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Drawing the map of neuronal circuits at microscopic resolution is important to explain how brain works.
Recent progresses in fluorescence labeling and imaging techniques have enabled measuring the whole brain
of a rodent like a mouse at submicron-resolution. Considering the huge volume of such datasets, automatic
tracing and reconstruct the neuronal connections from the image stacks is essential to form the large scale
circuits. However, the first step among which, automated location the soma across different brain areas
remains a challenge. Here, we addressed this problem by introducing L1 minimization model. We developed
a fully automated system, NeuronGlobalPositionSystem (NeuroGPS) that is robust to the broad diversity of
shape, size and density of the neurons in a mouse brain. This method allows locating the neurons across
different brain areas without human intervention. We believe this method would facilitate the analysis of the
neuronal circuits for brain function and disease studies.

N
eural circuit is the physical basis of the brain function. Drawing the map of neuronal circuits at micro-
scopic resolution is important to explain how the brain works, which requires tracing the neurons from
its branches to the cell body (soma)1–6. Therefore locating the soma of the neuron is a first step for

boosting tracing accuracy and further quantifying the neuronal circuits7–9. Meanwhile, localization of neurons has
also been widely used to discover the scientific fact in other researches. For example, it has been applied in
computing the positions of the neural stem-cell in the adult sub ventricular zone to analyze niche cell-cell
interactions10, in discovering whether the cancer stem cell are independent on the neural microenvironments
or not11, and in quantifying the relation between the distribution of neurons and blood vessel12. Recent progresses
in fluorescence labeling and imaging techniques, that have enabled measuring the whole brain connections of a
rodent like a mouse at submicron-resolution13–15 or micron-resolution16, have piled up very huge volume of data,
which made manual location the neurons painful for large scale analysis such as the mouse brain.

Substantial progresses have been made in automatically locating and segmenting cells from the image stacks.
Typical methods17–29 including watershed algorithm17–21, tracking the gradient flows22,23, multi-scale filters24,25,
and minimum-model29 etc., mainly focus on locating and segmenting cells with simple rather than complicated
morphology. Recently proposed FARSIGHT software25 can address the neurons with specific complicated mor-
phology30. Automatic segmentation tool like V3D6 is widely used to track complicated neuronal fibers. However
localization the neuron is typically done manually due to the broad diversity of shape and size of neurons,
especially the thick dendritic truck is still challenging.

Here, to overcome the above challenges, a novel method, called as Neuronal Global Position System
(NeuroGPS), was developed. Based on a new biophysical model, it applies optimization method to locate neuron
by introducing L1 minimization31 (L1-M) with a guiding hypothesis that each neuron has only one soma, which is
not densely overlapped with its neighbors. NeuroGPS locates the cell body by computing the radius of each soma,
and finding the most preferred radius and its corresponding coordinates. This method efficiently eliminates the
interference from the complicated neurites, especially the thick dendritic truck, on localization, and is robust to
the diverse shape, size, and density of neurons. With NeuroGPS, we demonstrate automatic localization of
neurons across different regions in the mouse brain without human intervention.
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Results
The L1 minimization model of neurons localization. Using binari-
zation and erosion operation (See Methods), a binarized signal BL

(the foreground and background values were set to value one and
zero respectively) can be extracted from the initial image stacks.
Usually, BL contains the images of neurons with soma and thick
dendritic trucks. The neuronal soma could be roughly described as
a sphere, while thick dendritic truck cannot be easily described by a
given template for its complicated and highly diversed pattern. So, we
make a new model to describe the neuronal image. Assumed that BL

can be modeled as the summarization of a series of spheres and a
residual part, i. e.,

BL(o)~
Xk

i~1
f (o,oi,ri)zres (o) ð1Þ

where f (o, oi, ri) is the i th sphere function given as

f (o,oi,ri)~
1 if jo{oijƒri

exp {
(jo{oij{ri)

2

0:1

� �
otherwise

(
ð2Þ

res (o) is residual signal, o is the coordinates of volume pixels in BL, k
is the number of spheres, oi and ri are the initial position and radius of
the sphere function, respectively.

