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Abstract

Next-generation sequencing (NGS) technologies have been widely used in life sciences. However, several kinds of
sequencing artifacts, including low-quality reads and contaminating reads, were found to be quite common in raw
sequencing data, which compromise downstream analysis. Therefore, quality control (QC) is essential for raw NGS data.
However, although a few NGS data quality control tools are publicly available, there are two limitations: First, the processing
speed could not cope with the rapid increase of large data volume. Second, with respect to removing the contaminating
reads, none of them could identify contaminating sources de novo, and they rely heavily on prior information of the
contaminating species, which is usually not available in advance. Here we report QC-Chain, a fast, accurate and holistic NGS
data quality-control method. The tool synergeticly comprised of user-friendly tools for (1) quality assessment and trimming
of raw reads using Parallel-QC, a fast read processing tool; (2) identification, quantification and filtration of unknown
contamination to get high-quality clean reads. It was optimized based on parallel computation, so the processing speed is
significantly higher than other QC methods. Experiments on simulated and real NGS data have shown that reads with low
sequencing quality could be identified and filtered. Possible contaminating sources could be identified and quantified de
novo, accurately and quickly. Comparison between raw reads and processed reads also showed that subsequent analyses
(genome assembly, gene prediction, gene annotation, etc.) results based on processed reads improved significantly in
completeness and accuracy. As regard to processing speed, QC-Chain achieves 7–8 time speed-up based on parallel
computation as compared to traditional methods. Therefore, QC-Chain is a fast and useful quality control tool for read
quality process and de novo contamination filtration of NGS reads, which could significantly facilitate downstream analysis.
QC-Chain is publicly available at: http://www.computationalbioenergy.org/qc-chain.html.
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Introduction

Next-generation sequencing (NGS) technologies, which could

produce numerous sequences (reads) in a single experiment in

a relatively short time, have been widely applied in life sciences.

However, several kinds of sequencing artifacts, which could

introduce serious negative impact on downstream analyses,

commonly exist in raw reads, regardless of the sequencing

platform. Generally, these sequence artifacts could be classified

into two groups:

(1) Low sequencing-quality reads, including low quality bases/

reads, duplicates, tag sequences, etc. In NGS technology, the

qualities of bases on most sequencing platforms will degrade

as the run progresses, so it is common to see the quality of

base calls falling towards the end of a read. Other kinds of

low-quality reads, such as duplicates and tag sequences (such

as adaptor and barcode) are introduced by PCR amplification

bias and errors during library construction. Although rigorous

quality filtration and trimming on Illumina data may remove

a large proportion of the reads, it greatly improves the

accuracy of subsequent analysis results [1]. For the sequencing

quality problem, other than the QC pipeline supplied by the

sequencing instrument manufactures, a few online/standalone

tools are publicly available, such as PRINSEQ [2], FASTX-

Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) and NGS-

QC Toolkit [3]. These tools have specific features and were

developed based on different concepts and algorithms, yet are

not sufficiently optimized on their own.

(2) Contaminating reads from known and unknown species other

than sequencing target. The contamination in the sequencing

dataset is also of frequent occurrence, which can be caused by

artificial experiment fault during the sample preparation,

library construction and other experiment steps. Besides, the

DNA/RNA sample itself may contain some nucleotides from

unexpected species, which are hard to be excluded by

biological experiments. For example, we purified the cells of

several algae species for genomic sequencing in our

laboratory, but still detected various bacteria sequences,

although in low amount (1%–5%), in its NGS dataset

(unpublished data). The existence of these contaminating

reads will affect the downstream analyses seriously and may
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lead to erroneous results. However, since the contamination

situation is complex and divergent for different samples, few

strategies and specialized tools are available to tell the users

whether there is any contamination (or if yes, what the

contaminations are) in a comprehensive, quick and precise

way. Consequently, the assessment and removal of the

undesirable reads can become highly difficult. Currently,

most of the published methods are based on identification and

removal of known contaminating sources by optimized

alignment method, such as DeconSeq [4] or common

alignment software, such as Bowtie [5]. However, most of

them rely heavily on known information of the possible

contaminating species, but are very limited if the contami-

nating species is unknown.

