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Brain magnetic resonance imaging is widely used as a diagnostic and monitoring tool in multiple sclerosis and provides a

non-invasive, sensitive and reproducible way to track the disease. Topological characteristics relating to the distribution and

shape of lesions are recognized as important neuroradiological markers in the diagnosis of multiple sclerosis, although these

have been much less well characterized quantitatively than have traditional measures such as T2 hyperintense or T1 hypointense

lesion volumes. Here, we used voxel-level 3 T magnetic resonance imaging T1-weighted scans to reconstruct the 3D topology of

lesions in 284 subjects with multiple sclerosis and tested whether this is a heritable phenotype. To this end, we extracted the

genotypes from a published genome-wide association study on these same individuals and searched for genetic associations

with lesion load, shape and topological distribution. Lesion probability maps were created to identify frequently affected areas

and to assess the overall distribution of T1 lesions in the subject population as a whole. We then developed an original

algorithm to cluster adjacent lesional voxels (cluxels) in each subject and tested whether cluxel topology was significantly

associated with any single-nucleotide polymorphism in our data set. To focus on patterns of lesion distribution, we computed

the first 10 principal components. Although principal component 1 correlated with lesion load, none of the remaining orthogonal

components correlated with any other known variable. We then conducted genome-wide association studies on each of these

and found 31 significant associations (false discovery rate 50.01) with principal component 8, which represents a mode of

variation of lesion topology in the population. The majority of the loci can be linked to genes related to immune cell function

and to myelin and neural growth; some (SYK, MYT1L, TRAPPC9, SLITKR6 and RIC3) have been previously associated with the

distribution of white matter lesions in multiple sclerosis. Finally, we used a bioinformatics approach to identify a network of 48

interacting proteins showing genetic associations (P50.01) with cluxel topology in multiple sclerosis. This network also

contains proteins expressed in immune cells and is enriched in molecules expressed in the central nervous system that con-

tribute to neural development and regeneration. Our results show how quantitative traits derived from brain magnetic resonance
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images of patients with multiple sclerosis can be used as dependent variables in a genome-wide association study. With the

widespread availability of powerful computing and the availability of genotyped populations, integration of imaging and genetic

data sets is likely to become a mainstream tool for understanding the complex biological processes of multiple sclerosis and

other brain disorders.

Keywords: voxel-wise; GWAS; multiple sclerosis

Abbreviations: GWAS = genome-wide association study; IRSPGR = inversion recovery spoiled gradient-recalled echo;
SNP = single-nucleotide polymorphism

Introduction
The success of genome-wide association studies (GWAS) in iden-

tifying common variants associated with susceptibility to complex

genetic disorders has fuelled their application to assess the herit-

ability of a variety of quantitative traits. Genetic associations with

secondary or intermediate phenotypes have been reported, and

GWAS of human height (Lango Allen et al., 2010), eye colour

(Eriksson et al., 2010), hair colour, freckling (Sulem et al., 2008;

Eriksson et al., 2010), digit length ratio (Medland et al., 2010),

leisure time (De Moor et al., 2009) and tanning (Nan et al., 2009)

are examples of this approach. The development of novel methods

and technologies to quantify RNA, metabolite and protein concen-

trations in biological fluids, and electrical properties or morpho-

logical changes in specific tissues (e.g. heart, brain) have also

facilitated integration of these physiological traits with genetic

variation (Cheung and Spielman, 2002; Hicks et al., 2009;

Newton-Cheh et al., 2009; Teslovich et al., 2010).

Widespread availability of brain and spinal cord MRI has revo-

lutionized the understanding and, equally important, the diagnosis

and management of multiple sclerosis, the most common cause of

acquired neurological dysfunction arising during early and

mid-adulthood. MRI is highly sensitive in detecting white matter

hyperintense/hypointense lesions (plaques) associated with

multiple sclerosis neuropathology. Furthermore, anatomical loca-

tion of an injury is likely to explain, at least in part, the extent

and type of neurological dysfunction experienced by a patient. In

a large cross-sectional study, Charil et al. (2003) elegantly showed

an example of this paradigm by demonstrating the close relation-

ship between site of lesions and the type of impairment in subjects

with relapsing-remitting multiple sclerosis.

In an early successful integration of MRI-derived phenotypes

and genetic information, Okuda et al. (2009) showed that patients

with multiple sclerosis carrying the susceptibility allele

HLA-DRB1*15:01 display a higher volume of brain lesions than

non-carriers. This observation corroborated an earlier study in

optic neuritis (Hauser et al., 2000) and was later confirmed in

an independent population (Horakova et al., 2011). These findings

provided evidence that visible lesions in multiple sclerosis may be,

at least in part, genetically determined. In a more recent study, we

correlated genome-wide genetic variation with brain glutamate

assessed in vivo using 1H magnetic resonance spectroscopy

imaging (Baranzini et al., 2010). Using a protein interaction

network-based pathway approach, we were able to identify

associations in several genes potentially affecting the function of

receptors, accessory molecules, transporters and transduction

signalling of glutamate.

