development and
reprogramming enriched for NF-κB binding sites in their proximal promoter regions.

Much of the work to delineate NF-κB functions in heart has been conducted using
transgenic models of cardiac-specific expression of mutant p50 and/or unphosphorylatable
(undegradable) IκB. However, conclusions drawn from these studies have been
conflicting.12,13,15–18 For example, 2 independent groups studying mice exposed to
ischemic stimuli and harboring degradation-resistant IκB mutants reported that NF-κB can
be either maladaptive22 or cardioprotective.23 Although this discrepancy may stem from
differences in severity of the stresses used (ischemia/reperfusion versus permanent coronary
artery occlusion),5 the diametrically opposing results are nonetheless puzzling. In light of
this, development of novel genetically manipulated animal models targeting other
components of the cardiac NF-κB machinery is welcome.

In this issue of Circulation Research, Kratsios et al24 report the effects of cardiomyocyte-
specific ablation of NEMO, an essential activator of NF-κB. Their elegant study
demonstrates that inactivating NEMO in cardiac myocytes depletes cells of NF-κB–
dependent antioxidant machinery. As a consequence, cells undergo spontaneous
pathological remodeling, and load-induced changes are accelerated. Inactivation of NF-κB
signaling by cardiac-specific ablation of NEMO led to attenuation of several antioxidant
genes and associated accumulation of reactive oxygen species. The study went on to provide
additional support for the role of oxidant stress in NEMO-deficient hearts with experiments
in which mutant mice were fed chow supplemented with the antioxidant molecule butylated
hydroxyanisole (BHA). BHA-supplemented diet afforded partial protection to NEMO-
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deficient cardiomyocytes. However, it failed to completely abrogate apoptotic cell death,
cardiac fibrosis, and contractile dysfunction.

This study has provided important new insights into the oftentimes puzzling world of NF-
κB biology in the heart. Importantly, the findings are consistent with earlier reports
demonstrating that Mn-superoxide dismutase, an essential antioxidant protein, is negatively
regulated by p53, a downstream target repressed by NF-κB.25 However, important questions
remain to be resolved.

First, the actions of the NEMO protein itself are multifaceted. For example, NF-κB–
mediated responses to DNA damage depend on their activation by nuclear NEMO.26

Furthermore, an essential feature of the role of NEMO in this, as well as in canonical NF-κB
pathway activation, is its potential for posttranslational modifications. At present, Lys285,
Lys321, Lys325, Lys326, and Lys399 within NEMO have been identified as sites modified
with Lys63-linked polyubiquitin chains in response to various stimuli.27 In contrast to well-
characterized Lys48 ubiquitin linkages, which serve as a signal for proteasomal degradation,
Lys63-linked polyubiquitin chains function in signaling, protein–protein interactions and
recognition, and DNA repair.27,28 Furthermore, Lys277 and -309 can be modified by either
ubiquitin or SUMO-1 (small ubiquitin-like modifier-1).

The biology of NEMO is yet more complex in light of recent reports demonstrating that it
can undergo modifications by so-called “linear” polyubiquitin chains.27,29 Interestingly,
linearly polyubiquitinated NEMO is stable and not degraded by the proteasome, and
evidence suggests that this posttranslational modification may function as a platform for the
binding of additional proteins.27,29 Also, it has been demonstrated recently that some
proteins can be conjugated with multiple polyubiquitin chains with different ubiquitin-
linkages.30 Therefore, it seems plausible that specific combinations of these polyubiquitin
chains may modulate the function of NEMO to determine and direct specific NF-κB
signaling outputs in a given context.

In light of these facts, the NEMO mutant complements the arsenal of existing mouse models
with abrogated NF-κB signaling in the heart (ie, IκB degradation-resistant mutants).
Because NEMO acts upstream of IκB in NF-κB activation, this model may provide new
insights into the integration of NF-κB–activating signals and the selectivity of the output(s)
of the NF-κB–dependent transcriptional network. Additional complexity in NEMO-
dependent NF-κB activation is highlighted by the fact that NEMO harbors at least 7 reported
sites for posttranscriptional modification. Up to the present time, the majority of studies
have been based on systems where NF-κB activation was abolished. Moving forward,
studies designed to decipher more granular aspects of this critical pathway will be welcome.

Thus, it is not certain that ablation of NEMO, and the consequent effects on cardiac
remodeling, derive exclusively from the NF-κB–silencing actions of NEMO mutants, as it
cannot be excluded that NEMO has actions on other, yet unknown, pathways. As a case in
point, some evidence suggests that NEMO has IKK/NF-κB–independent functions besides
its role in DNA damage responses. For example, nuclear-localized NEMO can bind
competitively to the important coactivator CBP (CREB binding protein)31; NEMO promotes
interaction of CBP with hypoxia-inducible factor (HIF)2α, thereby enhancing
transcriptional activity of HIF2α.32 An additional novel role for NEMO in blocking cell
death, independent of its role in NF-κB signaling, is NEMO-dependent restraint of RIP1
(receptor interacting protein kinase 1), a potent apoptotic inducer protein, from engaging
caspase 8.33 Finally, in studies of this nature, it is impossible to exclude the existence of
secondary, compensatory responses to NEMO inactivation that alter combinatorial
interactions between NF-κB and other transcription factors.
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Twenty years of research has revealed a plethora of important actions of NF-κB in the
governance of numerous cellular functions. Yet, elucidating its effects in the myocardium
has remained elusive. Now, the report24 by Kratsios et al has moved the field forward,
providing important new insights into the multi-layered network of NF-κB–dependent
transcription in the heart. This new information takes us one step further toward the ultimate
goal of harnessing the cardioprotective effects of NF-κB for therapeutic gain.
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