Currently, few QC tools provide fast and holistic solutions for

both of the above two quality control problems on NGS data. As

an essential first step before downstream analyses of NGS data, the

QC approach should be able to detect and process both low

sequencing-quality reads and contaminating reads.

Another concern of QC processing is the speed. Since the NGS

data is usually as huge as up to tens of gigabases, the data

processing is both data- and computation- intensive, which

requires extensive computational power. Most of the current

NGS data QC tools were designed to be used with only single

thread, which could not meet the computational requirements of

the rapidly increasing number of large-scale sequencing projects.

Therefore, holistic and high-performance computational methods

are needed for efficient QC analyses.

In this study, we developed the QC-Chain program for NGS

data quality assessment and filtration. This program is comprised

of two synergetic parts: First, a read quality processing tool,

Parallel-QC, was used to perform a diverse reads trimming and

filtration process. Second, contaminating reads are qualitatively

and quantitatively analyzed and identified by the ‘‘rDNA-reads

based’’ and ‘‘random-reads based’’ methods, respectively, and

then filtered by alignment tools. Furthermore, to evaluate the

quality of reads after trimming and contamination filtration,

downstream analyses, including genome assembly, gene model

prediction and functional annotation, were performed based on

raw and clean reads, respectively. Results showed that through

QC-Chain, high-quality clean reads could be obtained with high

efficiency, which can serve for subsequent analyses. This QC

system could be applied to NGS data in FASTQ or FASTA

format produced by Illumina, 454 and other sequencing platforms

for genomic and metagenomic sequencing experiments. Further-

more, the speed of QC-Chain can be very fast because it is

optimized by parallel computation. QC-Chain is publicly available

at: http://www.computationalbioenergy.org/qc-chain.html.

Methods

The Overall Quality Control Strategy
The objectives of QC-Chain include (1) retrieving reads with

high quality; (2) identifying and quantifying the source of

contaminations, and filtering contaminating reads; (3) accomplish-

ing the QC process in a relatively short time. To achieve these

objectives, the overall method of QC-Chain includes sequencing

quality assessment and trimming, and contamination screening

and removal. Additionally, evaluation and comparison of down-

stream analysis results using reads after QC were also included as

an important component for this holistic approach. The strategy

and workflow of the method is shown in Figure 1, with detailed

procedures as described below.

Read Quality Assessment and Trimming by Parallel-QC
The sequencing quality assessment and trimming is the first step

for NGS data quality control, which requires both accuracy and

efficiency. To accomplish this step, we developed a parallel quality

control software, Parallel-QC, which could be used to trim, filter

and remove low sequencing-quality reads from NGS data.

Parallel-QC is developed by Linux C++ and multi-thread

technology based on multi-core X86 CPU platform, and is

compatible for X86 and X86-64 Linux.

Specifically, by Parallel-QC, sequences could be trimmed to

a specific length; low-quality bases within reads could be trimmed

from both 59 and 39 ends; low-quality reads could be filtered by

quality value with user defined percentage; duplications could be

identified and removed. For tag sequences filtration, multiple tag

sequences could be aligned and shifted on both 5’ and 3’ ends of

the reads with mismatches allowed, and the positive aligned reads

could be removed.

To significantly accelerate the speed of computation, Parallel-

QC parallelizes the sequencing quality evaluation and filtration

steps by assigning balanced and weighted tasks to independent

threads, which could be executed on different CPU cores

simultaneously. In addition, all progresses could be completed

with only one disk I/O operation, which highly improves the

efficiency of analysis. On the other hand, the multiple steps can be

accomplished by using a single command line with user-friendly

options. Therefore, Parallel-QC significantly shortens the proces-

sing time compared to traditional single core CPU based method,

and simplifies user’s operation compared to using multiple single

function QC tools.

