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Abstract

Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in 

only a modest fraction of individuals can specific causes be identified1,2. To identify further 

genetic risk factors, we assess the role of de novo mutations in ASD by sequencing the exomes of 

ASD cases and their parents (n= 175 trios). Fewer than half of the cases (46.3%) carry a missense 

or nonsense de novo variant and the overall rate of mutation is only modestly higher than the 

expected rate. In contrast, there is significantly enriched connectivity among the proteins encoded 

by genes harboring de novo missense or nonsense mutations, and excess connectivity to prior ASD 

genes of major effect, suggesting a subset of observed events are relevant to ASD risk. The small 

increase in rate of de novo events, when taken together with the connections among the proteins 

themselves and to ASD, are consistent with an important but limited role for de novo point 

mutations, similar to that documented for de novo copy number variants. Genetic models 

incorporating these data suggest that the majority of observed de novo events are unconnected to 

ASD, those that do confer risk are distributed across many genes and are incompletely penetrant 

(i.e., not necessarily causal). Our results support polygenic models in which spontaneous coding 

mutations in any of a large number of genes increases risk by 5 to 20-fold. Despite the challenge 

posed by such models, results from de novo events and a large parallel case-control study provide 

strong evidence in favor of CHD8 and KATNAL2 as genuine autism risk factors.

In spite of the substantial heritability, few genetic risk factors for ASD have been 

identified1,2. Copy number variants (CNVs), often de novo and covering multiple adjacent 
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genes, have been identified as conferring risk3,4. While these CNVs provide important leads 

to underlying biology, they rarely implicate single genes, are rarely fully penetrant, and 

many confer risk to a broad range of conditions including intellectual disability(ID), 

epilepsy, and schizophrenia5. There are also documented instances of rare single nucleotide 

variants (SNVs) that are highly penetrant for ASD6.

Large-scale genetic studies make clear that the origins of ASD risk are multifarious, and 

recent estimates based on CNV data put the number of independent risk loci in the 

hundreds4. Yet knowledge regarding specific risk-determining genes and the overall genetic 

architecture for ASD remains incomplete. Although new sequencing technologies provide a 

catalog of most variation in the genome, the profound locus heterogeneity of ASD makes it 

challenging to distinguish variants that confer risk from the background noise of 

inconsequential SNVs. De novo variation, being less frequent and potentially more 

deleterious, could offer insights into risk-determining genes. For this reason we sought to 

carefully evaluate the observed rate and consequence of de novo point mutations in the 

exomes of ASD subjects.

We performed exome sequencing of 175 ASD probands and their parents across five centers 

with multiple protocols and validation techniques (Supplementary Information). We used a 

sensitive and specific analytic pipeline based on current best practices7-9 to analyze all data 

and observed no heterogeneity of mutation rate among centers.

In the entire sample, we observed 161 coding region point mutations (101 missense, 50 

silent and 10 nonsense), with an additional 2 conserved splice site (CSS) SNVs and 6 

frameshift indels validated and included in pathway analyses (Supplementary Table 1).

To determine whether the rate of coding region point mutations was elevated, we estimated 

the mutation rate in light of coverage and base context using two parallel approaches 

(Supplementary Information). Based on both models, the exome target should have a 

significantly increased (≈30%) mutation rate compared to the genome. Conservatively, by 

assuming the low- end of the estimated mutation rate from recent whole-genome data 

(1.2×10-8)10, we estimate a mutation rate of 1.5×10-8 for the exome sequence captured here. 

The observed point mutation rate of 0.92/exome is slightly but not significantly elevated 

versus expectation (Table 1) and is insensitive to adjustment for lower coverage regions 

(Supplementary Information). Indeed our rate is similar to Sanders et al. (in press).

Per-family events were distributed according to the Poisson distribution (Table 1), yielding 

no evidence for ASD tracing to high rates of de novo mutation. The relative rates of 

‘functional’ (missense, nonsense, CSS and read-through) versus silent changes did not 

deviate from expectation (Table 2). We did, however, observe 10 nonsense mutations 

(6.2%), which exceeded expectation (3.3%) (one-tailed P=0.04; Supplementary 

Information).