In a recent report, voxel-level volume differences were used as

the phenotype in a GWAS of 731 elderly subjects (Hibar et al.,

2011). Another study from the same group successfully mapped

the 3D profile of temporal lobe volume differences from 742 brain

MRI scans of patients with Alzheimer’s disease and healthy sub-

jects to a single-nucleotide polymorphism (SNP) in GRIN2B, an

ionotropic glutamate receptor. More recently, an exploratory

study looking at the correlation of brain lesion distribution in

208 patients with multiple sclerosis with 69 candidate SNPs sug-

gested genotypic influences on spatial lesion distribution

(Sombekke et al., 2011).

Here, we tested whether genetic variation is associated with

multiple sclerosis lesion topology by a GWAS. To test this hypoth-

esis, we analysed the distribution of multiple sclerosis lesions (cap-

tured at voxel resolution of 1 mm3) and used that measure as a

trait in a GWAS. This kind of approach represents a new trend in

genomics, in which more accurate and quantitative tissue pheno-

types are used to maximize the power of finding biologically

meaningful genetic associations.

Materials and methods

Subjects and samples
The study included 484 subjects of northern European ancestry as

described previously (Baranzini et al., 2009b). Basic demographic

and clinical characteristics of the subjects are shown in Table 1. This

information was obtained by means of a longitudinal, prospective,

observational on-going multiple sclerosis study at the UCSF Multiple

Sclerosis Center where data were acquired according to well-estab-

lished uniform protocols, stored and quality checked in an integrated

computerized database. Although at the time of the study most pa-

tients had a relapsing remitting course (n = 343, 71%), our cohort also

included individuals with clinically isolated syndrome (n = 76, 16%),

secondary progressive (n = 45, 9%) and primary progressive disease

(n = 20, 4%) (McDonald et al., 2001). Clinically isolated syndrome

was defined as the first well-established neurological event lasting

448 h, involving optic nerve, spinal cord, brainstem or cerebellum.

In patients with clinically isolated syndrome, the presence of two or

more hyperintense lesions on a T2-weighted MRI sequence was also

required for enrolment into the study. Secondary progressive multiple

sclerosis was defined by 6 months of worsening neurological disability

not explained by clinical relapse. Primary progressive multiple sclerosis

was defined both by progressive clinical worsening for 412 months
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from symptom onset without any relapses, and abnormal CSF as

defined by the presence of two or more oligoclonal bands or an

elevated immunoglobulin G index. Individuals were excluded if they

had experienced a clinical relapse or received treatment with gluco-

corticosteroids within the previous month of enrolment, as these con-

ditions would have posed significant confounders to our study. The

concomitant use of disease-modifying therapies for multiple sclerosis

was permitted for inclusion in this study. For all subjects, the expanded

disability status scale and multiple sclerosis severity score scores were

assessed, and baseline brain MRI scans were performed within

2 weeks of entry into the study. Age of onset was defined as the

first episode of focal neurological dysfunction suggestive of CNS

demyelinating disease. To reduce the heterogeneity of our cohort,

only patients with clinically isolated syndrome and relapsing-remitting

multiple sclerosis who had a disease duration of 510 years and age of

onset 420 years (n = 284) were studied further. The University of

California, San Francisco institutional review board approved the

study, and informed consent was obtained from all subjects before

participation.

Imaging data
All brain MRI data were derived from high-resolution images acquired

on a single 3 T GE Excite scanner (GE Healthcare Technologies)

equipped with a phase-array eight-channel coil using a 3D T1-

weighted inversion recovery spoiled gradient-recalled echo (IRSPGR)

sequence yielding a 1-mm3 isometric voxel size (echo time/repetition

time/inversion time = 2/7/400 ms, flip angle = 15�, number of

excitations = 1, 180 slices).

Hemispheric, brainstem and cerebellar white matter lesions were seg-

mented out directly from the high-resolution T1-weighted 3D-IRSPGR

images based on a semi-automated pixel intensity threshold with manual

editing, using in-house software, and T1 lesion masks were created as

reported previously (Blum et al., 2002; Mowry et al., 2009).

Lesion probability maps
To create lesion probability maps, lesions were first segmented on each

multiple sclerosis subject 3D-IRSPGR scan, inpainted (Sdikaand

Pelletier, 2009) and non-linearly registered (Sdika, 2008) using a

healthy subject (female, 42 years old) scan as reference. The lesional

map of each subject was then mapped onto the reference scan using

the transformation found by the previous step. The registered lesion

maps were then analysed on a voxel-by-voxel basis and voxels with P-

lesion 40 were considered lesional.

Identification of clusters of
lesional voxels
With the goal of accurately representing the 3D shapes of lesions in

each subject, lesional voxels that shared a common face (6), edge (12)

or vertex (8) in 3D space (26 in total) were grouped into clusters. To

accomplish this, we developed an algorithm that starts by considering

any lesional voxel and evaluates whether each of its 26 neighbours in

3D is also a lesional voxel, and if so, it merges them. The algorithm

continues to aggregate adjacent lesional voxels until the resulting clus-

ter is only surrounded by voxels devoid of lesions. We use the term

‘cluxel’ to describe each such cluster of lesional voxels. For each sub-

ject, cluxel topology was defined as the 3D shape of a lesion resulting

from the aggregation of neighbouring lesional voxels into cluxels.