Identification and Removal of Contaminating Reads
The aim of contamination screening is to identify and quantify

the (mostly unknown) source of contaminations, filter the

contaminating reads, and obtain the processed reads as clean as

possible. We adopted two complementary strategies, both of which

could provide (known and unknown) species information of the

dataset.

In the ‘‘rDNA-reads based’’ method, ribosomal DNA reads

were used to qualitatively detect the taxonomical structures of the

dataset quickly. Ribosomal RNAs, such as 16S (for prokaryote)

and 18S (for eukaryotes) sequences, are good indicators to

characterize prokaryotic and eukaryotic species and are commonly

used in phylogenetic analysis. They are also widely used in

metagenomic analysis to detect the community structure. Here we

applied Parallel-META [6], a high-performance 16S/18S rRNA

analysis pipeline to report the taxonomic classification, construc-

tion and distribution of NGS reads. Parallel-META is a GPU and

Multi-Core CPU based software, which firstly extracts the (user

selected) 16S or 18S rRNA sequences from the input data and

aligns the obtained rRNA reads to several optional databases,

including RDP [7], GREENGENES [8] and SILVA [9]. The

taxonomy information is produced and then shown in a dynamic

graphic view with corresponding species’ proportion. Additionally,

in QC-Chain, Parallel-META was updated to be able to

accomplish eukaryotic species screening and identification, but

in previous version it could only identify prokaryotic species.

Through this approach, all the possible species sources of the raw

reads, including both prokaryotic and eukaryotic information,

could be detected de novo.

The other method is ‘‘random-reads based’’, which could

quantitatively provide the species information. Generally, detect-

ing all possible contaminations requires aligning reads to

a comprehensive database, which includes species records as

many as possible. The most popular and widely-used alignment

Quality Control Method for NGS Data
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method is BLAST against NCBI (National Center for Bio-

technology Information) database (http://www.ncbi.nlm.nih.gov/

). However, it is known that BLAST is a time-consuming process

and the speed is a bottleneck, especially when analyzing immense

amount of reads. An alternative is to reduce the size of the query

data and perform BLAST to get the species information quickly.

With such a consideration, we developed an in-house script which

could randomly extract reads from the raw reads with a user-

defined proportion of all reads. The extracted reads were then

aligned to NCBI-NT database using BLASTn, to extract species

information in a relatively short time.

The above two approaches are complementary and synergetic

to each other: rDNA-reads based method could quickly screen and

identify the possible contaminating species. The random-reads

based method could provide quantitative evaluation of the

contaminations, and also help to verify the result of rDNA-reads

based method.

After confirming the contaminating sources by combining the

results of the above two methods, the contaminating reads are

filtered by the alignment tool Bowtie 0.12.8 [5] with default

parameters: reads aligned to contaminating species’ genomes are

filtered out.

Assessment of the Overall QC Results by Downstream
Analysis
To evaluate the effect of QC-Chain, downstream analyses were

performed toassessandcompare theresultsobtained fromreadsboth

pre-QC and after-QC, respectively. In the following parts of this

work, the combined original pre-QC reads were referred to as ‘‘total

reads’’, thereadspassed thecontaminationscreeningwerereferred to

as ‘‘clean reads’’, and the reads coming from the target genomic or

metagenomic sources were referred to as ‘‘control reads’’.

For the simulated genomic data, the genome assembly was

performed by Velvet 1.2.03 [10] on total reads, clean reads and

control reads, respectively. The parameters used were: ‘‘-exp_cov

70, -cov_cutoff 4, -ins_length 500’’ and others are set as default.

Several indexes, including number of contigs, N50 size and

assembly size were considered to evaluate the analysis result.

