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Abstract

MafA is a strong transactivator of insulin in pancreatic β cells. Elucidating the profile of MafA action in 
organs other than the pancreas is essential. We established an mRNA interference technique that modifies 
the level of target mRNAs in mice in vivo. After rapidly injecting MafA-siRNA, the resulting changes in the 
gene profile were analyzed using a microarray system. Significant suppression of the MafA mRNA levels was 
observed in the pancreas, liver, adipose tissue, and brain of siRNA-injected mice. As we reported previously, 
the down-regulation of insulin mRNA and adipocytokines was observed in the pancreas, and MafA siRNA 
caused alterations in the expressions of genes related to lipid metabolism and cell growth in the liver, and the 
attenuation of cell differentiation in cultured adipocytes. In addition to the effects on these organs, MafA 
expression was immunohistochemically detected in the brain in our preliminary data, and the expression 
level in siRNA-treated mice was significantly suppressed. The expressions of the affected genes were distinct, 
including growth hormone, vasopressin, hypocretin, and pro-melanin-concentrating hormone, were almost 
completely down-regulated (to ~1/100). These results suggested that MafA is likely involved in the regulation 
of hormonal systems related to glucose metabolism, and MafA is likely positioned near the beginning of the 
cascade or may influence the expressions of the above-mentioned genes in coordination with other factors in 
brain tissue. Taken together, the findings in this study suggested that MafA functions as a transcription factor 
with distinct activities in each organ and is cross-linked in several organs. (Int J Biomed Sci 2011; 7 (1): 19-26)
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INTRODUCTION

The large Maf proteins are a family of transcription 
factors characterized by a typical bZip structure, which 
is a motif for protein dimerization and DNA binding. 
These proteins reportedly regulate several distinct devel-
opmental processes, cell differentiation, and the estab-
lishment of cell functions. One of the large Mafs, MafA 
protein, has been established as a strong transactivator of 
insulin in pancreatic β cells (1-4), and MafA reportedly 
regulates developmental processes in the pancreas, cell 
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differentiation, and the establishment of endocrine and 
non-endocrine cell function in coordination with other 
kinds of Mafs (5, 6). On the other hand, Mafs are well 
known to play important roles in a variety of develop-
mental and differentiation processes in many organs, tis-
sues (7), and cells, including the pancreas (8), lens (9), 
myeloma cells (10), and cartilage (11). 

As the role of MafA is not limited to pancreatic β cells, 
we speculated that MafA might be a key molecule in the 
networking of glucose and lipid metabolism (12). On the 
other hand, glucose is essential for energy metabolism in 
brain tissue; thus, MafA may play special roles in the cen-
tral nervous system (13, 14). Since little is known regard-
ing the actions of MafA in the brain, the aim of this study 
was to elucidate the role of MafA in the central nervous 
system, in which glucose is the only source of energy.

MATERIAL AND METHODS

In vivo suppression of MafA mRNA using siRNA:  
Intravenous hydrodynamic method

Animal preparation. Male mice between the ages of 
six to eight weeks were maintained under stable condi-
tions. All the animal procedures were performed in ac-
cordance with the guidelines set by the National Institute 
of Health and the Institutional Animal Care and Use Com-
mittee of Tokyo Women’s Medical University.

MafA siRNA and SiRNA injection
A designed siRNA oligomer constructed in a plasmid 

was purchased from Takara Bio (Takara Bio Co., Japan). 
The target sequence and designed siRNA sequence are 
shown in Table 1.

Anesthetized mice were intravenously injected with 
the siRNA contained in the plasmid using the hydrody-
namic method according to the procedure described by 
Hamar (15). Briefly, immediately after immersing the tail 
in a 55oC warm water bath for 5 seconds to dilate the tail 
veins, siRNA dissolved in TransITR-QR Hydrodynamic 
Delivery Solution (Mirus Bio Corporation, Madison, WI) 
according to the manufacturer’s instructions was rapidly 
injected into the tail vein within 5 seconds. 