The fact that BL contains thick dendritic trucks results in some
false positive positions in these k initial positions (o1,o2,…,ok). So, the
task of localization of neurons is thus transferred to identifying real
positions from the positions (o1,o2,…,ok). In Eq. (1), the unknown
parameters, i.e., the radiuses and positions of sphere function, need
to be estimated. The classic way to estimate the parameters is using
nonlinear least squares fitting32, namely, finding the optimal para-
meters for Eq. (1) with a minimum residual function. Accordingly,
the optimal problem can be written as

min jj
X
o[V

BL(o){
X
o[V

Xk

i~1

f (o,oi,ri)jj

s:t: ri§0 i~1,2, � � � ,k

ð3Þ

where jj jj represents 2- norm squared and V is the coordinate sets of
volume pixels in BL.

This model (optimization problem (3)) was further characterized
or modified by including the prior property of the neuronal dataset,
i.e. the spatial distribution of the neuron is sparse. This is explained in
details as follows. The territory of one neuron often significantly
overlaps with that of another neuron with the extending neurites,
however, the soma of one neuron naturally never overlaps with that
of another neuron. This means the neuron is sparse when consider-
ing its position in the three dimensional space. If we set many poten-
tial soma positions for a certain dataset, most of these positions
should be false, and the correlated radius should be zero.
Therefore, the radius of the sphere functions has the property of
sparsity. Considering this sparsity, inspired by compressive sens-
ing33, we use a signal processing technique called L1 minimization
technique, which works on a similar principle for sparse signal recon-
struction, to recover the non-zero radiuses of sphere functions, and
thus modify the optimization problem (3) as

min jj
X
o[V

BL(o){
X
o[V

Xk

i~1

f (o,oi,ri)jj1=3
zl

Xk

i~1
ri

s:t: ri§0 i~1,2, � � � ,k

ð4Þ

where l is the tradeoff between the error in fitting parameters of
sphere function to BL and the sparseness of the radius of the sphere
functions. Here, optimization problem (4) (O.P. (4)) can be regarded
as L1 minimization model (L1-M) that is used to locate neurons. l is
set to be 0.025 for the datasets analysis. Note that in optimization
problem (4), to keep the same physical dimension, the first term of

the objective function was modified to the 1/3 power of 2-norm
squared of the error.

Solving the L1 minimization model. O.P. (4) can be solved using
the method proposed by Candes34. However, considering BL is image
stacks with large volume, we applied modification to the frame work
of Candes34, to improve the computational efficiency. Rather than
updating all the parameters using gradient projection35 in the
iteration optimization process, we divided the parameters in
O.P. (4) into two groups: radius and position of sphere functions,
and updated the radius and position using gradient projection and
averaging method, respectively. This operation can significantly
decrease the computational time (10 3 faster, data not shown).
The algorithm for O.P. (4) was described in Methods-The algori-
thm. For all optimal radiuses, if ri is bigger than a given threshold (see
Methods-Parameters set), the corresponding position oi is regarded
as a valid position.

The feature of L1 minimization model. In L1-M model (O.P. (4)),
besides it requires the simulated image reach a minimum error over
the measured image, in the meantime, it requires the summarization
of the radius of the many soma candidates also reach a minimum
value. This additional constrain lead to shrinkage in these radiuses
correlated to the neurites including thick trucks. To prove this, we
examined the efficacy of introducing L1 minimization model to
locate neurons. As shown in Fig. 1a, the signal labeled in light blue
corresponds to the foreground of BL, and the red spots are the initial
candidate positions (or seeds) which lie in the soma and thick truck.
Without L1-M, i.e., l 5 0 in O.P. (4), the radiuses corresponding to
positions in thick truck were calculated to be about 4.0 mm, which are
almost equal to the value of radius of some small neuronal somas.
While using L1-M, except the radius of soma, the values of other
radiuses were close to zero (Fig. 1b). These results clearly
demonstrated that L1-M model can eliminate the interference of
thick trucks when locating neurons.

Localization neurons with broad diversity in shape and size. To
evaluate NeuroGPS, we applied it to seven typical image stacks from
different cortical regions. Each contains 300 3 200 3 600 volume
pixels. Fig. 2a shows typical results, and Fig. 2d,e shows the statistics
of the seven data sets. In Fig. 2a, as white triangle labeled, the shape of
cells has a variety of patterns. Some pyramidal neurons show long
and thick trucks, resulting in difficulties to describe their
morphology, while some others cells show simple shape, can easily
be modeled with a sphere function. In the meantime, the size of the
soma also varies largely. In Fig. 2e, we calculated the radiuses of the
true positive neurons of all the seven datasets and noted their values
widely range from about 4.0 mm to 11.0 mm. For comparison, these
datasets were substituted to the same optimization processing system
but without L1-M (Fig. 2b), and to the popular neuron tracing
software like FARSIGHT25 (Fig. 2c). Thick trucks are sometimes

