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Abstract

We live in an era of abundant data. This has necessitated the development of new and innovative statistical algorithms to
get the most from experimental data. For example, faster algorithms make practical the analysis of larger genomic data sets,
allowing us to extend the utility of cutting-edge statistical methods. We present a randomised algorithm that accelerates
the clustering of time series data using the Bayesian Hierarchical Clustering (BHC) statistical method. BHC is a general
method for clustering any discretely sampled time series data. In this paper we focus on a particular application to
microarray gene expression data. We define and analyse the randomised algorithm, before presenting results on both
synthetic and real biological data sets. We show that the randomised algorithm leads to substantial gains in speed with
minimal loss in clustering quality. The randomised time series BHC algorithm is available as part of the R package BHC,
which is available for download from Bioconductor (version 2.10 and above) via http://bioconductor.org/packages/2.10/
bioc/html/BHC.html. We have also made available a set of R scripts which can be used to reproduce the analyses carried out
in this paper. These are available from the following URL. https://sites.google.com/site/randomisedbhc/.
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Introduction

Many scientific disciplines are becoming data intensive. These

subjects require the development of new and innovative statistical

algorithms to fully utilise these data. Time series clustering

methods in particular have become popular in many disciplines

such as clustering stocks with different price dynamics in finance

[1], clustering regions with different growth patterns [2] or signal

clustering [3].

Molecular biology is one such subject. New and increasingly

affordable measurement technologies such as microarrays have led

to an explosion of high-quality data for transcriptomics, proteo-

mics and metabolomics. These data are generally high-dimen-

sional and are often time-courses rather than single time point

measurements.

It is well-established that clustering genes on the basis of

expression time series profiles can identify genes that are likely to

be co-regulated by the same transcription factors [4]. There have

been a number of approaches developed to clustering time series,

for example using finite or infinite hidden Markov models [5,6].

Another popular approach is the use of splines as basis functions

[7–10]. [11] also use Fourier series as basis functions. A number of

additional methods for time series data analysis have been

reviewed by [12].

These statistical methods often provide superior results to

standard clustering algorithms, at the cost of a much greater

computational load. This limits the size of data set to which a

given method can be applied in a given fixed time frame. Fast

implementations of the best statistical methods are therefore highly

valuable.

The Bayesian Hierarchical Clustering (BHC) algorithm has

proven a highly successful tool for the clustering of microarray

data [13–15]. The time series BHC method uses Gaussian

processes to model time series in a flexible way, making the

method highly adaptive and able to handle a wide range of

structure in the data.

The principal downside of the BHC algorithm is its run-time, in

particular its scaling with the number of items clustered. This can

be addressed via randomised algorithms [16], a class of techniques that

can be highly powerful in this regard. Randomised algorithms

employ a degree of randomness as part of their logic, aiming to

achieve good average case performance with high probability.

Because the requirement for guaranteeing a certain (e.g. optimal)

result is relaxed, it is often possible to obtain significantly improved

performance as a result.

In this paper, we apply the approach of [17] to create a

randomised BHC algorithm for clustering microarray time series.

This allows much larger time series data sets to be analysed in a
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given amount of time, substantially extending the utility of the time

series BHC method.

Results

Synthetic Data Results
To demonstrate the effectiveness of the randomised BHC

algorithm, we test its performance on a realistic synthetic data set.

We use synthetic data constructed from several realisations of the

S. cerevisiae synthetic data generated in [15]. Using the fact that

Gaussian processes are generative models, we draw random

realisations from the BHC model obtained on a 169-gene subset of

the cell cycle gene expression data of [18], to give a total of 1000

genes, spread across 13 distinct clusters.

Given that for these synthetic data we know the ground truth

clustering partition, we use the adjusted Rand index as our

performance metric [19].

Figure 1 shows how the adjusted Rand index (averaged over

runs) varies with the randomised algorithm parameter, m. For

mv500, there is some loss in accuracy performance; however for

mw500, the adjusted Rand index is approximately that of the

greedy algorithm.