DNA microarray analysis
The DNA microarray analysis was performed as de-

scribed previously (16). Briefly, Affymetrix Gene Chip tech-
nology was used as follows. cDNA was synthesized from the 
total RNA using a Gene Chip Expression 3’-Amplification 
Reagents One-Cycle cDNA Synthesis Kit (Affymetrix, San-
ta Clara, CA). The total RNA (8 μg) was annealed to T7-Oli-
go (dT) Primer (50 μM) at 70°C for 10 minutes, and reverse 
transcription was carried out. The reaction mixture was in-
cubated at 16°C for 2 hours, 2 μL of T4 DNA polymerase 
at 5 U/μL was added, and incubation at 16°C was contin-
ued for 5 minutes. After termination, biotin-labeled cRNA 
was synthesized using Gene Chip Expression 3’-Amplifica-
tion Reagents for IVT Labeling (Affymetrix). The reaction 
was allowed to proceed at 37°C for 16 hours in a mixture 
containing template cDNA, RNAase-free water, 10 x IVT 
Labeling Buffer, IVT Labeling NTP Mix, and IVT Label-
ing Enzyme. A 15 μg sample of the fragmented cRNA was 
hybridized to the GeneChip Mouse Genome 430 2.0 Array 
Set (Affymetrix) at 45°C in a rotisserie hybridization oven at 
60 rpm for 16 hours. The probe arrays were exposed to an-
tibody solution (1 x MES solution, 0.005% antiform, 2 mg/
mL acetylated BSA, 0.1 μg/μL normal goat IgG [Sigma, St. 

Table 1. Target sequence and designed siRNA sequence

MafA NM_194350

Target sequence AGCGGGACCCTGTACAAGGA

Sense oligo gtttAGTGGGACTTGTACAGGGAACGTGTGCTGTCCGTTCCTTGTACAGGTCCCGCTTTTTT

Antisense oligo atgcAAAAAAGCGGGACCTGTACCAGGAACGGACAGCACACGTTCCCTGTACAAGTCCCACT

Vector pcPURmU6icassette

Stop siRNA

Sense Oligo GTTTTTTTTTT

Antisense Oligo ATGCAAAAAAA

Primers for real-time PCR

MafA Forward: CCAGCTGGTATCCATGTCC Reverse: TTCTGTTTCAGTCGGATGACC
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Louis, MO], 3 μg/μL goat-anti-streptavidin, and biotinylated 
antibody [Vector Laboratories, Burlingame, CA]) at 35°C for 
5 minutes; after washing and staining, the probe array was 
scanned twice at a 3 μm resolution using a GeneChip System 
confocal scanner (Hewlett-Packard, Santa Clara, CA) con-
trolled by GeneChip 3.1 software (Affymetrix).

Reverse-transcription (RT) and real-time PCR
RNA isolation and real-time PCR were performed as 

previously described (17). Briefly, total RNA was isolated 
from the pancreas, liver, adipose tissue and brain using the 
RNeasy Plus Mini Kit (QIAGEN). Relative quantitation us-
ing the real-time PCR method was performed using SYBR 
Green PCR Reagents and an ABI PRISM 7700 Sequence 
Detection System (PE Applied Biosystems, Foster City, 
CA) according to the manufacturer’s instructions. Reac-
tions were performed using 1.0 µL of RNA at a concentra-
tion of 40 ng/µL in a reaction volume of 25 µL. RT was 
performed at 37°C for 120 minutes, followed by PCR con-
sisting of AmpliTaq activation for 10 minutes at 95°C, then 
40 cycles of heating to 95°C for 15 seconds and cooling to 
60°C for 1 minute. The mRNA levels were normalized to 
the levels of GAPDH mRNA. Specific primers for the real-
time PCR were designed and are summarized in Table 2.