Analysis of neighbouring voxels was performed in the R statistical

package using a custom algorithm (code available on request).

Genetic data
All 484 subjects with multiple sclerosis were typed for 553 139 SNPs

using the Illumina 550k platform with5 2% of genotyping failure rate

per sample (Baranzini et al., 2009b). SNPs (7043) were removed from

the data set for missing genotypes in4 2.5% of individuals and

50 340 SNPs were removed for having a minor allele frequency

of5 5%. Finally, 443 SNPs that departed from Hardy–Weinberg equi-

librium (P5 0.001) were removed. After these quality control steps,

495 313 (99.9%) markers remained. However, to limit the number of

association tests, we also eliminated SNPs that were in moderate link-

age disequilibrium (r24 0.5), and only 208 975 were considered for

further analysis. To control for multiple hypothesis testing, the false

discovery rate (FDR) correction (Benjamini and Hochberg, 1995) was

applied to the results of each GWAS. An analysis with all SNPs that

passed quality control was also performed, and results are available in

Supplementary Table 3. Clusterplots of significant SNPs are provided in

Supplementary Fig. 3 and regional association plots in Supplementary

Fig. 4. Distributions of the phenotype with each significant genotype

are provided in Supplementary Fig. 5.

Statistical analysis
Of the 484 subjects with available genotypes, 284 fitted our stringent

criteria for analysis. GWAS analyses were completed in this subset

using PLINK (version 1.06) (Purcell et al., 2007), and all other tests

were performed in the R statistical package (version 2.9). Binary traits

were analysed using logistic regression. Quantitative variables (T1LL

and T2LL) that did not distribute normally were log transformed

before analysis using a linear model. To reduce the heterogeneity of

our cohort, we used a combination of subject stratification and cov-

ariates in the linear model. We first stratified subjects by disease type

(we included only clinically isolated syndrome and relapsing-remitting

Table 1 Cohort characteristics

Variable Value

Cohort size (n) 484

Agea (years), p50 (p25–p75) 42 (35–50)

Disease course, n (%) CIS: 76 (15.7)
RRMS: 343 (70.9)

SPMS: 45 (9.3)

PPMS: 20 (4.1)

Gender, n (%) Female: 332 (68.6)
Male: 152 (31.4)

HLA-DRB1*15:01 dose, n (%) 0:261 (53.93)
1:188 (38.84)

2:35 (7.23)

Age of onseta (years), p50 (p25–p75) 33 (27.0–39.5)

MSSSa, p50 (p25–p75) 2.44 (0.91–4.33)

EDSSa, p50 (p25–p75) 1.5 (1.0–3.0)

Disease durationa (years), p50 (p25–p75) 5.85 (1.68–12.9)

Lesion volumea (mm3), p50 (p25–p75) 2013 (711–4340)

Patients on disease-modifying therapy,
n (%)

292 (60)

a p50 = median; p25 = 1st quartile; p75 = 3rd quartile.

CIS = clinically isolated syndrome; EDSS = expanded disability status scale;
MSSS = multiple sclerosis severity score; PPMS = primary progressive multiple
sclerosis; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary
progressive multiple sclerosis.
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multiple sclerosis) and then adjusted by disease duration. We tested

other variables (gender, disease duration, age, age of onset, expanded

disability status scale, immunotherapy, etc.) and found no significant

contribution in the measured phenotype (Supplementary Fig. 2).

Given the negligible influence of these variables on the measured

outcome, we decided not to adjust for those, to preserve power.

Reported P-values were adjusted by the FDR method (Benjamini and

Hochberg, 1995).

We performed a simulation to assess the probability of observing a

P-value5 1 observed in the data, given an effect size equal to our

estimated effect and variance equal to the sample variance of principal

component 8 (PC8). In other words, this test shows our ability to find

SNPs with such effect sizes given the number of samples and SNP

allele frequencies found in our study. Specifically, we simulated the

genotypes of 284 individuals to match the maximum autocorrelation

factor of each of our hit SNPs. We then simulated a continuous

phenotype based on the hit SNP’s effect size and added noise from

a normal distribution with mean 0 and variance equal to that of PC8.

Finally, we tested for associations between the simulated genotypes

and phenotypes. This process was repeated 100 000 times and the

distribution of obtained P-values is shown in Supplementary Fig. 6.

Principal component analysis
To reduce the dimensionality of the voxel-based analysis, we used

principal component analysis. This method relies on orthogonal trans-

formation to convert a set of possibly correlated voxel-based measures

into a set of values of linearly uncorrelated variables, the principal

components. The first principal component explains the largest

amount of variance (i.e. accounts for as much of the variability in

the data as possible), and each subsequent component explains the

highest remaining variance under the constraint that it is orthogonal

(i.e. uncorrelated with) to the preceding components.

Module (sub-network) analysis
Systematic module searches on a highly curated protein interaction

network were conducted as described (Baranzini et al., 2010).

Briefly, each gene product in the network was assigned a number

corresponding to the P-value of the most strongly associated SNP

for that gene with the trait (only P-values5 0.05 were considered).

