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IGF System and Cancer Risk
Insulin-like growth factor (IGF) plays an important role in tissue growth and development.
As such, several studies have demonstrated the association between circulating levels of
IGF-1 and -II and cancer risk. In patients with acromegaly, an endocrine disorder which is
characterized by a hypersecretion of growth hormone (GH) and consequently higher
endogenous IGF, several studies have shown a 2-fold increased risk of gastrointestinal
cancers [1–4]. Other studies have shown a modest association between higher circulating
IGF-1 and -2 levels and an increased risk for prostate, breast, colorectal, and ovarian cancer
[5–11]. However, several other studies do not show a similar increase in cancer risk [12–19].
Exogenous recombinant GH has been proposed as a potential cancer-promoting agent but no
convincing link between cancer risk and its use in children or adults have been identified
[20, 21]. The role of IGF in cancer risk is multifactorial and taken together, the
preponderance of data suggests a slight increased risk of some cancers due to higher activity
of the IGF system. Conversely, patients with congenital deficiencies in IGF-1 have a
protective effect against developing cancer [22].

The IGF System in Cellular Proliferation and Survival
The lifecycle of a normal human cell is tightly regulated by intra- and extracellular signals,
working in concert to appropriately control cellular proliferation, senescence, and apoptosis.
When the sum of growth stimulatory and inhibitory signals favors proliferation, the cell
enters mitosis. For example, circulating IGF-1 and IGF-2 bind to the IGF-1 receptor
(IGF-1R) and trigger a signal transduction cascade that leads to increased proliferation and
enhanced survival of IGF-responsive cells (Figure 1). Such signaling is central to the
processes of oncogenesis. The mitogenic activity of the IGF-1R is mediated through the Ras
and AKT pathways and results in the upregulation of cyclin D1 and its binding partner
CDK4, leading to the phosphorylation of retinoblastoma protein, release of E2F
transcription factor, and expression of downstream target genes like cyclin E [23, 24].
Moreover, IGF-1R activation downregulates cell cycle suppressors p27kip1, p57kip2, and
PTEN [25, 26], indicating multiple pathways are involved.
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In addition to promoting cellular proliferation, the IGF system is a potent pro-survival
stimulus. Apoptosis is the essential process of programed cell death by which normal
embryonic tissue architecture is formed and adult tissues are maintained following cellular
senescence, injury, and hyperplasia. In adults, apoptosis is responsible for the elimination of
senescent mammary epithelial cells during postmenopausal breast tissue involution [27],
cardiac remodeling seen in ischemic cardiomyopathy [28], and the removal of excess lobular
epithelial cells following periodic breast hyperplasia associated with menstruation [27].
However, cancer cells can often evade the normal apoptosis mechanisms and thus evade
programmed cell death. The AKT pathway plays a critical role in apoptosis by inhibiting
pro-apoptotic proteins like BAD [29] and FKHR [30] and activating anti-apoptotic factors
such as NF-kappa B [31] and MDM2 [32]. The importance of AKT in cancer-related IGF
signaling is further exemplified by its role in invasion and metastasis [33]. Taken together,
the IGF-1R provides a growth advantage to IGF responsive cells by the promotion of
cellular proliferation and enhanced survival.

The Insulin Receptor and Hybrid Receptors
The insulin receptor (IR) is a tetrameric receptor consisting of two extracellular alpha and
two intracellular beta subunits with significant over-all homology to the IGF-1R and 84%
homology at tyrosine kinase domains [34]. The identification of two isoforms generated
from the alternative splicing (IR-A) of the full-length transcript (IR-B) results in a 12-amino
difference between the two isoforms [35] and differential expression during mammalian
development. IR-B is the classic form of the IR which is primarily expressed in liver,
muscle, and adipose tissues. It only binds insulin at physiologic concentrations with
predominantly metabolic effects [36, 37]. On the other hand, IR-A is expressed during fetal
development and in cancer cells with the ability to bind insulin as well as IGF-2, resulting in
metabolic and mitogenic effects, respectively [36]. Breast and ovarian tumor cells have
higher IR expression relative to normal epithelial cells [38, 39] and patients with very high
IR expression have worse disease free survival [40].