Western blotting
Frozen organs were immersed in a lysis buffer (20 

mM Tris buffer, pH7.5, containing 1 mM phenylmeth-

ylsulfonyl fluoride and 10 µg/mL aprotinin from bo-
vine lung [Wako, Tokyo], 2 mM DL-dithiothreitol, 1% 
polyoxyethylene sorbitan monolaurate, and 1 mM eth-
ylenediamine tetraacetate) and then homogenized on 
ice. After centrifugation at 5000 r.p.m. for 10 minutes, 
20 µg of protein from each sample was suspended in a 
loading buffer, separated on a 10% polyacrylamide gel 
(Readygels J, BIO-RAD, Tokyo, Japan), and electropho-
retically transferred to a nitrocellulose membrane. The 
membranes were blocked with 5% skim milk for 1 hour 
at room temperature. A primary antibody against MafA 
(BL1069; Bethyl Laboratories Inc.) was used at a dilu-
tion of 1:600 and was applied overnight at 4°C. After 
two 10-minute washing steps with washing buffer (0.3% 
Tween20 in PBS), the membrane was incubated with 
horseradish-peroxidase-conjugated immunoglobulins 
(DAKO, Tokyo, Japan) for 1 hour at room temperature, 
then with an ECL western blotting system (Amersham 
Biosciences, Tokyo). Finally, LUMINESCENT IMAGE 
ANALYZER LAS-100plus (FUJI FILM) was exposed to 
the membrane. 

Statistical analysis
All the results are expressed as the means ± S.E.M. 

Differences in the expression levels were analyzed using a 
paired Student t-test with Bonferroni correction, and dif-
ferences were considered significant when the p value was 
<0.05. The experiments were repeated 5 times.

Table 2. Down-regulated and up-regulated genes and their primers for real-time PCR

ACCESSION No. DEFINITION F R

Down-regulation

NM_029971 Mus musculus pro-melanin-concentrating hormone (Pmch), mRNA gccccttctctggaacaata ttggagcctgtgttctttga

NM_009732 Mus musculus arginine vasopressin (Avp), mRNA ccaggatgctcaacactacg ctcttgggcagttctggaag

NM_010410 Mus musculus hypocretin (Hcrt), mRNA ttggaccactgcactgaaga cccagggaacctttgtagaag

BC061215 Mus musculus pro-opiomelanocortin-alpha, mRNA (cDNA clone 
MGC:74362 IMAGE:30253829), complete cds

gtccctccaatcttgtttgc cctgagcgactgtagcagaa

NM_008117 Mus musculus growth hormone (Gh), mRNA catggaattgcttcgcttct caggctgttggtgaaaatcc

Up-regulation

BC024702 Mus musculus transthyretin, mRNA (cDNA clone MGC: 18651 
IMAGE:4192268), complete cds.

ggacaccaaatcgtactggaa agtcgttggctgtgaaaacc

NM_021301 Mus musculus solute carrier family 15 (H+/peptide transporter), 
member 2 (Slc15a2), mRNA

gacattccaaagcgacaaca atcctggtcagtgccttcac

NM_010234 Mus musculus FBJ osteosarcoma oncogene (Fos), mRNA tgccaatctgctgaaagaga atctcctctgggaagccaag

BC024515 Mus musculus gastrin releasing peptide, mRNA (cDNA clone 
MGC:37475 IMAGE:4984025) complete cds

caagggatttgctggacct cccaagtaggctggagactg
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RESULTS

siRNA-induced suppression of MafA in mice 
The MafA mRNA level was significantly suppressed 

in the pancreas, liver and adipose tissue of siRNA-injected 
mice. An almost 60% reduction in MafA expression in 
the pancreas was achieved in vivo using the intravenous 
hydrodynamic method of administering siRNA. The sup-
pressive effect of siRNA was assessed by comparing the 
results with those in the pancreases of mice injected with 
control siRNA. The relative mRNA expression levels were 
determined using the real-time PCR method to compare 
the samples of siRNA and control siRNA. The down-reg-
ulation of MafA mRNA in the liver (55%) and adipose tis-
sue (35%) was also observed using siRNA (Figure 1). 

To confirm the expression and the altered expression lev-
els of MafA in each organ and tissue, western blotting was 
performed using an MafA-specific antibody. As shown in 
representative blots in Figure 1, the changes in the protein 
expression levels paralleled the changes in the mRNA levels. 

MafA expression in the brain 
In addition to the expression levels in peripheral or-

gans, MafA expression was also examined in the central 
nervous system. As shown in Figure 2, the expression 
level of MafA mRNA in the brain was 20 times that in the 
pancreas, as assessed using real-time PCR. 