Figure 2 shows the corresponding run-time performance. As

expected, the algorithm is approximately linear in m and a

significant speed-up can be obtained over the greedy algorithm.

For these synthetic data, one could therefore pick m~500 and get

approximately the same performance as for the greedy algorithm,

but with more than a |2:5 speed-up. And if some performance

drop-off was acceptable, as much as an order of magnitude

improvement is possible. We note that such a run takes only

approximately 5 hours to complete on a single node 2.40 GHz

Intel Xeon CPU.

We also consider how the run-time varies as a function of the

total number of genes analysed, n. Figure 3 shows this variation for

several different m values. Figure 4 shows the same information,

expressed a a speed-up over the greedy algorithm.

We note an interesting effect for the lowest value of m (m~10)

in Figure 1. A significant part of the performance degradation for

lower m values in Figure 1 comes from the randomised algorithm

over-estimating the number of clusters (these being synthetic data,

we know the ground truth number of clusters). Investigation of the

m~10 point shows that this effect is lessened for the synthetic data

for small m. We believe that this is because for small numbers of

data items, the inferred noise level is more weakly constrained.

This in turn allows for clusters with higher noise levels, meaning

the algorithm can explain the data using a smaller number of noisy

clusters.

Microarray Results
It is also important to validate the randomised algorithm on real

microarray data. To do this, we use a subset of the data of [18],

selecting genes that have a KEGG pathway annotation, using the

version of the KEGG database to match that used in [20]. This

consists of yeast cell cycle microarray time series for 1165 genes,

measured at 17 time points.

As a performance metric, we choose the Biological Homoge-

neity Index (BHI) [21], as implemented in the R package clValid

[22]. The BHI metric scores a clustering partition between 0 and

1, with higher scores assigned to more biologically homogeneous

partitions with respect to a reference annotation set. This has

proven to be an effective metric for measuring the performance of

microarray-based gene clustering [14,15].

Figure 5 shows the BHI scores (averaged over 10 runs) as a

function of the randomised-algorithm parameter, m. The BHI

scores show very little variation for mw100, showing that the

randomised algorithm is highly robust, in this case, to choice of m.

There is typically a small drop in performance relative to the

greedy algorithm.

Figure 1. Adjusted Rand index scores for different values of m, analysing the synthetic data set. Each point is the average of 10 runs,
with the error bars denoting the standard error on the mean. The horizontal dashed line shows the result for the full BHC method.
doi:10.1371/journal.pone.0059795.g001
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Figure 6 shows the corresponding run-times. As with the

synthetic data, we see the expected O(m) scaling. We note that

here the overhead of the randomised algorithm means that for

mw600 the greedy algorithm is actually faster. However, the BHI

results in Figure 5 show that we could set m~200 and gain almost

a factor of 3 in speed while incurring only a minimal loss of

performance. We note that such a run takes only approximately 2

hours to complete on a single node 2.40 GHz Intel Xeon CPU.

Figure 2. Run-times for different values of m, analysing the synthetic data set. Each point is the average of 10 runs, with the error bars
denoting the standard error on the mean. The horizontal dashed line shows the result for the full BHC method.
doi:10.1371/journal.pone.0059795.g002

Figure 3. Run-time as a function of the number of genes, n, using (subsets of) the synthetic data. Shown are the results for m~100 (red),
m~200 (green) and m~300 (blue), as well as for the full BHC method (black).
doi:10.1371/journal.pone.0059795.g003

Clustering Time Series with a Randomised Algorithm
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Figure 4. Speed up factor as a function of the number of genes, n, relative to the full BHC method, using (subsets of) the synthetic
data. Shown are the results for m~100 (red), m~200 (green) and m~300 (blue). The horizontal dashed line shows the full BHC result.
doi:10.1371/journal.pone.0059795.g004

Figure 5. BHI scores for difference values of m, analysing the yeast microarray data set. Each point is the average of 10 runs, with the error
bars denoting the standard error on the mean. The horizontal dashed line shows the results for the full BHC method. Shown are the results for the
different gene ontologies, Biological Process (red), Molecular Function (green), Cellular Component (blue) and the logical-OR of all three (black). The
BHI scores were all generated using the org.Sc.sgd.db annotation R package.
doi:10.1371/journal.pone.0059795.g005
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We note an interesting difference between Figures 2 and 6 in

run time, relative to the greedy BHC algorithm. Because the

number of genes is similar in both cases, one might expect the

performance relative to the greedy algorithm to be similar.