We examined the missense mutations as such variation can cause loss of function11 using 

PolyPhen2 scores12 to measure mutation severity. These also showed no deviation from 

random expectation. The observed PolyPhen2 scores clearly deviate from standing variation 
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in the parents (Table 2): Such variation, even the rarest category, has survived selective 

pressure and is not an appropriate control for de novo events.

We observed 3 genes with two de novo mutations: BRCA2 (2 missense), FAT1 (2 missense) 

and KCNMA1 (1 missense, 1 silent). A gene with two or more non-synonymous de novo hits 

across a panel of trios might suggest strong candidacy. However, simulations 

(Supplementary Information) show that two such hits are inadequate to define a gene as a 

conclusive risk factor given the number of observed events in the study.

From analyses of secondary phenotypes (Supplementary Tables 2-3), the most striking result 

is that paternal and maternal age, themselves highly correlated (r2=0.679, P-value<0.0001), 

each strongly predicts the number of de novo events per offspring (paternal age P=0.0013, 

maternal age P=0.000365), consistent with aggregating mutations in germ cells in the 

paternal line13. Consistent with genetic theory, there is an increased rate of de novo mutation 

in female versus male cases (1.214 for females vs. 0.914 for males); however, the difference 

is not significant, perhaps owing to limited sample size. Considering phenotypic correlates, 

we observed no rate difference between subjects with strict autism versus those with a 

broader ASD diagnosis, between positive and negative family history, or any significant 

effect of de novo mutation on verbal, nonverbal or full scale IQ (Supplementary Table 3).

While hundreds of loci are apparently involved in autism4 and de novo mutations therein 

affect ASD risk, modeling of different numbers of risk genes and penetrances 

(Supplementary Information) shows that a model of hundreds of genes with high penetrance 

mutations is excluded by our data; however, more modest contributions of de novo variants 

are not. For example, 10-20% of cases carrying a de novo risk-conferring event and 

conferring ten to twentyfold increased risk, is consistent with these data (Supplementary 

Table 4). Thus, our data are consistent with either chance mutation or a modest role for de 

novo mutations on risk.

We therefore posed two questions of the group of genes harboring de novo functional 

mutations: do the protein products of these genes interact with each other more than 

expected, and are they unusually enriched in, or connected to, prior curated lists of ASD-

implicated genes? Using an in silico approach (DAPPLE)14,15 the protein-protein 

connectivity in the set of 113 genes harboring ‘functional’ de novo mutations was evaluated. 

These analyses (Figure 1) showed significantly greater connectivity amongst the de novo 

identified proteins than would be expected by chance (P<0.001) (Supplementary 

Information).

Querying previously-defined, manually-curated lists of genes6 associated with high risk for 

ASD with and without ID(Supplementary Tables 5), and high risk ID genes (Supplementary 

Tables 6), we asked whether there was significant enrichment for de novo mutations in these 

genes. Five genes with ‘functional’ de novo events were previously associated with ASD 

and/or ID (STXBP1, MEF2C, KIRREL3, RELN and TUBA1A); for four of these genes (all 

but RELN) the prior evidence indicated autosomal dominant inheritance.

We then assessed the average distance (Di, Supplementary Figure 2) of the de novo coding 

variants in brain-expressed genes (see supplement) to the ASD/ID list using a Protein-
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Protein Interaction background network. To enhance power, data from a companion study 

(Sanders et al.) were used, including the observed silent de novo variants and de novo 

variants in unaffected siblings as comparators. The average distance for non-synonymous 

variants was significantly smaller for the case set than the comparator set (3.66±0.42 versus 

3.78±0.59; permutation P=0.033) (Figure 2). Much of this signal comes from 31 synaptic 

genes identified by three large-scale synaptic proteomic studies (Di=3.47±0.46 versus 

3.57±0.60; permutation P=0.084) (Supplemental Figure 3; see also Supplemental Fig. 4 for 

the complete data). Taken in total, these independent gene set analyses, along with the 

modest enrichment of de novo variants over background rates in ASD, indicate that a 

proportion of the de novo events observed in this study likely contribute to autism risk.