Next, the Cytoscape (www.cytoscape.org) plugin jActive modules

(Ideker et al., 2002) were used to identify groups of interacting

gene products that were also associated with PC8 by GWAS. jActive

modules convert P-values into z-scores and use a greedy algorithm to

grow a sub-network (or module) from a random seed node by se-

quentially incorporating its neighbours in the protein interaction net-

work. The algorithm then returns the smallest possible module that

includes gene products with the most significant associations. A sig-

nificance (z) score is assigned to each reported sub-network after

evaluation of 10 000 random networks of similar size. Only modules

with a score4 3 and of size4 5 were considered.

Results

Lesion probability maps
We analysed the presence and distribution of white matter lesions

in 484 patients with multiple sclerosis at 1 mm3 voxel resolution.

First, the probability of a lesion to be present in each of the 67 000

voxels was calculated across all patients to build a composite lesion

probability map (Fig. 1A). As expected, the lesion probability map

clearly shows that the probability of a lesion is maximal near the

periventricular areas and decays markedly in other brain areas.

Following our earlier observation that subjects carrying the

HLA-DRB1*15:01 allele consistently show higher lesion volume

than those carrying other alleles (Okuda et al., 2009), we next

evaluated the lesion probability map stratified by the presence of

this major susceptibility allele. We observed a moderate but sig-

nificantly different distribution of lesional voxels in the 15:01

negative (Fig. 1B) versus the 15:01 positive group (Fig. 1C)

(P = 2.3 � 10�4, matched Wilcoxon test). Interestingly, we also

observed that more voxels with high lesion probability were

found in males (Fig. 1E) compared with females (Fig. 1F)

(P = 2.2 � 10�16, matched Wilcoxon test). Although this finding

could suggest a gender-dependent effect on the total number of

lesional voxels and/or their spatial distribution, it is also possible

that the observed differences are caused by a larger white matter

volume typical in males.

Distribution of lesional voxels
As shown in the lesion probability map, the probability for any

given voxel to contain a lesion across all patients is exceedingly

small (Fig. 2). Similarly, in any given subject, only a small fraction

of voxels carry a lesion (lesional voxel). This limited variance in the

distribution of the binary trait (lesion versus no lesion) prevented

us from conducting a voxel-based genetic association because

most voxels contained no lesions (uninformative). We thus con-

sidered an alternative strategy in which a combination of a thresh-

old (T) number of lesional voxels (depicted by coloured lines in

Fig. 3) and the n-most lesional voxels across the population (x

axis, Fig. 3) defines two subgroups of individuals for analysis.

For example, the proportion of patients displaying lesions in at

least 13 of the 100 most lesional voxels (T) is �50%, thus max-

imizing the power of finding a genetic association to this trait.

Because multiple combinations can result in balanced proportion

of observations, we tested this stratification approach over three

combinations of T and Z parameters (indicated by the arrows in

Fig. 3).

Genome-wide association study on
lesion distribution
We performed a GWAS for each of three combinations of param-

eters resulting in a balanced proportion of patients (low, mid and

high number of lesional voxels, denoted by arrows in Fig. 3).

Although several genetic markers were nominally significant in

these analyses, none surpassed the FDR correction for multiple

comparisons.

As lesional voxels can adopt a variety of topological arrange-

ments and these may be specific to each subject, we developed an

algorithm that allowed merging of neighbouring lesional voxels

into clusters (cluxels) to identify and characterize these spatial pat-

terns. Using this strategy, the total number of quantitative vari-

ables for GWAS (number of cluxels per patient) is reduced by

several orders of magnitude relative to a direct, voxel-based
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analysis and can also be used as a dichotomous trait (e.g. dense

versus sparse organization) (Fig. 4). In addition, this new trait is

independent of total lesion volume, as two patients with similar

number of lesional voxels can have a markedly different cluxel

topology, and the correlation between the number of cluxels

and lesion volume is low (Fig. 4C). We computed the distribution

of the number of cluxels over all subjects and chose an arbitrary

cut-off (n = 35) to define a dichotomous phenotype (high/low

number of cluxels) for a GWAS. (Fig. 4D). The pairwise minimum

distance between cluxel edges and the average size of cluxels

were also found to be highly variable across individuals and inde-

pendent of gender and lesion volume. However, a GWAS on

the number of cluxels and on the average minimal distance

between cluxels did not identify markers with genome-wide

(FDR-corrected) significance, and a GWAS on the average size

of cluxels resulted in borderline significant results (Supplementary

Tables 1 and 2).