However (as is shown in these figures) the efficiency of the

randomised BHC algorithm depends on how balanced (or

otherwise) the dendrogram is. For example, if many levels of the

dendrogram split into subsets of very different sizes (one big, one

small), the randomised algorithm may have to go through many

iterations in order to define the entire dendrogram. The run time

is therefore dependent not only on the number of genes and time

points, but also on the underlying clustering structure in the data.

Essentially, unbalanced dendrograms make the randomised

algorithm less efficient.

We also note that for m values close to the actual number of

genes, it is a general feature that randomised BHC will tend to be

slower than the greedy algorithm. This is because in this case, the

randomised algorithm has to perform a greedy run with almost the

entire set of genes to define the top branching of the dendrogram,

and then assign all the genes to one of the two branches and run

the greedy algorithm again for each of these subsets.

Figures 2 and 6 show an increased variance in the run time for

mw600. We believe this effect is due to the fact that for higher

âJ,mâJTM values, the run time is more likely to be dominated

by a single run of the greedy algorithm for DsubsetDvm items. This

will make the run time very sensitive to DsubsetD, which will be

affected by the randomisation of the overall algorithm.

Discussion

We have presented a randomised algorithm for the BHC

clustering method. The randomised algorithm is statistically well-

motivated and leads to a number of concrete conclusions.

N The randomised BHC algorithm can be used to obtain a

substantial speed-up over the greedy BHC algorithm.

N Substantial speed-up can be obtained at only small cost to the

statistical performance of the method.

N The overall computational complexity of the randomised BHC

algorithm is O(mn log n).

The randomised BHC time series algorithm can therefore be

used on data sets of well over 1000 genes.

Use of the randomised BHC algorithm requires the user to set a

value of m. On the basis of the analyses presented in this paper, we

recommend that a value of m in the range 100{200 is reasonable,

giving significant speed-up with minimal cost in terms of statistical

performance.

The randomised time series BHC algorithm is available as part

of the R package BHC, which is available for download from

Bioconductor (version 2.10 and above) via http://bioconductor.

org/packages/2.10/bioc/html/BHC.html.

We have also made available a set of R scripts which can be

used to reproduce the analyses carried out in this paper. These are

available from the following URL. https://sites.google.com/site/

randomisedbhc/.

Methods

In this section, we provide a mathematical overview of the time

series BHC algorithm. Greater detail can be found in [15]. time

series BHC combines the BHC clustering algorithm, coupled with

a Gaussian process data model to provide a flexible, generative

representation of microarray time series. Here we replace the

standard (greedy) BHC algorithm with a randomised algorithm,

improving the computational complexity of the method and hence

its run time for scientifically-useful numbers of genes.

Figure 6. Run-times for different values of m, analysing the yeast microarray data set. Each point is the average of 10 runs, with the error
bars denoting the standard error on the mean. The horizontal dashed line shows the results for the full BHC method.
doi:10.1371/journal.pone.0059795.g006
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BHC Algorithm
The BHC algorithm [13–15,23] performs agglomerative

hierarchical clustering in a Bayesian setting. In agglomerative

clustering algorithms, each gene begins in its own cluster and at

each stage the two most similar clusters are merged. BHC uses a

model-based criterion to do this, also learning the most likely

Figure 7. Flow chart showing the randomised BHC algorithm. The main loop is the randomised part of the algorithm, which is used
recursively until the remaining gene subsets are small enough that it uses the greedy version of BHC to complete the tree and then terminates.
doi:10.1371/journal.pone.0059795.g007
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number of clusters given the data (something which many

clustering methods are unable to do in a principled way). We

note that the BHC algorithm can be interpreted as a fast

approximate inference method for a Dirichlet Process Model

(DPM) [13].