Using whole-exome sequencing of autism trios, we demonstrate a rate, functional 

distribution and predicted impact of de novo mutation largely consistent with chance 

mutational processes governed by sequence context. This lack of significant deviation from 

random mutational processes suggests a more limited role for the contribution of de novo 

mutations to ASD pathogenesis than has previously been suggested15, and specifically 

highlights the fact that observing a single de novo mutation, even an apparently ‘severe’ 

LOF allele, is insufficient to implicate a gene as a risk factor. Yet the pathway analyses 

presented here assert that the overall set of genes hit with ‘functional’ de novo mutations are 

not random and are biologically related to each other and to previously identified ASD/ID 

candidate genes. Modeling the de novo mutational process under a range of genetic models 

reveals that some models are inconsistent with the observed data – e.g., one hundred rare, 

fully penetrant Mendelian genes similar to Rett syndrome – while others are not such as 

spontaneous ‘functional’ mutation in a 1,000 genes that would increase risk by ten or 

twentyfold (Supplementary Table 4). Models that fit the data are consistent with the relative 

risks estimated for most de novo CNVs4 and suggest that de novo SNVs, like most CNVs, 

often combine with other risk factors rather than fully cause disease. Furthermore, these 

models suggest that de novo SNVs events will likely explain <5% of the overall variance in 

autism risk (Supplementary Table 4).

Considering the two companion manuscripts, 18 genes with two functional de novo 

mutations are observed in the complete data. Using simulations, 11.91 genes on average 

harbor functional mutations by chance (Supplementary Table 7). Thus, a set of 18 genes 

with two or more hits is not quite significant (p=0.063). Matching loss-of-function variants, 

however, at SCN2A, KATNAL2 and CHD8 (Supplementary Table 7) are unlikely to occur by 

chance because the expected very low rate of de novo nonsense, splice and frameshift 

variants. We evaluated these strong candidates further using exome sequencing on 935 cases 

and 870 controls and at both KATNAL2 and CHD8, three additional LoF mutations were 

observed in cases with none in controls (no additional LoF mutations were seen at SCN2A). 

Using data from more than 5000 individuals in the NHLBI Exome Variant Server as 

additional controls, 3 LoF mutations were seen in KATNAL2 but none again in CHD8, 

making the additional observation of 3 CHD8 LoF mutations in our cases significant 

evidence (p<0.01) of this being a genuine autism susceptibility gene. Not all genes with 

double hits are nearly so promising (Supplementary Information; Supplementary Tables 8-9) 

supporting the estimate above that most such observations are simply chance events. 
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Overall, these data underscore the challenge of establishing individual genes as conclusive 

risk factors for ASD, a challenge that will require larger sample sizes and, likely, deeper 

analytic integration with inherited variation.

Methods (for online version only)

Phenotype assessment

Affected probands were assessed by research-reliable research personnel using Autism 

Diagnostic Interview-Revised (ADI-R) and the Autism Diagnostic Observation Schedule-

Generic (ADOS) and DSM-IV diagnosis of a pervasive developmental disorder was made 

by a clinician. All probands met criteria for autism on the ADI-R and either autism or ASD 

on the ADOS, except for the 3 subjects from AGRE that were not assessed with the ADOS. 

In all 85% of probands were classified with autism on both the ADI-R and ADOS. All 

subjects provided informed consent and the research was approved by institutional human 

subjects board.

Exome sequencing, variant identification, and de novo detection

Exome capture and sequencing was performed at each site using similar methods. Exons 

were captured using the Agilent 38Mb SureSelect v2 (University of Pennsylvania and Broad 

Institute n=118), the NimbleGen Seq Cap EZ SR v2 (Mt Sinai School of Medicine, 

Vanderbilt University n=51), or NimbleGen VCRome 2.1 (Baylor n=6). After capture, 

another round of LM-PCR was performed to increase the quantity of DNA available for 

sequencing. All libraries were sequenced using an IlluminaHiSeq2000.