The expression level of MafA mRNA in siRNA-treat-
ed mice was approximately 60% lower than that of mRNA 
in stop-siRNA-treated mice. A representative western 
blot analysis was performed to confirm the real-time 
PCR results. Figure 3 shows the mRNA expression level 
and a representative blot, demonstrating that the mRNA 
and protein expressions of MafA were both significantly 
down-regulated by the siRNA. 

Changes in the gene profile of the brain after treatment 
with MafA siRNA, as determined using a microarray 
analysis

The gene profile of siRNA-treated mice was analyzed 
at 24 hours after injection using the hydrodynamic meth-
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Figure 1. Suppression of MafA in mice using siRNA. SiRNA 
significantly suppressed MafA mRNA; representative western 
blots are shown for the a) pancreas, b) liver, and c) adipose tissue.
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Figure 2. Expression level of MafA mRNA in the brain. The 
expression level of MafA mRNA in the brain was 20 times that of 
MafA mRNA in the pancreas, as assessed using real-time PCR.
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Figure 3. Expression level of mRNA and a representative blot 
in the brain tissue. The mRNA and protein expression levels of 
MafA were significantly down-regulated by the siRNA.
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od. The MafA and insulin mRNA levels in the pancreases 
of these mice were suppressed by 30%, compared with the 
stop-siRNA-treated mice.

The gene expression profiles of the brain in MafA-
siRNA-treated mice were analyzed using the microar-
ray method and compared with those of control-siRNA-
treated mice. The expression levels of several genes were 
altered: 20 genes were up-regulated, and 15 genes were 
down-regulated. Genes with an expression level altered 
by more than 50% were selected for a detailed analy-
sis. We performed real-time PCR with specific primers 
to confirm and observe the relative changes in the ex-
pression levels of these genes (listed in Table 2). Pro-
melanin-concentrating hormone, arginine vasopressin, 
hypocretin, pro- opiomelanocortin- alpha and growth 
hormone were down-regulated (Figure 4), while trans-
thyretin, solute carrier family 15, FBJ osteosarcoma on-
cogene and gastrin-releasing peptide were up-regulated 

(Figure 5). The affected gene expression profiles were 
distinct from those in other organs and tissues, and sev-
eral genes were almost completely down-regulated in 
the brain tissue.

DISCUSSION

This study examined MafA-related gene expression 
in vivo in mouse organs using RNA interference and the 
hydrodynamic method. We used in vivo siRNA injection 
and observed a successful targeted gene suppression in 
the pancreas, liver, adipose tissue and brain. We used a 
siRNA-expressing plasmid DNA (pDNA) instead of the 
oligonucleotide form of siRNA with the aim of achieving 
a longer lasting suppression of the mRNA (18). The degree 
of suppression was dependent on the dose of siRNA-ex-
pressing pDNA, and the reduction in transgene expression 
became apparent 1 day after the injection.
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Figure 4. Genes with down-regulated expression levels in the brain tissue. Real-time PCR with specific primers was performed, and the 
relative changes in the expression levels of the down-regulated genes are shown.
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In our previous study, we showed that the suppres-
sion of MafA mRNA expression in the pancreas in vivo 
induced the down-regulation of gene expression of pan-
creatic hormones as well as adipocytokines (adipsin and 
adiponectin) (19). MafA is closely related to pancreatic 
β cell differentiation and normal function, and several 
recent reports have revealed a role of MafA in the final 
differentiation or replication of β cells (12, 20). In ad-
dition to its effects on β cells, MafA may be involved 
in adipocyte differentiation and the regulation of lipid 
metabolism through the adipocytokine network in the 
pancreas. We have shown in a previous study that MafA 
interference induced the down-regulation of adiponectin 
and adipsin (19). Adiponectin has recently been reported 
to exert insulin-sensitizing, anti-atherogenic, and anti-
inflammatory actions but does not affect insulin secre-
tory function (21). Although the precise mechanism and 
cross-linking behavior were not clarified in this study, 
Maf-regulated pancreatic endocrine function appears to 
affect the adipocytokine network (22, 23). In the liver, 

MafA mRNA suppression revealed that the expressions 
of genes related to lipid metabolism or cell growth were 
altered (data not shown). Taken together, these findings 
suggest that mechanisms allowing cross talk with distant 
organs may exist, coordinating a variety of biological 
processes including energy metabolism, the inflamma-
tory cascade, and insulin-stimulated secretion.