The prior probability, pk, that a given pair of clusters, C1 and

C2, should be merged is defined by the DPM and is determined

solely by the concentration hyperparameter for the DPM and the

number of genes currently in each partition of the clustering.

Bayes’ rule is then used to find the posterior probability, rk, that

the pair of clusters should be merged,

rk~
pkP(yDHk

1 )

P(yDTk)
, ð1Þ

where y~fy1, . . . ,yNg is the set of N data points contained in

clusters C1 and C2. P(yDHk
1 ) is the marginal likelihood of the data

given the hypothesis, Hk
1 , that the data y belong to a single cluster

and requires the specification of a likelihood function, f , as the

probabilistic model generating the observed data, y. P(yDTk) is the

probability that the data could be partitioned in any way which is

consistent with the order of assembly of the current partition and is

defined recursively,

P(yDTk)~pkP(yDHk
1)z(1{pk)P(yDTi)P(yDTj), ð2Þ

where Ti and Tj are previously merged clusters containing subsets

of the data in y.

When rk is greater than 0.5, it is more likely that the data points

contained in the clusters C1 and C2 were generated from the same

underlying function, f , than that the data points should belong to

two or more clusters. When rk is less than 0.5 for all remaining

pairs of clusters, the number of clusters and partitions best

described by the data has been found.

For the purposes of the BHC algorithm, a complete dendro-

gram is constructed, with at each step the most likely merger being

made. This allows us to see the log-probability of mergers in the

whole dendrogram, even when this value is very small. To

determine the likely number of clusters, given the data, we then

cut the dendrogram wherever the probability of merger falls below

0.5 (i.e. non-merger is more likely).

As described in [13], the pk are dependent on a hyperparameter

for the mixture model, a. As in previous work on BHC, we set

a~0:001 as a fixed value. This has the effect of setting a prior

assumption of only weak clustering. One could learn this

parameter as part of the BHC algorithm; we choose to not do

this as it will substantially increase the run time of the algorithm.

The BHC algorithm provides a lower bound of the DP marginal

likelihood, as shown in [13]. For the randomised algorithm, we

note that the lower bound on the DP marginal likelihood is

effectively determined using a subset of only m data items. These

lower bounds are used in the usual way to optimise hyperpara-

meters for each potential merger. One could attempt in principle

to compute the lower bound using all n data items. However, this

will be computationally intensive and so we do not consider it in

this paper.

Gaussian Process Regression
Gaussian processes define priors over the space of functions,

making them highly suited for use as non-linear regression models.

This is highly valuable for microarray time series [24–27], where a

wide range of functional forms can be expected. In essence,

Gaussian Process Regression (GPR) allows us to minimise the

assumptions we must make as to the underlying structure in our

time series data.

For the time series BHC model, we model an observation at

time ti as y(ti)~f (ti)ze. For each cluster, we assume the latent

function f is drawn from a Gaussian process with covariance

function S, defined by hyperparameters, hS. We also assume iid

Gaussian noise, N(0,s2
e ).

Let y~½y1,1 . . . yG,t� be the N~G|T observations in a cluster

of G genes, where the fyg,tg are time series of f1, . . . ,Tg time

points. Each gene is normalised to have mean 0 and standard

deviation 1 across time points. The prior of f is given for fixed

values of hS, such that P(f DhS)~N(0,S). It follows that the

likelihood function for f is P(yDf ,s2
e )~N(f ,s2

e I), where I is the

N|N identity matrix. The marginal likelihood of the data, y, is

then:

P(yDhS,s2
e )~N(0,Szs2

e I) ð3Þ

~(2p)
{N

2 DK D{
1
2exp({

1

2
yT (K){1y) ð4Þ

where K~Szs2
e I is the covariance function for y.