The significant sequence homology has important implications for IGF-1R function in
general, and oncogenesis in particular. The discovery that some cancers, such as thyroid,
breast, and colon cancer, exhibit a higher relative abundance of IR-A compared to normal
cells provided insight into the intimate association between the insulin and IGF systems [36,
41, 42]. Indeed, the homology between IR and IGF-1R permit the formation hybrid
receptors (Hybrid-Rs), comprised of one alpha/beta monomer of IR and one of IGF-1R, with
the hybrid receptor ligand specificity determined by the IR isoform [43]. For example,
heterodimerization of IGF-1R with IR-A or IR-B gives rise to Hybrid-RA or Hybrid-RB,
respectively. Both receptor hybrids have affinity for IGF-1 and IGF-2, (and to a lesser
extent, insulin for Hybrid-RA) to activate downstream targets leading to cellular
proliferation [44, 45].

The precise role of Hybrid-Rs in oncogenesis is under active investigation. Hybrid-Rs may
increase the functional pool of receptors capable of activating the IGF system and provide
further growth advantages to a subset of cells over-expressing IGF-1R, IR-A, or both.
Hybrid-Rs also have therapeutic implications since novel therapies targeted against the
IGF-1R may have lower efficacy in cancers signaling through IR-A or Hybrid-RA receptors,
especially those with a high Hybrid-R:IGF-1R ratio [46]. Furthermore, hyperinsulinemic
states may directly stimulate IR-A or Hybrid-RA expression and increase the bioavailability
of IGF-1[14, 47]. The role of Hybrid-Rs and IR isoforms in breast and other cancers is an
active area of investigation.
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Signal Transduction Crosstalk
Signaling crosstalk is characterized by the influence of one receptor/signaling system on a
separate receptor/signaling system. There is growing evidence that such crosstalk in cancer
cells has important implications in the efficacy of novel therapeutics. One such crosstalk
pathway occurs between IGF-1R and the erbB family of receptors, which include erbB1
(EGFR) and erbB2 (HER2/neu) (Figure 2). Treatment of breast and ovarian cancer cells
with the duel IGF-1R/IR tyrosine kinase inhibitor (TKI) BMS-536924 caused a reciprocal
upregulation of the erbB family of receptors which conferred resistance to IGF-1R inhibition
[48]. Conversely, treatment of EGFR-dependent, tamoxifen-resistant breast cancer cells with
the EGFR-selective TKI gefitinib led to activated IGF-1R signaling and subsequent
resistance to EGFR inhibition [49]. Similarly, trastuzumab, a monoclonal antibody that
binds HER2, is used to treat HER2-positive breast cancer but resistance is problematic [50]
and in vitro studies with SKBR3 breast cancer cells implicate activated IGF-1R in this
process [51], which is reversed by inhibition of IGF-1R [52]. One mechanism of resistance
to IGF-1R or erbB targeted therapy occurs by the heterodimerization of IGF-1R with erbB
receptors [52, 53], which provides an alternative signaling pathway to activate downstream
mediators of cell proliferation and survival (Figure 2). Another example of crosstalk
involves the estrogen receptor (ER), which is an important therapeutic target in adjuvant
breast cancer treatment. The IGF-1R may contribute to tamoxifen resistance by two possible
mechanisms: 1) IGF-mediated activation of AKT and subsequent estrogen-independent
activation of ER [54] or 2) a direct interaction between ER and IGF-1R [55]. An emerging
body of evidence supports an additional layer of crosstalk involving mammalian target of
rapamycin (mTOR), a downstream effector of AKT with effects on cell proliferation,
survival, and angiogenesis. The interaction of mTOR with either Raptor or Rictor results in
the formation of functionally-distinct mTOR complex 1 (mTORC1) or 2 (mTORC2),
respectively. Activation of mTORC1 leads to S6K1-mediated destabilization of insulin
receptor substrate 1 (IRS1) and subsequent inhibition of IR and IGF-1R signaling [56],
providing a negative feedback loop to downregulate AKT (Figure 1). Conversely, activation
of mTORC2, leads to the upregulation of AKT by the specific phosphorylation of serine 473
[57]. This IGF-1R/AKT/mTOR signaling crosstalk has important therapeutic implications
since rapalogs such as sirolimus, temsirolimus, everolimus, and ridaforolimus preferentially
inhibit mTORC1 and can promote AKT activation by increased mTORC2 activation in
addition to a loss of feedback inhibition [58].