Augustus 2.5.5 [11] was used to predict the open reading frames

(ORFs) from the assembly result. The protein sequences of the

reference genome were used as the reference to test the accuracy

of the gene structure predicted. Specifically, the protein sequences

predicted from the assembly of total reads, clean reads and control

reads were aligned to reference proteins by BLASTp, respectively

and the false positive rate (FPR) were calculated as:

Figure 1. The overall workflow of QC-Chain.
doi:10.1371/journal.pone.0060234.g001
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For the simulated metagenomic data, de novo metagenome

assembly and functional analysis were performed with total reads,

clean reads and control reads, respectively. Each dataset was firstly

assembled using IDBA_UD [12], based on which ORFs were

predicted by MetaGeneMark [13]. Simultaneously, those contigs

with more than 50 bp in length were submitted to MG-RAST

(http://metagenomics.anl.gov) for organism abundance analysis

and functional gene annotation. GC distribution and rarefaction

curves were generated from MG-RAST automatically. Functional

analysis was performed by aligning the predicted ORFs of each

dataset to COG database using a maximum e-value of 1e25 and

a minimum identity of 60%. Differences were calculated using

one-tailed paired t-test, with asterisks denoting statistical signifi-

cance (NS: not significant; *: p,0.05; **: p,0.01).

Results and Discussion

Reference Genomes and Datasets Used
Both simulated and real NGS data were used in this study. To

evaluate the performance of QC-Chain, genomes of multiple

species (prokaryotic, eukaryotic with model and non-model

species) were used, based on which the simulated datasets for

genomic and metagenomic data were generated. On the other

hand, since the simulated data is designed as of relatively high

quality and free of tag sequences, real NGS data was used to test

the performance of sequencing quality evaluation and trimming by

Parallel-QC.

To obtain simulated reads, reference genomes were down-

loaded from NCBI (http://www.ncbi.nlm.nih.gov/). The program

DWGSIM 0.1.8 (https://github.com/nh13/DWGSIM) was used

to generate simulated sequences from the reference genomes.

Specifically, (1) the simulated genomic data contains reads from

Saccharomyces cerevisiae, representing eukaryotic model species. A

certain proportions of simulated bacterial reads from Clostridium

thermocellum and Escherichia coli were included as contaminating

sequences to simulate the possible wet-lab contaminations

(Table 1). Pair-ended sequences were created with an insert-size

of 500 bp between two ends, an average error rate of 1% and read

length of 100 bp. The resulting simulated data contained

10,856,948 reads, with a total size of 1.08 Gbp; (2) the simulated

metagenomic data included simulated reads from 10 oral

microbial genomes (including Actinomyces naeslundii MG1,Fusobacter-

ium nucleatum ATCC 25586,Haemophilus parainfluenzae ATCC

33392,Neisseria elongate ATCC 29315,Porphyromonas gingivalis

W83,Rothia aeria F0474,Streptococcus mitis NCTC 12261,Streptococcus

mutans UA 159,Streptococcus oralis ATCC 35037 and Streptococcus

sanguinis SK36), which were downloaded from Human Oral

Microbiome Database (http://www.homd.org/). Reads generated

from Homo sapiens and Chlamydomonas reinhardtii genomes were used

to simulate the contaminating sequences that could possibly come

from wet-lab contaminations (C. reinhardtii) and sample host

(human) (Table 1).

For real NGS data, genomic DNA of two human saliva samples

(S1 and S2) and two in-house sequenced algae (Scenedesmus)

samples (A1 and A2) were used to construct pair-ended libraries,

respectively. They were then sequenced by Illumina GAIIx system

(Illumina, San Diego, CA, USA), with an insert size of 400 bp and

read length of 75 bp (human saliva) and 100 bp (algae), re-

spectively (Table 2). These four real sequencing datasets were

used as input to test the performance of Parallel-QC, and all

sequences could be downloaded from webpage of QC-Chain

(http://computationalbioenergy.org/qc-chain.html).