Time series BHC implements either the squared exponential or

cubic spline covariance functions. In this paper, we restrict our

attention to the default choice of squared exponential covariance:

KSE(ti,tj)~s2
f exp({

(ti{tj)
2

2l2
)

" #
zs2

e dij ð5Þ

where dij is the Kronecker delta function and ti and tj are two time

points for f . s2
f is the signal variance parameter for the covariance

function and l is the length-scale parameter.

Randomised BHC Algorithm
To speed up the time series BHC, we implement the

randomised BHC algorithm of [17] (specifically, algorithm 1).

The key insight from which we hope to benefit is that the standard,

greedy BHC algorithm is dominated by the computation of

merges at the lowest level of the tree. Therefore, if we can reduce

this load in a sensible way, it may be possible to produce a

substantially faster algorithm.

Throughout this paper we will refer to the top of the

dendrogram. This is the highest level of the dendrogram, where

the whole set of genes is split into two subsets.

For reasonably balanced trees, the top levels should be well-

defined even using only a random subset of the genes. From this

idea, we can define the following randomised algorithm.

N Select a subset of m%n genes.

N Run BHC on the subset of m genes.

N Filter the remaining (n{m) genes through the top level of the

tree, computing merge probabilities between each individual

gene and the two subsets of m to decide to which branch the

gene belongs.

N Including the original m genes, we have now subdivided all

genes on the basis of the top level branch of the tree.

N Now recurse for the gene subsets in each branch, until each

subset size is ƒm, at which point use the standard BHC

algorithm to complete the lower levels of the tree.

Clustering Time Series with a Randomised Algorithm
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In effect, we are using estimates of the higher levels of the tree to

subdivide the genes so that it is not necessary to compute many of

the potential low-level merge probabilities. Figure 7 shows a flow

chart describing the algorithm.

Setting the Hyperparameters
The covariance function of the Gaussian processes used in this

paper are characterised by a small number of hyperparameters.

These hyperparameters are learned for each potential merger

using the BFGS quasi-Newton method [28].

This merge-by-merge optimisation allows each cluster to have

different hyperparameter values, allowing for example for clusters

with different intrinsic noise levels and time series with different

characteristic length scales.

Utilising the Covariance Matrix Block Structure
We assume in this paper that each time series is sampled at the

same set of time points. This leads to a block structure in the

covariance matrix, which can be utilised to greatly accelerate the

computation of the Gaussian process marginal likelihood.

The computational complexity of BHC is dominated by

inversion of the covariance matrix. Considering the case of a

group of k genes, each sampled at the same T time points, the

naive approach to matrix inversion would require us to invert a

kT|kT matrix, which is an O(k3T3) operation. However, we

can instead use block matrix pseudoinversion, which recursively

reduces the block size to one, at which point the remaining

inversion is an O(T3) operation.

We also note that this is equivalent to a Bayesian analysis using

a standard multivariate Gaussian. Indeed, considering the task in

this way may be a simpler way of doing so and is certainly a useful

way of gaining additional insights into the workings of the model.

Computational Complexity
When proposed merges have constant cost (the case considered

by [17]), the standard greedy BHC algorithm has O(n2)
computational complexity.

For the time series BHC algorithm however, the merges do not

have have constant cost. For a given node, we are merging k gene

time series, each of length T . We therefore have to consider a

(kT)|(kT) covariance matrix, which we must invert. As noted in

[15], this matrix is actually a block matrix consisting of k|k

blocks, which means we can invert it in O(kT3) operations.

Because k will be as large as n for the merges closer to the root

node of the tree, this gives the greedy time series BHC algorithm a

worst-case computational complexity of O(n3T3).
The randomised algorithm for case of constant cost merges has

O(n log n) complexity [17]). Heller and Ghahramani show that,

for reasonably balanced trees, the complexity is dominated by the

filtering step. Each of the O( log n) filtering steps is O(n), resulting

in the overall O(n log n) complexity. For the time series BHC

algorithm, the filtering step is O(nmT3), because of the additional

cost of merging time series clusters. As in the original analysis there

will be O( log n) filtering steps, giving an overall computational

complexity for the randomised version of time series BHC of

O(mT3n log n).
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