Although the arrangement of cluxels may be markedly different

across individuals, just measuring their number, size or distance

from each other may not accurately capture actual cluxel top-

ology. We then hypothesized that if the variance related to

lesion volume is accounted for, the remaining variance would be

enriched in cluxel topology. We thus used principal component

analysis to decompose the total variance in lesional voxels and

computed the correlation of each component with other relevant

imaging and clinical variables (e.g. total lesion volume, expanded

disability status scale, age of onset, T1 lesion load, T2 lesion load,

total number of lesional voxels, age, disease duration, gender,

Figure 1 Lesion probability maps. (A) Lesion probability map over all individuals shows the highest probability of a lesion to be around the

periventricular areas. Individuals carrying at least one 15:01 allele (B) display a significantly different lesion distribution than 15:01 negative

(C) individuals. The colour of each voxel is proportional to the probability of there being a lesion. (red = high, yellow = medium,

green = low). (D) The difference between panels A and B. In this lesion probability map, red voxels indicate a higher probability of a lesion

for 15:01 positive subjects, whereas blue voxels indicate lower probability of a lesion for these subjects. Males (E) have different distri-

bution of probabilities than females (F). (G) The difference between panels E and F. In this lesion probability map, red voxels indicate

higher probability of a lesion for males, whereas blue voxels indicate lower probability of a lesion for males.
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HLA-DRB1*15:01, treatments and multiple sclerosis type). Almost

10% of the total variance was explained by the first component

(PC1), which in turn was highly correlated with lesion volume

(R2 = 88%) (Fig. 5A and B). Given the wide distribution of lesions

observed in patients with multiple sclerosis, this finding is not

surprising. However, it allowed us to identify the proportion of

variance explained by lesion volume itself and then focus on the

remaining (orthogonal) variance, in which lesion topology (and not

load) is now more represented.

We then performed GWAS with each of the remaining compo-

nents (PC2–PC10) to evaluate genetic associations with orthog-

onal sources of variance in lesion topology within the multiple

sclerosis brain. To control the rate of false discoveries, the location

of lesional voxels was permuted across all voxels 100 times, thus

keeping the lesional load of each individual intact while removing

any spatial structure of lesions across the brain. An enrichment of

significant P-values was observed in the original data when com-

pared with the permuted sets (Supplementary Fig. 8). Specifically,

31 significant associations at FDR-corrected P-value of 0.01 were

identified with PC8 (Fig. 5 and Table 2), suggesting a genetic

effect in the variance explained by this component. Although 13

of these associations reach P510�7, an average of only 0.64

associations exceeded this threshold in the permuted data set

tested with on PC8, and an average of 2.32 associations exceeded

this threshold in the permuted data sets with all 10 principal com-

ponents (Supplementary Table 4). Although the voxels with the

highest weight in PC8 are not arranged in a pattern that matches

any particular brain structure, the associations showed to be

robust to rigorous quality controls (Fig. 5D). None of the remain-

ing principal components yielded any significant associations.

To evaluate the functional relationship among statistically

significant associations, we performed a protein interaction

network-based pathway analysis. This approach (as described by

Baranzini et al., 2009a) integrates information of genetic associ-

ations with protein interactions to identify groups of physically

interacting proteins (sub-networks or modules) that likely

work together in a biological pathway. The top-ranked network

identified using this approach contained 48 genes (Fig. 6A), most

of them expressed in inflammatory cells or in the CNS

(Supplementary Fig. 1), which is encouraging given the suspected

involvement of inflammatory and neural pathways in multiple

sclerosis pathogenesis. A gene ontology analysis of the elements

of this network revealed a significant enrichment in genes

associated with immune response and with CNS development

and function (Fig. 6B). In contrast, the top-scoring network ob-

tained after permutation of P-values among all elements in the

protein interaction network did not yield any significant

enrichments.

Figure 2 Lesional voxels are rare. (A) The proportion of voxels that contain a lesion in the given number of patients is exponentially

decaying. The inset shows the distribution of voxels that contain lesions in 0–25 patients. (B) The proportion of patients with the given

number of lesional voxels is also exponentially decaying. The inset shows the number of subjects with lesions in the top 2000 lesional

voxels.
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Discussion
Although genetic association studies have scored notable achieve-

ments in the discovery of susceptibility genes in complex diseases,

this search has proven more challenging than initially anticipated.

The clinical and genetic heterogeneity embedded in these diseases

hampers appropriate phenotyping and explains, at least in part,

this incomplete success (van der Sluis et al., 2010; Kutalik et al.,

2011; Wood et al., 2011). In particular, the difficulty in defining a

clear phenotype conspires against the basic assumptions of GWAS,

which are aimed at identifying excess of sharing in common gen-

etic variants among individuals with the same high-level pheno-

type (e.g. health or disease). In this regard, the identification of

intermediate, more precise and quantitative phenotypes that are

more proximal (than a physiological state of health or disease) to

the genotype in the chain of events determining causality, is po-

tentially a more informative strategy. Examples of this approach

include studies that integrate data on volumetric differences from

patients with Alzheimer’s disease at the voxel level with genotypes

from an existing GWAS to identify genetic associations involved in

brain structure (Biffi et al., 2010; Shen et al., 2010; Stein et al.,

2010). Similar approaches have been used to find genetic associ-

ations with cognition and susceptibility to schizophrenia (Potkin

et al., 2009a, b).