Processing of Low Sequencing-quality Reads
Real NGS datasets were used to test the performance of

Parallel-QC for read quality processing, because real data includes

various sequencing artifacts, which could be trimmed, filtered and

removed by Parallel-QC. Yet as we don’t know the read

distribution situation of real data, even if we can use QC-Chain

to identify the contaminations, it is difficult to evaluate the

accuracy of the method. Therefore, real data was not used for

contamination identification. For read quality processing, using

quality score $20 as a threshold, the read length of two human

saliva datasets (S1 and S2) were trimmed to 65 bp and 32% and

49% of the raw reads passed the quality checking; for the two algal

genome samples (A1 and A2), the final retained read length was

100 bp and only 10% and 5% of the raw reads were kept as good

reads (Figure 2A). In these case studies, the size of processed reads

is significantly smaller than that of raw reads (Table 2), from
which it could be anticipated that the subsequent analysis will be

compromised significantly if the low quality reads were not

removed.

To compare the speed of read processing by different tools, the

running time of program FASTX_Toolkit, PRINSEQ and

Parallel-QC were compared based on the four testing datasets

(A1, A2, S1, S2). These tests were performed on a computational

server, which has 2 Intel Xeon X5650, 2.66 GHz clock with 12

cores in total, 72 GB DDR3 ECC RAM, 3TB 7200 RPM HDD

(no RAID) and the running time on each dataset was compared.

To reduce the effect of system-wise randomness and noises on the

results, each input data was analyzed three times and the average

results were provided for comparison. A speed-up of an average

7.5 and 8.3 times have been achieved using Parallel-QC compare

to FASTX_Toolkit and PRINSEQ, respectively (Figure 2B).

With respect to the read-quality processing, a few toolkit/

software packages have been developed and made publicly

available. Each of them has different features: to name a few

examples, FASTX_Toolkit is a collection of command line tools

for NGS data preprocessing. However, since it accomplishes

diverse procedures of reads processing separately and depends on

user’s input for every step, it is time-consuming and complex to

use. PRINSEQ is able to process the reads easily and compre-

hensively, however, our results showed that its processing speed is

not satisfactorily fast. In contrast, Parallel-QC, which employs

parallel technology and combines multiple optimizations for data

processing, could improve the efficiency significantly.

Recap: Key Features of Parallel-QC
Parallel and fast processing. Most of the processing steps

executed by Parallel-QC were accomplished using parallel

computation, including base-trimming, quality-filtration, screening

and removal of tag sequences and duplications. A parameter (-t) is

available for defining the number of CPU cores to be used, and if

multiple CPU cores are required, the read processing procedures

will be processed in parallel on different CPU cores simultaneous-

ly. Therefore, the processing speed could be improved significant-

ly. Another reason for the fast running of Parallel-QC is that the

whole processing could be completed with only one disc I/O

processing, which is highly efficient, especially when processing

very large datasets.

Multiple tag sequences processing. In Parallel-QC, mul-

tiple tag sequences could be detected and filtered within a single

Quality Control Method for NGS Data
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run. All the standard tag sequences used in Illumina and Roche

454 sequencing platforms could be filtered by default setting.

Alternatively, users could use specified sequence files (in FASTA

format) containing candidate sequences to tell Parallel-QC about

the filtration targets.

Pair-ended reads processing. It is important to maintain

the pairing information in the processing progress, since the pair-

ended relationship of reads is essential to many of the subsequent

analysis, such as alignment and genome assembly. Parallel-QC

provides an option (-k, refers to website for details) to keep the

paired reads in the output or not. It is able to check the quality of

both ends of the paired reads simultaneously in every processing

procedure and export the filtered corresponding paired reads,

which cannot be realized by most of other available QC tools.

Summary report. A clear summary report is supplied by

Parallel-QC, showing the information of input reads, parameters

used, output of each processing step and final result, which

provides a clear overview of the reads status before and after

process.

Contamination Screening and Removal
Simulated data is designed with relatively high read quality, so it

is not good testing dataset for read quality processing. On the

other hand, they are good models for contamination identification

since we are clear about the contamination species and read

distribution. Therefore, simulated genomic and metagenomic data

were used to test the performance of contamination identification

of QC-Chain.