Figure 1 | L1 minimization suppresses the tough constrain posed by thick
trucks of the pyramidal cells. (a) The extracted signals (blue) and the

initial positions of sphere functions (red dots). Analyzed using model with

and without L1-M, the radiuses corresponding to each positions of sphere

functions were shown in (b).
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recognized as somas (arrows in Fig. 2b,c). This will increase the
overall false positive numbers in locating neurons (Fig. 2d). Some
neurons cannot be detected (circles in Fig. 2c)) by FARSIGHT for
low signal intensity. Consider all the neurons in the several dataset,
the overall false positive rate and true positive rate are 4% and 100%
for NeuroGPS, 25% and 100% for NeuroGPS without L1-M, and 61%
and 88% for FARSIGHT. According to the general way of image
processing, image content around the boundary of images stacks
are directly ignored, that’s why some bright spots are not identified
as somas (the square in Fig. 2a). These spots are not included in the
ground truth, and not affect the positive rate. From the above results,
we can conclude that NeuroGPS is powerful to locate neurons with
broad diversity of shape and size.

Localization high-density neurons. We used the experimental data
sets to illustrate NeuroGPS can locate neurons with highly dense
spatial distribution. Typical region such as cortical (Fig. 3a) and
hippocampus (Fig. 3b) regions were given as examples of two
types of high-density. The clustered neurons with complicated
neuritis, labeled by arrows in Fig. 3a, were successfully located
using NeuroGPS. For the image stacks in Fig. 3b, the false positive
rate and true positive rate are 6% and 86%. We also quantitatively
estimate the spatial density of the neurons in Fig. 3b. More than 95%
radius of the neuronal soma ranges from 3.0 mm to 8.0 mm (Fig. 3c),
and the distance between pairs of cells, defined as the distance from
the manually-determined position of one neuron to the nearest
position of the other neuron, is 13.6 6 3.8 mm (Fig. 3d). If

Figure 2 | The capability of NeuroGPS for locating neurons with complicated morphology and different size. The comparison of locating neurons from

the image stacks (data set #3 in (d))) with L1 minimization (NeuroGPS) (a), without L1 minimization (b), and with FARSIGHT method(c). Some

examples of the cell patterns (triangles), false-positive positions (arrows) and undetected positions (circles) were given in (a), (b) and (c). (d) The number

of false positive positions for the three localization method. (e) Distribution of the radiuses of true positive neuronal somas.

Figure 3 | NeuroGPS locates high-density neurons with typical regions such as cortical (a) and hippocampus (b) area. Neurons with (a) and without

complicated neurites (b) were shown. The red dots represent the recognized positions. Arrows in the rectangle (a) are show cases neurons overlapped but

the soma not overlapped. From the image stacks of (b), there gives the distribution of the magnitude of radiuses of real positive neurons (c), and the

distance of neuron pairs (d).
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measured the density of the true positive somas by the pair distance
smaller than 13, or 1.23 of the sum of the radiuses, respectively,
about 14% or 35% of the cells touched each other. This value
indicates that a part of cells experienced dense distribution.

Automated localization of neurons across different brain areas.
With the above two features, NeuroGPS is able to locate neuron
automatically across different brain area without any manual
mediation. This point is illustrated with a large scale fluorescence
images dataset which includes part of the cortical and the
hippocampal area, and whose max-intensity projection is shown in
Fig. 4a. The images dataset is the part of the whole coronal profile
(labeled by white rectangle in Fig. 4d), and its size is 1300 3 1850 3
150 volume pixels. In spite of a variety of cell shapes, sizes and
densities, including very thick and complicated dendrites,
(typically shown in Fig. 4b,c or b1,c1), we located about 2500
neurons using NeuroGPS, and get an overall true positive rate of
88%, and a false positive rate of 8% compared with manual
detected positions as the ground truth. It is noted in this
demonstration that the radiuses of some thick trucks are almost
4.0 mm, equal to or bigger than the size of small neurons, as the
radius of true positive neuronal somas ranges from about 3.5 mm
to 10.0 mm. Without L1-M, the positions in thick trucks were easily
recognized the position of neurons (arrows Fig. 4b1). This result
indicates that NeuroGPS can be applied in handling large scale
data sets, which is surely beneficial for further reconstructing
neuronal morphology or quantifying large neuronal circuits.