In multiple sclerosis, the relationship between physical or cogni-

tive impairment and whole-brain white matter lesion volume is

generally weak. However, despite the fact that anatomical location

of an injury is likely to explain (at least in part) the extent and type

of neurological dysfunction, lesion volume rather than location is

used as the prevalent metric. In a large cross-sectional study using

lesion probability maps, Charil et al. (2003) showed a relationship

between sites of lesions and major impairments in a group of

subjects with relapsing-remitting multiple sclerosis. In this study,

we have extended the concept of using lesion distribution as a

phenotype to investigate the contribution of genetic variation to

the topological distribution of white matter lesions in multiple

sclerosis at voxel-level resolution.

To be able to perform genetic associations with white matter

lesion distribution across a population, it is critical to place all

subject lesion masks in a common reference space (Sdika and

Pelletier, 2009). In this study, we used image registration, an auto-

mated method to perform this task. Given two brain images,

registration finds the geometric transformation that maps one

brain to the other (Miller et al., 1993; Rueckert et al., 2006;

Sdika, 2008). Although non-rigid registration algorithms are able

to cope with the high inter-subject variability of human brain, this

method is sensitive to the presence of lesions, thus most investi-

gators prefer to use affine registration when building multiple

sclerosis lesion probability maps (Narayanan et al., 1997; Charil

et al., 2003; Enzinger et al., 2006). Indeed, affine registration is

robust to the presence of lesions in the brain, but only the global

shape of the brain will fit the reference and the inter-subject vari-

ability is not taken into account. To further reduce the influence of

the lesion in this process, lesional voxels can be masked out of the

cost function of the registration. This method improves the regis-

tration of focal lesions with respect to affine or non-rigid registra-

tion with no cost function masking (Brett et al., 2001). We

recently proposed a method dedicated to the problem of lesion

mapping and registration of images of brains of subjects with

multiple sclerosis (Sdika and Pelletier, 2009). In this method, all

white matter lesions are inpainted using an original algorithm

before performing the registration. The intensity of the voxels in

the lesions is replaced by the intensity of surrounding white matter

to visually remove them from the original image. Any registration

method can then be used to register the inpainted image on

another image. We have shown that the registration is improved

with respect to cost function masking, especially in lesional areas.

We decided to use white matter hypointensity lesions detected

on high-resolution T1-weighted 3D-IRSPGR images as the con-

cordance between lesions visible on T2 spin-echo weighted and

T1-weighted 3D-IRSPGR images is �100% (Henry et al., 2009).

These images allowed us to delineate sharp lesion edges, making

determination of lesion topology more precise and enabling inte-

gration with readily available GWAS information from the same

individuals. Results from this approach show significant

Figure 3 Proportion of subjects with lesions in top lesional

voxels. Each curve shows the proportion of subjects with 5T

lesional voxels versus the number of voxels considered (where

the voxels considered are the 200 voxels that contain the most

lesions across patients). The colour of each curve represents ‘T’,

the threshold minimum number of lesions among the top

lesional voxels. The dotted horizontal line indicates combinations

of T lesions in top � lesional voxels resulting in a more or less

balanced ‘cases’–‘controls’ design for a GWAS. The arrows

depict the three balanced combinations chosen to run GWAS.

For example, the first arrow indicates that 50% of cases have at

least one lesion in any of the top 11 lesional voxels. The second

arrow indicates that 50% of the cases have at least 13 lesions in

the top 100 lesional voxels. Similarly, the third arrow indicates

that 50% of the patients have at least 20 lesions in the top 160

lesional voxels. It can also be seen from this chart that �80% of

cases have at least one lesion (T = 1, red line) in the top 100

lesional voxels and �90% in the top 200 lesional voxels.
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associations with lesion distribution that are independent of

whole-brain lesion volume. A clear limitation of our approach is

the lack of an independent replication, which typically constitutes

the most reliable evidence of reported genetic associations.

However, to replicate this study, a similarly sized (or larger)

cohort of subjects with both genome-wide genotypes and high-

resolution structural imaging are needed, a data set that currently

very few groups in the world are ready to obtain. One possible

source of genotyped subjects would be those participating in large

GWAS. Unfortunately, these are typically multicentre efforts, and

although this is acceptable for DNA collection and analysis, com-

paring images obtained at different sites is technically challenging

and to date there is no consensus as to how to address this prob-

lem effectively. Also, although these results are suggestive of a

genotypic influence on spatial distribution of lesions in multiple

sclerosis, this study may be underpowered to detect unequivocal

signals. With a widespread interest in quantitative imaging and

broader availability of genomic data, we believe this type of

study will become more common and powerful in the near future.

In our genetic study of lesion distribution (i.e. PC8), 31 as-

sociations fell below a FDR threshold of 1%. A caveat worth

noticing is that most of the associated SNPs were relatively

rare in our population (�5%). Although the clusterplots

appeared robust (Supplementary Fig. 3), the regional association

plots (Supplementary Fig. 4) uncovered several SNPs in relatively

high linkage disequilibrium with the index marker that did not

show evidence of association. It is possible that this observation

is related to these low-frequency alleles, but further studies will be

Figure 4 Cluxel topology as a trait. 3D representation of neighbouring lesional voxels (cluxels) in two patients with similar lesion volume.