Contaminating reads identification. For the simulated

genomic data, using rDNA-reads based method, 18S and 16S

rDNA sequences could be identified and characterized to detect

eukaryotic and prokaryotic organisms, respectively. Extracted 18S

sequences dominantly mapped to Saccharomycetaceae, and the

remaining ones were distributed in a variety of other species

(Figure 3A). Identified 16S rDNA reads exhibited abundant

positive alignments to Clostridiaceae and Enterobacteriaceaeare,

while others matched to diverse species each with a proportion

lower than 2% (Figure 3B). This result suggested that other than

Saccharomycetaceae, a relatively large number (but their relative

quantity not clear) of Clostridiaceae and Enterobacteriaceae reads

are included in the sample. Considering the sequence conserva-

tions in the rDNA sequences among different species, only the

dominant species should be considered as the possible contami-

nation.

When using the random-reads based method, 0.1% of the total

reads were randomly extracted and aligned to NCBI-nt using

BLASTn. A total of 10,243 reads got sequence homology in the

database, among which 6.8% had best hit to C. thermocellum, 10.6%

were mapped to E. coli, and 81.4% were aligned to S. cerevisiae, with

the Kullback-Leibler divergence estimate of 0.056 from true-reads

distribution (Figure 3C). These results coincided with that of the

rDNA-reads based method. Moreover, the read distribution

among species is highly consistent with the taxonomical distribu-

tion of the simulated data (Table 1). Thus the random-reads

based method is suitable for quantitative analysis of contaminating

reads.

For the simulated metagenomic data, eukaryotic species were

considered as possible contaminations. By rDNA-reads based

method, 18S rDNAs (for eukaryote) were identified using Parallel-

META, with results showing that abundant rDNA reads were

mapped to Chlorophyta and Homo sapiens (Figure 4A). However,

several Family and species were involved in Chlorophyta,

including Chlamydomonadaceae, Volvox, Gloeotilopsis, etc.,

which rises from the high 18S sequence similarity of these algae

species. Then, by random-reads based method, 0.1% of the total

reads were extracted and the BLAST result showed that 58.8%

and 10.9% of the extracted reads were aligned to Homo sapiens and

Chlamydomonas, respectively. The KL divergence between the

reads-source distributions in our results and reference (truth) is

0.014 (Figure 4B). The predicted relative quantities of these

species are consistent with those from the simulated metagenomic

data. Several other eukaryotic species were also identified, which

are evolutionally close to Chlamydomonas and human with a few

number of reads. These organisms may be matched due to high

sequence similarities by BLAST, and therefore, they were

probably not contaminating species. Combining the results of

Table 1. Summary of the simulated data used in this study.

Dataset Species Genome coverage # Reads Reads% Read length Size (Mb)

Saccharomyces cerevisiae 70.0 8,957,552 82.5 100 895.7

Genomic Clostridium thermocellum 20.0 726,328 6.7 100 72.6

E. coli 20.0 1,173,068 10.8 100 117.3

Total N/A 10,856,948 100 100 1,085.7

Homo sapiens 0.3 13,965,464 50.5 70 977.6

Metagenomic Chlamydomonas reinhardtii 2.0 3,377,606 12.2 70 236.4

10 Oral microbial genomes (see
results and discussion)

30.0 10,306,092 37.3 70 721.4

Total N/A 27,649,162 100 70 1,935.4

doi:10.1371/journal.pone.0060234.t001

Table 2. Statistics of real NGS data as testing data for Parallel-
QC.

Sample Raw reads Processed reads

Size (Mb) # Reads Size (Mb) # Reads

S1 321.8 4,233,904 88.0 1,353,262

S2 7,290.7 9,592,980 305.0 4,693,064

A1 1,544.9 15,449,564 150,507.9 1,505,079

A2 1,707.4 17,074,757 79,966.4 799,664

S1, S2: human saliva DNA samples.
A1, A2: in-house sequenced algae DNA samples.
doi:10.1371/journal.pone.0060234.t002
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the above two methods, Chlamydomonas and human were

successfully identified as two dominant contaminating sources in

the simulated metagenomic data.