Discussion
Localization of neurons has the promise boosting neuronal trace and
quantifying the large scale neuronal circuits. In this paper, we have
proposed NeuroGPS method to locate neurons across different brain
areas and have demonstrated its high robustness to the shape, size
and spatial distribution of neurons. Specifically, this method

eliminated the negative influence of the complicated neurites, espe-
cially from the thick dendritic truck, on localization.

Essentially, we made a new biophysical model to locate the neuron
which only concerns the morphology of the neuronal soma, rather
than the entire neuron. In the biophysical model, we introduced L1
minimization to maximize image sparsity, and identify the false pos-
itive positions in thick dendritic truck which is based on the biophys-
ical/neurobiological assumption that each neuron has only one soma
that does not overlap with its neighbors. This biophysical model and
its successful solution play a key role in successfully locating neurons
with complicated morphology.

Due to the complexity and diversity of neuronal structure in mam-
mals like mouse, neurons across different brain have a wide variation
of shape, size and spatial distribution. Therefore localization of these
neurons without human interference is a challenging work.
Typically, when we analyzed our data sets, the radiuses of some thick
trucks are close to 4.0 mm (Fig. 1b), which are almost equals to or
even bigger than the radius of some neuronal somas (Fig. 2e &
Fig. 3c). Previous works17–29 have not involved this problem, and
thus experience difficulties in resolving it. For example, though the
classical method like FARSIGHT can overcome the challenges in
locating neurons with variation of size and spatial distribution25, it
cannot distinguish thick trucks and some small neurons (Fig. 2d).
NeuroGPS, as described earlier, can induce shrinkage in the radiuses
of thick trucks by introducing L1-M and effectively identify the false
positions of thick trucks (Fig. 1a, b & Fig. 2a, b). In addition,
NeuroGPS possesses high robustness to the size and spatial distri-
bution of neurons (Fig. 2e & Fig. 3a, c). These advantages of
NeuroGPS make it possible to locate neurons across different brain
areas.

In optimization problem (4), the parameter l is used to control the
tradeoff between the fitting error and the sparsity of radiuses of
sphere function. When we choose a big value of l to enforce this
sparsity, the fitting error will increase. Conversely, the small fitting

Figure 4 | Automated localization of neurons across different mouse brain areas by using NeuroGPS. (a) The max-intensity projection of image stacks

and the recognized positions of neurons (red dots). The regions (b) and (c) were typical examples showing the complexity of the signals, and were

enlarged to (b1) and (c1) respectively. The insect (d) shows the whole coronal profile. Arrows show thick trucks easily recognized as soma when not using

the L1-M model. Scale bar, 100 mm for (a), 20 mm for (b1) and (c1), and 1000 mm for (d).
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error is built on the sacrifice of the sparsity. So finding the appropri-
ate tradeoff may be important for the localization performance.
Fortunately, the algorithm of reweighted L1 minimization34 can
automatically modify the strength of the sparsity in solving optim-
ization problem (4) and provide strong sparsity even when a small
value of l is set, e.g. strong sparsity can be gained with a wide l value
range. This feature enables that the localization performance is
robust to the tradeoff l. In experiment, specific l value was roughly
estimated by analyzing a few images. If the localization result is right,
the corresponding l is set, and then extend to the rest volume data-
sets. If the result is not right, tune l again to get better performances.
In our experience, l remains unchanged for any image stacks pro-
vided that the size of volume pixels and the radius of the soma are
within a certain range.

In our experimental data sets analysis, a small amount of positions
of neurons has not been detected as expected. There are some reasons
for this phenomenon. Firstly, in the process of sample preparing or
imaging, the shape of some neuronal soma may be seriously distorted
and deviated far from its normal morphology. Secondly, information
loss from neuronal somas in the binarization and erosion operation
has a negative influence on seeds selection and sphere functions
fitting. Depending on the feature of neuronal morphology, using
the improved binarization and erosion method may improve the
localization performance.