(A) The patient depicted on the left has 4737 lesional voxels arranged in 13 cluxels. (B) Despite having a similar lesion volume (4984 mm3),

the lesional voxels in the patient depicted on the right are arranged in 79 cluxels. These patient-specific differences form the basis for a

newly defined trait in multiple sclerosis. (C) The black dotted line shows that the correlation between lesion volume and number of cluxels

across all multiple sclerosis subjects is low (R = 0.344). (D) The frequency distribution of the number of cluxels per subject.
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needed to unequivocally establish these associations. Intriguingly,

when analysed altogether in a biological context, these associ-

ations are consistent with biological processes involved in brain

development and lesion formation or repair (i.e. myelination),

thus supporting our original hypothesis of genetic associations

with lesion topology. For example, one of the most relevant as-

sociations (rs10119179, P = 3.65 � 10�9) maps within SYK

(spleen tyrosine kinase) a kinase involved in tau phosphorylation

(Lebouvier et al., 2009) and amyloid-b oligomer-mediated micro-

glial activation (Sondag et al., 2009). The product of SYK has been

shown to phosphorylate myelin basic protein (Shimomura et al.,

1993) and �-synuclein thereby preventing its aggregation, thus

potentially playing an anti-neurodegenerative role (Negro et al.,

2002). Interestingly, DNA methylation in SYK is dynamically regu-

lated in the human cerebral cortex throughout the lifespan, in-

volves differentiated neurons and affects a substantial portion of

genes predominantly by an age-related increase (Siegmund et al.,

2007). T1 lesions non-specifically define inflammation/oedema,

myelin loss and matrix destruction (a consequence both of severity

of inflammation and lack of axonal regrowth). Although traditional

approaches consider inflammation and tissue response as inde-

pendent processes, we and others hypothesize that—in fact—

they are interactive (Waxman, 2005; Hauser and Oksenberg,

2006). Our findings support this notion by showing joint

Figure 5 Principal component analysis on the distribution of lesions across all subjects. (A) Amount of variance explained by each of the

top 10 principal components. PC1 (PC1, blue bar) explains almost 10% of the variance and is highly correlated with lesion volume (B). (C)

Spatial distribution of voxels with the highest weight in PC1. Each displayed voxel is coloured according to its weight. A ‘hot’ colouring

scale (red-orange-yellow) is used for the 2% highest-weighted voxels, and a ‘cold’ colouring scale (purple-blue-cyan) was used for the 2%

lowest-weighted voxels. (D) Spatial distribution of voxels with the highest weight in PC8, which showed genome-wide (FDR-corrected)

association with 31 markers. (E) Manhattan plot showing associations with PC8.
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associations with immune and neural tissue response factors con-

tributing to this complex phenotype. Most of the genes found to

be associated with lesion topology (captured by PC8) can be

traced to specific neural (e.g. axonogenesis, transmission of

nerve impulse) or immune (e.g. NFkB signalling, T-cell regulation)

functions.

Convincing evidence for the involvement of SYK, MYT1L,

TRAPPC9, SLITKR6 and RIC3 in the development and distribution

of white matter lesions in multiple sclerosis can be gathered from

the literature (Shimomura et al., 1993; Kim et al., 1997; Wrathall

et al., 1998; Negro et al., 2002; Aruga, 2003; Aruga and

Mikoshiba, 2003; Severance and Yolken, 2007; Vana et al.,

2007; Llorens et al., 2008; Vrijenhoek et al., 2008; Baranzini

et al., 2009a; Mochida et al., 2009; Philippe et al., 2009;

Vierbuchen et al., 2010; Vilarino-Guell et al., 2010)

(Supplementary material). The network-based strategy followed

here uses a more liberal threshold of associations to include

genes that are nominally significant (P5 0.001) so that, by

virtue of interacting among each other, define a biologically plaus-

ible module. Thus, it is possible that genes that are not signifi-

cantly associated with the trait are part of any given module if

they serve to functionally link two or more associated genes.

However, the proportion of these non-associated genes is gener-

ally low (15/48 in the top network). Interestingly, 19 of the 30

(63%) genes with modest associations (10�74P4 10�3) that

interact physically with the top associated genes are known to

be expressed in the brain. Among these, SEMA3A, RTN4R,

GRM7, LRRC4C and FYN are of particular importance in the

CNS owing to their role in axon guidance during development.

New multiple sclerosis lesions begin as lymphocytic infiltration

around a central vein, with subsequent centrifugal spread into

surrounding tissue (Barnett and Prineas, 2004). In more estab-

lished lesions, and perhaps also in reactivated ones, inflammation

is most prominent at the outer margins of the lesion (Gaitan et al.,

2011; Lassmann, 2011). The clinical significance of the heterogen-

eity described here is uncertain but is likely to reflect the influence

of a limited number of gene variants on the propagation of le-

sions, influencing their initiation, evolution, termination and/or

repair.