The aforementioned examples of reciprocal crosstalk underscore the complexity of the IGF
system in cancer and the need for multi-pathway targeting. Indeed, concomitant treatment of
ovarian cancer cells with BMS-536924 and BMS-599626, a pan-HER inhibitor,
demonstrated synergistic anti-proliferative activity [48]. Duel therapy is currently being
investigated in clinical trials with IMC-A12 (anti-IGF-IR antibody) and cetuximab(anti-
EGFR antibody) in patients with head and neck cancer and IMC-A12 and lapatinib (tyrosine
kinase inhibitor against HER2) in breast cancer[59]. Although a recent clinical trial
investigating IMC-A12 and cetuximab in colorectal cancer patients did not show a benefit
with IGF-1R inhibition [60], study patients were resistant to prior anti-EGFR therapy and
staining for activated AKT, a marker of EGFR and IGF-1R signaling, did not correlate with
outcome. With respect to mTOR/IGF-1R duel targeted therapy, early results from a phase I
clinical trial evaluating ridaforolimus (small molecule inhibitor of MTOR) and the IGF-1R
antibody dalotozumab demonstrates clinical benefit in 16.1% of patients with advanced
cancer and 21.7% of breast cancer patient [61]. These data suggest multiple pathways are
interconnected and support the argument for customized cancer therapy based on pathway
activation rather than histologic diagnosis alone.
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IGF Binding Proteins
There are six IGF binding proteins (IGFBPs) with high affinity for IGF-1 and IGF-2. Serum
concentrations of IGF are affected primarily by IGFBP3, which is the most abundant
binding protein with the highest affinity for IGF-1 and IGF-2 [62]. Although IGFBPs are
synthesized primarily in the liver, many normal and malignant tissues such as lung, breast,
and ovarian cancers express IGFBPs [63–65]. These molecules are thought to influence
malignancy by several mechanisms. They regulate bioavailability and half-life of IGF-1/2 in
the circulation, and provide a mechanism for transport to target organs. IGFBPs also
modulate the activity of IGF through important interactions with extracellular proteases that
degrade IGFBPs, resulting in the release of ligand and subsequent activation of IGF-1R.
These proteolytic fragments, particularly of IGFBP-5 and -3, may also have ligand-
independent biological activity [66, 67].

The involvement of IGFBPs in cancer varies by the type of malignancy. For example,
IGFBP-2, -3, and -5 are associated with glioblastoma more commonly than other brain
tumors and IGFBP-3 in particular is associated with shorter overall survival [68]. In breast
cancer cells, IGFBP-5 is associated with metastasis [69] and poor prognosis [70]. However,
the specific mechanisms by which IGFBPs affect tumor progression are complex and
published data are sometimes discrepant. For instance, despite the aforementioned
association between IGFBP-5 and metastasis, forced-overexpression of IGFBP-5 in breast
cancer cell lines actually inhibits cell growth [71]. Further studies have determined that the
subcellular localization of IGFBP-5 influences its biological effect. Indeed, cytoplasmic
IGFBP-5 promotes cell proliferation and motility [72] while nuclear IGFBP-5 does not [71].
Interestingly, ligand-independent activity for IGFBP-5 [73] is thought to involve the AKT
pathway with effects on ovarian cancer angiogenesis [74]. IGFBP-2 has also demonstrated
ligand-independent activity, mediated by interactions with cell surface integrins [75, 76].
Another binding protein with ligand-independent activity is IGFBP-4, which physically
interacts with Frz8, a Wnt receptor, in cardiomyocytes and inhibits activation by Wnt3A
ligand [77]. This discovery adds to the complexity of the IGF system and previously-
mentioned pathway crosstalk. However, the impact of IGFBP-4 on Wnt signaling in cancer
biology remains to be characterized.

Specific Cancers
Breast

Breast cancer is the most common malignancy in American women and is the second most
common cause of death due to cancer [78]. The IGF system has a presence in most solid and
hematologic malignancies, including breast cancer. The extent of IGF-1R expression in
breast cancer varies by methodology but may approach 90% of tumours [79]. This presents a
potentially greater opportunity for targeted therapy than HER2, which is present in 20–25%
of all breast cancers. Although the prognostic value of IGF-1R expression is debatable [80,
81], in vitro studies have demonstrated that IGF-1 contributes to breast cancer growth by
promoting cell proliferation and chemotherapy resistance [82, 83]. The role of IGF-1,
IGF-1R, IGFBPs, Hybrid-Rs, and IGF signaling crosstalk in breast cancer are discussed
above. Targeting these crosstalk pathways in breast cancer remains an active area of clinical
investigation.