Thus, we focused on the changes in the gene profile in 
the central nervous system, since the MafA mRNA level 
was simultaneously and significantly down-regulated in 
the brain tissue using our MafA siRNA technique. The 
results of the affected gene expressions in the brain tis-
sue were distinct, comparing with those for other organs 
and tissues, in that several genes were almost completely 
down-regulated (Figure 4). These genes are related to food 
consumption or metabolism. For example, growth hor-
mone is a well-known hormone regulating growth and de-
velopment that has an anti-insulinergic activity. Arginine 
vasopressin regulates urine osmolarity as well as social 
behavior, pairing, brain edema, and low anxiety-related 
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behavior. Moreover, pro-melanin-concentrating hormone 
(MCH) is involved in body weight regulation (24). The 
hypothalamic expression of MHC mRNA is upregulated 
during starvation in mice. MHC overexpression leads to 
obesity and an increased susceptibility to high-fat feeding, 
while the ablation of MCH has been reported to promote 
fat loss mainly by increasing energy expenditure (25, 26). 
Orexin exerts essential functions as a regulator of behav-
ioral arousal, sleep and wakefulness (27). Orexin may have 
a role in the brain-gut network of orexin-containing cells 
that appear to play a role in the acute regulation of energy 
homeostasis (28). Pro-opiomelanocortin-alpha (alpha-me-
lanocyte stimulating hormone) is a tridecapeptide cleaved 
from pro-opiomelanocortin that acts to inhibit food intake. 

On the other hand, the up-regulation of four genes was 
confirmed using RT-PCR, although the magnitude of the 
changes was not as prominent as that for the down-regu-
lated genes. Transthyretin (TTR), which inhibits the ag-
gregation of amyloid-beta, is a serum and cerebrospinal 
fluid carrier of the thyroid hormone thyroxine (T4) and 
retinol (29). Slc15a2 acts as a high-affinity proton-depen-
dent peptide transporter that may transport peptides from 
the cerebrospinal fluid to the blood (30). FBJ osteosarcoma 
oncogene is an immediate early gene encoding a nuclear 
protein involved in signal transduction. Gastrin-releasing 
peptide, also known as GRP, is an important regulatory 
molecule that has been implicated in a number of physi-
ological and pathophysiological processes in humans. 
These smaller peptides regulate numerous functions of the 
gastrointestinal and central nervous systems, including 
the release of gastrointestinal hormones, smooth muscle 
cell contraction, and epithelial cell proliferation. The pre-
cise relationship or significance of MafA linking all these 
genes cannot be discussed here, but the characteristics of 
all these genes are closely related to nutrition, energy bal-
ance and feeding behavior. 

These results suggested that MafA is likely involved in 
the regulation of hormonal systems related to glucose me-
tabolism, in which regulation by MafA likely occurs near 
the beginning of the cascade or acts directly on the expres-
sion of these genes in coordination with other factors in 
the brain tissue. On the other hand, glucose is essential 
for energy metabolism in brain tissue; thus, Maf is likely 
involved in the formation of a network or the mediation 
of cross-talk among multiple organs, including the central 
nervous system, with regard to glucose, lipid, and energy 
balance. Furthermore, MafA acts as a switch for the ex-
pression of related genes; consequently, the expression of 
each gene and its intensity during the time course should 

be monitored. The Maf family, especially MafA, plays di-
verse roles as transcriptional factors in the establishment 
of energy balance in peripheral organs, such as the pan-
creas, liver, and adipose tissue. Finally, MafA is likely to 
play potential roles in immune reactions, inflammation, 
development, and regeneration, triggering rapid changes 
in direction mediated by alterations in gene profiling. 
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