A large GWAS on multiple sclerosis susceptibility was recently

reported and notably, most of the associated genes have an im-

munological function (Sawcer et al., 2011). Although to date

Table 2 GWAS with PC8

Chromosome Position SNP Mapped gene (distance) Beta MAF (%) Raw P-value FDR_BH

2 174014782 rs16861690 CDCA7 ( + 100 Kb) 2.203 9.54 1.80E�11 3.77E-06

2 103124572 rs13410351 TMEM182 ( + 400 Kb) 2.008 11.3 6.12E�11 6.39E-06

9 92672620 rs10119179 SYK (0 Kb) 2.183 7.12 3.65E�09 0.000254

13 85343994 rs9602859 SLITRK6 (�80 Kb) 1.755 11.7 1.04E�08 0.000341

8 141380846 rs6983731 TRAPPC9 (0 Kb) 1.705 9.54 1.09E�08 0.000341

6 12046782 rs169715 HIVEP1 (�70 Kb) 1.891 9.54 1.14E�08 0.000341

2 2728526 rs2053906 MYT1L (�400 Kb) 1.778 9.9 1.14E�08 0.000341

9 114836373 rs10981613 ZFP37 (10 Kb) 1.712 12.01 1.56E�08 0.00039

10 8177388 rs12776126 GATA3 (20 Kb) 1.728 11.66 1.68E�08 0.00039

1 36700319 rs7065 MRPS15a (0 Kb) 1.574 10.24 3.06E�08 0.00064

14 68189895 rs10483818 RAD51L1 (0 Kb) 1.698 9.9 3.62E�08 0.000689

19 61012011 rs16986626 NLRP11 (0 Kb) 1.601 11.7 5.72E�08 0.000996

5 81207967 rs6452434 ATG10 (100 Kb) 1.62 12.01 9.41E�08 0.001512

12 70075768 rs10506628 TSPAN8 (0 Kb) 1.431 12.37 2.82E�07 0.004213

9 13581905 rs13299116 FLJ41200 (�150 Kb) 1.343 14.89 3.34E�07 0.004509

15 95430437 rs11852342 NR2F2 (900 Kb) 1.843 7.77 3.45E�07 0.004509

19 43944077 rs2368524 LGALS7 (10 Kb) 1.323 16.26 4.77E�07 0.005863

5 91806412 rs10075974 AK056485 (30 Kb) 1.486 11.31 6.67E�07 0.007428

9 80588305 rs13299822 PSAT1 (500 Kb) 1.317 14.49 6.75E�07 0.007428

11 120288578 rs17124538 GRIK4 (0 Kb) 1.439 10.95 7.30E�07 0.007628

7 36028008 rs10249851 SEPT7 (�120 Kb) 1.484 9.89 7.89E�07 0.007807

1 64565272 rs12132851 UBE2U (80 Kb) 1.558 10.95 8.23E�07 0.007807

1 246068188 rs7512555 OR11L1 (2 Kb) 1.531 10.95 9.31E�07 0.007807

9 29616136 rs1930395 LINGO2 (�800 Kb) 1.42 12.02 9.49E�07 0.007807

3 151317233 rs10513360 PFN2 (�150 Kb) 1.461 12.36 9.50E�07 0.007807

11 8140723 rs16936464 RIC3 (0 Kb) 1.548 10.95 9.71E�07 0.007807

14 36397262 rs7144374 SLC25A21 (0 Kb) 1.434 12.72 1.17E�06 0.009081

12 100625756 rs7980436 CHPT1 (0 Kb) 1.21 15.9 1.32E�06 0.009784

10 126063061 rs2807064 OAT (12 Kb) 1.303 12.36 1.42E�06 0.009784

13 75765667 rs12585734 AX747676 (300 Kb) 1.514 9.9 1.42E�06 0.009784

7 83673368 rs11976275 SEMA3A (�13 Kb) 1.453 12.36 1.45E�06 0.009784

a Denotes a non-synonymous SNP.
MAF = maximum autocorrelation factor; bold lettering = SNPs that map within a gene.
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Figure 6 Top-scoring sub-network (module). (A) Circles and diamond represent proteins, and lines represent physical interactions (green:

protein–protein, black: protein–DNA). Gene products with a significant P-value in the GWAS with PC8 are depicted as diamonds.

Diamond size is proportional to the –log(10) of the P-value. Genes known to be expressed in the CNS are shown in red. (B) Gene ontology

analysis. Bars represent gene ontology categories between GO levels 7 and 15. The length of each bar is proportional to the number of

genes associated with that term. The percentage of associated genes for each term is indicated inside each bar. Asterisks denote

Bonferroni-corrected (Fisher’s exact test) P-values of enrichment for that term (*P5 0.05, **P50.001). Colours denote gene ontology

groups with 450% similarity in their component genes.
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genetic variation has been primarily associated with risk rather

than expression of multiple sclerosis, earlier studies of gene-

outcome associations have generally relied on bedside measures

of clinical disability, which are insensitive to the number, volume

or topology of brain lesions. In this study, we have identified an

MRI-based, quantitative trait that is associated with common vari-

ants in patients with multiple sclerosis. The apparent strength of

the associations and a compelling hypothesis for their interaction

make these important candidate modifier genes for the multiple

sclerosis phenotype, but independent replication of these findings

is needed. The data reduction methods proposed substantially im-

prove the potential for prospective studies to test these and

related hypotheses. Joint analysis of quantitative imaging traits

and genomic data should shed new light to the heterogeneity of

multiple sclerosis and its responses to treatment.
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