Sarcomas
Genetic and cytogenetic aberrations are predominate oncogenic forces in sarcoma
development and this may have downstream consequences for the IGF system. For example,
Ewing’s sarcoma (ES) is characterized by a t(11;22) translocation producing the EWSR1-
FLI1 fusion protein, which acts as an aberrant transcription factor leading to the

Weroha and Haluska Page 4

Endocrinol Metab Clin North Am. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



upregulation of downstream targets like c-myc [84], cyclin D1 [85], and PDGF-C [86].
IGF-1R expression is a pre-requisite to EWSR1-FLI1 mediated transformation [87],
required for ES cell survival [88], and attenuates the efficacy of cytotoxic chemotherapy
[89]. Inhibition of the IGF-1R with NVP-AEW541, a small molecule inhibitor, induces cell
cycle arrest and apoptosis in vitro and reduces in vivo growth of ES cells [90]. A phase I
single-agent clinical trial with a fully human IGF-1R monoclonal antibody inhibitor
figitumumab (CP-751,871) demonstrated clinical benefit (objective response or stable
disease) in 50% (n=16) of ES patients [91]. In a follow-up phase II trial with 125 ES patients
with recurrent or refractory disease, objective responses where observed in 14.4% [92]. A
smaller phase II trial with 35 ES or desmoplastic small round cell tumor patients
demonstrated an objective response rate of 6% with single-agent AMG 479 [93]. The
modest clinical responses despite strong pre-clinical data support the contention that patients
should be selected based on a tumor phenotype rather than histologic classification.
Moreover, the activation of parallel but interconnected signal transduction pathways in ES
suggested a potential role for multi-pathway targeting of IGF-1R and mTOR [94–96].

Less is known about the IGF system in other sarcomas but interesting observations have
been made that have not yet been described for carcinomas. For instance, alveolar
rhabdomyosarcoma is a pediatric sarcoma characterized by a t(2;13) translocation that
results in a Pax3–FKHR fusion gene. The Pax3-FKHR fusion protein can transactivate the
IGFR1 gene [97], leading to an overexpression of IGF-1R with growth and survival
advantages that are abrogated by IGF-1R knockdown [98]. In gastrointestinal stromal cell
tumors (GIST), KIT/platelet derived growth factor receptor (PDGFR)-α wildtype tumors are
less responsive to imatinib therapy and pose a therapeutic challenge [99]. This subset of
GIST exhibits IGF1R gene amplified and overexpression that drives cell growth and
survival, suggesting a possible role for IGF targeting [100].

Gliomas
Gliomas are malignant central nervous tumors that include ependymomas, astrocytomas,
oligodendrogliomas, and mixed gliomas. Glioblastoma multiforme (GBM) is the most
common and aggressive subtype of astrocytomas. The primary treatment is surgical
resection followed by chemotherapy and radiation therapy. However, prognosis remains
poor and recurrence is common. Cumulative data indicates an important role for the IGF
system in glioblastoma progression. For example, C6 glioblastoma cells exhibit growth
inhibition when IGF-1R is down regulated in vivo and in vitro [101] and inhibition of
IGF-1R by picropodophyllin(small molecule tyrosine kinase inhibitor) inhibits cell growth
by reduced AKT activation [102]. The pro-survival influence of IGF-1R has been linked to
increased expression of Bcl-2 [103]. GBM is known for its ability to invade the surrounding
brain parenchyma as well as stimulate angiogenesis. The IGF system is implicated in this
process as perivascular tumor cells express higher levels of IGF-1R [104], which is known
to modulate production of VEGF [105]. In addition, treatment of glioblastoma cells with
IGF-1 increases cellular migration [106]. Taken together with the observation that tumor
cells within the margins of infiltration express higher levels of IGF-1R [104], the IGF
system is intimately linked to glioblastoma tumor invasion. Although radiation therapy is
effective in prolonging patient survival, local recurrences may actually be promoted by
radiation therapy through activation of EGFR, IGF-1R, and PDGFR [107, 108], while
inhibition of these pathways increases radiosensitivity [108]. An additional example of
signal transduction crosstalk has been reported in GBM as IGF-1R up-regulation can induce
resistance to EGFR inhibition [109]. Thus, targeting IGF signaling in gliomas may be a
promising anti-cancer strategy.
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Lung Cancer
Lung cancer is the second most common malignancy afflicting American patients. While
platinum-based chemotherapy may provide modest benefit for advanced disease, lung
cancer remains the most common cause of cancer deaths in 2010 [78]. The IGF system has
been implicated in essentially all phases of lung cancer oncogenesis. For instance, high
grade bronchial dysplasia produces greater paracrine and autocrine IGF than benign
bronchial epithelial cells [110], suggesting the IGF system has an early role in lung cancer
development. In addition, non-small cell lung cancer (NSCLC) cells, particularly the
squamous cell subtype, is associated with increased IGF1R gene copy number and mRNA/
protein expression [111], providing a growth and survival advantage to malignant cells and
resistance to chemotherapy [112]. Inhibition of IGF-1R with figitumumab (anti-IGF-IR
antibody) leads to downregulated receptor expression, inhibition of tumor growth [113], and
radiosensitization of cancer cells [114]. Promising preclinical data and a phase I clinical trial
results with figitumumab in advanced cancers [115] led to a phase II trial with combination
therapy in NSCLC [116]. The objective response rate was 54% for all NSCLC subtypes but
reached an impressive 78% in patients with the squamous cell subtype. Although the
subsequent phase III trial with figitumumab as first-line treatment in NSCLC cancer was
greatly anticipated, it was stopped early when interim analysis failed to show a benefit in the
figitumumab arm [117].