The computation time of NeuroGPS depends on the number,
morphology and spatial distribution of neurons. As described earlier,

we used the averaging method combined with gradient projection to
speed the iteration optimization process and increase the computa-
tion efficiency of NeuroGPS. This operation is effective based on the
fact the shape of neuronal soma basically meets spherical symmetry.
As verified by Berglund36, an object can be located by averaging
method provided that its shape meets the spherical symmetry.
Typically, analyzing an 600 3 200 3 75 volume pixels image stacks
takes about 30 seconds in an Inter(R)Xeon(R)CPU 3.46 GHz com-
puting platform. On the other hand, NeuroGPS performs independ-
ent optimizations on different extracted regions, so it can be easily
implemented on massive parallel computing for more enhanced
speed.

Although we built this NeuroGPS using fluorescent brain image
stacks, it can also be applicable to other kinds of images, for example,
Nissl staining neuronal images (576 3 1623 3 20 volume pixels).
NeuroGPS well located these neurons with the false positive rate of
6% and true positive rate of 93% compared with manual detected
positions. Interestingly, the signal intensity of neuronal soma in this
example is not uniform. In this case, NeuroGPS is still effective.
These results may indicate that NeuroGPS can be applied in a variety
of data sets.

It should be noted that our NeuroGPS only focus on the local-
ization of neurons, and cannot be implemented on segmentation of
neurons at present. The main reason is that the complicated mor-
phology and the dense distribution of neurons make high-accuracy
segmentation of neurons become an acknowledged difficulty4,37–38,
beyond our current concerns. Nevertheless, NeuroGPS provide a
tool to automatically and accurately locate neurons, which is helpful
for neuronal dendritic tracing. Some newly developed neuron tracing
methods7–9 experience difficulties in rejecting the neuronal soma
interference. Future work is expected to combine NeuroGPS with
automatic segmentation method and facilitating automatic neuronal
circuits tracing.

Methods
The algorithm. The algorithm for the optimization problem (4) is described as
follows:

Step 1. Set initial weights: wi 5 1, i 5 1, 2, … ,k
Step 2. Solving the optimization problem

min jj
X
o[V

BL(o){
X
o[V

Xk

i~1

f (o,oi,ri)jj1=3
zl

Xk

i~1
wiri

s:t: ri§0 i~1,2, � � � ,k

ð�Þ

2a. Set the initial value (o1
t, r1

t), (o2
t, r2

t), … , (ok
t, rk

t), t 5 0
2b. Use the gradient projection algorithm35 to obtain (r1

t 1 1, r2
t 1 1, … , rk

t 1 1 )
2c. Use the averaging method to obtain (o1

t 1 1, o2
t 1 1, … , ok

t 1 1 )
For each pair of parameter (oi

t, ri
t 1 1), compute oi

t 1 1

otz1
i ~

Xmi

Q~1

Ii(oQ)oQ

Ii(o1)zIi(o2)z � � �zIi(omi )
i~1,2, � � � ,k

Where Ii(oQ) (Q 5 1,2,…,mi) is the original signal from the inner region of a ball
with center position oi

t and radius ri
t 1 1.

oi
t 1 1Roi

t, and the computing of oi
t is carried out again.

2d. Terminate on convergence and go to step 3, otherwise, t 1 1Rt, and repeat Step
2b–2c.

Step 3. Update weights:

wi~ min
max(r1,r2, � � � ,rk)

riz0:01
,40

� �
,i~1,2,::,k

Step 4. Repeat Step 2–3 until all parameters converge.

Brain tissue preparation. All experiments were performed in accordance with the
guidelines of the Experimental Animal Ethics Committee at Huazhong University of
Science and Technology. A total of 10 Thy-1-eGFP-H or Thy1-YFP-M Transgenic
fluorescence mice (2–10 weeks old) were anaesthetized, and intracardially perfused.
The whole brain was brought out, fixed and embedded in GMA media, by following a
similar protocol used in Li et al.13 and Gong et al.15. A detailed description can be
found there.

Imaging system. The whole brain was sliced and imaged using a fluorescence micro-
optical sectioning tomography system. The image reconstruction used the frame
work presented in Li et al.13 and Gong et al.15. Basically, image tiles are mosaicked
together to form a whole section, and in each section, image pre- processing

Figure 5 | Scheme for the image stacks analysis routine of NeuroGPS.
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procedures were applied to remove the inhomogeneous illumination pattern, and
redundant portions.

The entire image processing of NeuroGPS. The entire image analysis procedures of
NeuroGPS includes sub-region extraction, seeds selection, localization of neurons
using L1 minimization and detected positions merging, which were illustrated in the
flowchart of Fig. 5. Its detailed description is as follows.