Sequence processing and variant calling was performed using a similar computational 

workflow at all sites. Data was processed with Picard (http://picard.sourceforge.net/), which 

utilizes base quality-score recalibration and local realignment at known indels8 and BWA7 

for mapping reads to hg19. SNPs were called using GATK8,9 for all trios jointly. The 

variable sites that we have considered in analysis are restricted to those that pass GATK 

standard filters. From this set of variants, we identified putative de novo mutations as sites 

where both parents were homozygous for the reference sequence and the offspring was 

heterozygous and each genotype call was made confidently (see Supplementary 

Information).

Validation of de novo events

Putative de novo events were validated by sequencing the carrier and both parents using 

Sanger sequencing methods (University of Pennsylvania, Mt. Sinai School of Medicine, 

Vanderbilt University, Baylor Medical College) or by Sequenom MALDI-TOF genotyping 

of trios (Broad).

Gene annotation

All identified mutations were then annotated using Refseq hg19. The functional impact of 

variants was assessed for all isoforms of each gene, with the most severe annotation taking 

priority. Splice site variants were identified as occurring within two basepairs of any intron/

exon boundary.
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Expectation of de novo mutation calculation

To calculate the expected de novo rate, we assessed the mutability of all possible 

trinucleotide contexts in the intergenic region of the human genome for variation in two 

fashions: fixed genomic differences compared to chimpanzee and baboon12 and variation 

identified from the 1,000 Genomes project. The overall mutation rate for the exome was 

then determined by summing the probability of mutation for all bases in the exome that were 

captured successfully. We also determined the probability of each class functional mutation 

by summing the annotated variants.

Pathway analyses

We applied DAPPLE14, which uses the InWeb database15, to determine whether there is 

excess protein protein interaction across the genes hit by a functional de novo event. We also 

assessed whether these genes were more closely connected to a list of ASD genes.6

Modeling de novo events

We modeled a Poisson process consistent with the expected distribution defined by the 

mutation model and with the observed data. We varied the fraction of genes that influence 

risk, the probability a variant in a gene would be functional, and the penetrance of functional 

de novo events. We also simulated a random set of de novo events to estimate the probability 

of hitting a gene multiple times.

Association Analysis

We performed association tests using SKAT17, a generalization of C-alpha18. Our primary 

analyses treat case-control data generated at Baylor and Broad separately (23 genes X 2 

sites), but we also performed mega and meta-analyses (23 genes X 2 methods).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Protein-Protein interaction for genes with an observed functional de novo event
Direct protein connections from InWeb, restricting to genes harboring de novo mutations for 

DAPPLE analysis. Two extensive networks are identified, the first centered on SMARCC2 

with 12 connections across 11 genes and the second centered on FN1 with 7 connections 

across 6 genes. The P-value for each gene having as many connections as those observed 

color the nodes of the network.
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Figure 2. Direct and indirect Protein-Protein interaction for genes with a functional de novo 
event and existing ASD/ID genes
PPI network analysis for de novo variants and prior ASD genes (ASD112). Nodes are sized 

based on connectivity. Genes harboring de novo variants (left) and prior ASD genes (right) 

are colored blue with dark blue nodes represent genes that belong to one of these lists and 

are also intermediate proteins. Intermediate proteins (center) are colored in shades of orange 

based on a p-value computed using a proportion test where darker color represents a lower 

p-value. Green edges represent direct connections between genes harboring de novo variants 

(left) and prior ASD genes. All other edges, connecting to intermediate proteins are shown 

in grey.
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Table 1

Distribution of Events Per Family.

Events per
family

All ASD trios
Random

Mut-Exp3exon DN
SNVs

Exp

0 71 69.7 73.2

1 62 64.2 63.8

2 28 29.5 27.8

3 10 9.1 8.1

4 2 2.1 1.8

5 1 0.4 0.3

0.920 0.871

1
exon DN-SNVs include all single nucleotide variants in coding sequence but excludes indels and intronic variants

2
exp is the expected distribution of number of trios with a given event count as determined by the Poisson

3
Random Mut-Exp is the expectation for 175 trios based on the sequence-context mutation rate model M1 (Supplementary Materials) based on the 

count of the number of trios that have at least 10× coverage.
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