Ovarian
Ovarian cancer is the fifth most common cause of death due to cancer in women [78].
Epidemiologic data has linked IGF-1R to high tumor grade and stage, and is associated with
poor survival [118]. Although localized disease is associated with a 93% 5-year survival
rate, 79% of patients are stage III or IV at the time of initial diagnosis [78]. After debulking
surgery and six cycles of platinum-based chemotherapy, 75% of patients will achieve
complete remission but three-quarters of them will relapse within 20 months, on average
[119]. While retreatment with a platinum-based regimen is reasonable after a six month
platinum-free period, resistance is common and may be attributed to increased IGF-1R
expression in ovarian tumor cells [120]. Although primary ovarian tumor cell cultures do not
overexpress IGF, dysregulation of IGF homeostasis by the overexpression of IGFBP-2 in
ovarian cancer cells may sequester and maintain an elevated localized pool of IGF for
activation of IGF-1R [63, 121]. A phase II clinical trial is currently evaluating the efficacy
and tolerability of front-line AMG-479, a fully-human monoclonal antibody against the
IGF-1R, in combination with carboplatin and paclitaxel in advanced stage, optimally-
debulked epithelial ovarian, primary peritoneal, and fallopian tube cancer (TRIO-014).

Conclusions
The IGF system has been implicated in the oncogenesis of essentially all solid and
hematologic malignancies. The central involvement of IGF signaling in tumor cell
proliferation, survival, invasion, and metastasis makes it an attractive therapeutic target.
Importantly, the IGF signaling pathway has also been directly implicated in resistance to
clinically important therapies, including hormonal agents, HER receptor targeting agents,
radiation and cytotoxic chemotherapy. Indeed, several clinical trials are currently evaluating
the efficacy of IGF-1R inhibition to either overcome these resistance mechanisms or directly
induce anti-proliferative effects on tumors dependent on IGF signaling. Current strategies
include monoclonal antibodies directed at IGF-1R, tyrosine kinase inhibitors with activity
against IGF-1R +/− IR and anti-ligand antibodies. The optimal strategy for targeting IGF
signaling in patients with cancer is not clear. The modest benefits reported thus far
underscore the need for a better understanding of IGF signaling, which would enable
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clinicians to identify the subset of patients with the greatest likelihood of attaining benefit
from this targeted approach.
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Figure 1.
Circulating IGF-1/2 is bound to IGF binding proteins and released at the IGF-1R, which is
comprised of an alpha and beta tetrameric receptor. This leads to the activation of Ras and
AKT with subsequent upregulation of genes involved in cell proliferation, survival,
invasion, and angiogenesis. AKT is also an upstream regulator of mTORC1 and downstream
effector of mTORC2. Both mTOR complexes play an important role in positive and
negative feedback on the IGF/AKT signaling pathway.
Legend: Insulin like growth factor (IGF), IGF receptor 1 (IGF-1R), Hybrid receptors
(Hybrid-Rs), insulin receptor substrate 1 (IRS1), mammalian target of rapamycin complex
(mTORC), p70 S6 kinase (S6K1).
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Figure 2.
IGF-1R and EGFR/HER2crosstalk occurs by two main mechanisms. Since both pathways
share a common signal transduction mediator, IRS1, resistance to inhibition of one receptor
pathway can result from activation of IRS1 by the alternate receptor pathway. In addition,
the formation of IGF-1R and EGFR/HER2 heterodimers increases the functional pool of
receptors capable of binding IGF or EGFR/HER2 ligands, thus conferring resistance to
single-agent targeted therapy.
Legend: Insulin like growth factor (IGF), IGF receptor 1 (IGF-1R), Hybrid receptors
(Hybrid-Rs), epidermal growth factor receptor (EGFR), human epidermal growth factor
receptor 2 (HER2), insulin receptor substrate 1 (IRS1), phosphatidylinositol 3-kinase (PI3K)
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