Sub-region extraction. Due to a sparse distribution of neurons in the image stacks,
extracting sub-regions and analyzing the extracted signals can significantly increase
the computational efficiency, compared with analyzing the entire image stacks.
Before sub-regions extraction, the original image stacks needed to be binarized. The
binarized image stacks B are calculated by

B(o)~
0 if I(o)vC(o)z6

ffiffiffiffiffiffiffiffiffi
C(o)

p
1 otherwise

(

Here I(o) and C(o) represent the gray-level value of volume pixel coordinate o in
the original images and background images respectively. The image stacks I*, cal-
culated as I*(o)5min(I(o), thre), is convoluted 20 times with the averaging template
(9 3 9 3 1 pixels3) and we can get the background images. Here thre is a roughly
estimated value used to distinguish foreground from background.

Dense distribution and complicated morphology of neurons usually lead to the
large connected regions in the binarized image stacks, which requires huge amount of
computation resources to analyze these regions. To reduce the computational time,
the large connected region was divided into several parts using the erosion operation.

Step1. Eroding the binarized image stacks B. If the sum of the value of the volume
pixel and its 26-connected volume pixel is less than the erosion threshold T, then the
value of this volume pixel is set to be 0, otherwise, it remains unchanged.

Step2. In eroded B, the connected region with volume pixels ranged in number
from 100 to 20000 extracted and analyzed in the latter subsections. Then, the value of
volume pixels in the extracted region is set to be 0.

Step3. Update B from Step 1 & 2, and repeat Step 1 & 2 until the number of volume
pixels of any connected region in B is less than 100.

Note that, the erosion threshold T is set to be 9 in the first erosion operation and
continuously increase with a step of 0.027 for subsequent erosions; the parameter, i.e.
the valid number of volume pixels in the extracted region, can be determined by the
smallest size of the neuron, the size of volume pixels and the largest pre-defined
number of neurons in the extracted region, and automatically estimated by
NeuroGPS.

Seeds selection. For simplification during subsequent processing, the binarized and
original signals with respect to the extracted sub-region were completely embedded
into a cuboid region, as remarked by BL and IL respectively. BL and IL are convoluted
with a template (7 3 7 3 5 pixels3) in which the value of volume pixel is set to be 1, and
the corresponding filtered signal B1 and I1 are generated. We regarded the position o
satisfying that B1(o) is beyond 70 and I1(o) is local peak value as a candidate seed. The
uniform spatial distribution and the moderate number of the candidate seeds may be
of benefit to computational efficiency. Therefore, we deleted some redundant seeds
using the following procedure. Selecting the seed o1 with the highest value of I1 (o)
from the candidate seeds and deleting the candidate seed o satisfying the condition
that the Euclidean distance between position o and position o1 is less than 4.8 mm.
Repeating this procedure until the candidate seeds set is null or the number of the
extracted seeds is more than 10.

Localization of neurons using L1 minimization. For the given binarized signal BL

and the extracted seeds, by introducing L1 minimization, we design the optimization
problem (4). Its optimal solutions can be obtained by using the algorithm described in
Methods. According to the optimal solutions, the valid positions were identified.

The valid position merging. In reality, it is unavoidable that using two sphere
functions to approach some special neuronal somas is superior to using one sphere
function. Based on this consideration, we take the valid position merging as a part of
our method. If the distance between two valid positions is less than 70% of the sum of
radius of these two positions, we merge these two positions to one position, otherwise,
keep it unchanged. At last, the merging or unmerging positions are regarded as the
recognized neuronal positions.

Parameters set. Here, we must point out that all the parameters involved in entire
image analysis are only determined by two predefined parameters, the size of volume
pixels, and the minimum radius of neuronal soma. With these two parameters, the
soma locations can be automatically estimated by our NeuroGPS. In our experimental
data sets, without specification, the size of volume pixels is 1.2 3 1.2 3 2.4 mm3 and an
estimated value of the minimum radius is 3 mm for neurons without complex
morphology and 3.6 mm for those with complex morphology.

The indicators for evaluation of the localization algorithm. The localization
performance was measured using the false-positive rate, the true positive rate and the
localization precision. The false-positive rate is defined as the ratio of false-positive
positions to recognized positions found by the algorithm. The true positive rate is
defined as the ratio of real positive positions from recognized positions to manual
positions (true positions). A recognized position is defined as a true positive position

providing that the distance between the recognized and true positions is less than
4.8 mm, and false-positive position otherwise.
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