The analyses of both simulated genomic and metagenomic data

showed that the two contamination screening methods are

complementary and synergetic. By rDNA-reads based method,

the possible contaminating species could be quickly identified

qualitatively. Then, using random-reads based method, more

detailed and quantitative proportion information of contaminating

organisms is provided. The two methods could also mutually verify

their results.

Speed of contamination screening. The amount of data

produced by NGS technology is significantly larger than that

generated by earlier sequencing techniques and can reach tens of

gigabases for a single dataset. Thus, it requires fast and accurate

approaches for data processing. Since ‘‘rDNA-reads based

method’’ (based on improved Parallel-META) is constructed

based on parallelization algorithm, at least 15 times speed-up was

achieved compared to traditional CPU-based analysis method,

with the same accuracy [6]. In our experiment, it took only 5 min

to detect both the eukaryotic and prokaryotic contaminating

sources for the simulated genomic data, and 16 min to identify the

possible eukaryotic species included in the simulated metagenomic

data. Thus, it ensures that the taxonomical screening of huge NGS

data is fast and accurate.

For random-reads based method, using 0.1% randomly

extracted reads from simulated genomic and metagenomic data,

it took 10 hours and 24 hours to finish the BLASTn to NCBI-nt

database, respectively, from which it could be estimated that the

original BLAST will consume almost a thousand more time.

Although it takes more time to finish the analysis by random-reads

based method than rDNA-reads based method, since the pro-

portion of aligned reads reflects the relative abundance of each

speices, it is suitable for quantitative evaluation of contaminating

sources.

Contaminating reads removal. Once the contaminating

species is revealed, and if the species has a reference genome

sequence, the contaminating reads could be filtered using

alignment programs. A large number of alignment tools are

available, whose performances have been compared and assessed

in literatures [14–16]. The selection and usage of the alignment

tools is not within the scope of this study, and here we used Bowtie

0.12.8 [5] to remove possible contaminating reads (by alignment

to contaminating species’ genomes) to obtain the ‘‘clean reads’’.

Figure 2. Evaluation of read quality on real NGS data by QC-Chain using Parallel-QC. (A) Summary of sequencing-quality evaluation. (B)
Comparison of running time of Parallel-QC, FASTX_Toolkit and PRINSEQ. S1, S2: human saliva DNA samples; A1, A2: in-house sequenced algae DNA
samples. All the sequences could be downloadable from http://computationalbioenergy.org/qc-chain.html.
doi:10.1371/journal.pone.0060234.g002
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Assessment of Filtered Reads by Holistic Approach
To evaluate the effect of our QC methods, downstream analyses

were applied on the simulated data.

For the simulated genomic data, reads mapped to C. thermocellum

and E. coli were removed to produce the ‘clean reads’. Genome

assembly was performed with total reads, clean reads and control

reads, respectively. It showed that the clean reads achieved

a precise assembly size (11.6 Mbp) of the target sequencing species

(S. cerevisiae with genome size of 12 Mbp, Saccharomyces Genome

Database, http://www.yeastgenome.org/), which was consistent

to that using the control reads (11.6 Mbp) (Table 3). Whereas the

assembly size is apparently larger (20.4 Mbp) using total reads,

with contaminating reads from bacteria. The number of contigs

and N50 size of clean reads and total reads obtained assemblies

also differed greatly (Table 3). We also tested the contig identities

by mutual-BLAST. The result showed that using the contigs of

control reads as the reference, 94% of the contigs obtained from

clean reads obtained positive alignments, but only 70% of the

contigs of total reads obtained positive alignments. All these results

indicated that in genome assembly based on total reads,

contaminating reads have been misassembled into the contigs

and thus have filled the gaps mistakenly in the ‘‘total-assembly’’.

Furthermore, 10,143, 6,116 and 5,531 ORFs were predicted

using the assemblies of total reads, clean reads and control reads,

respectively. The number of ORFs overlapping the reference

proteins was calculated and the FPR of clean reads (8.2%) was

significantly lower than that of total reads (33.6%), indicating that

the ORFs predicted based on clean reads are more accurate than

those based on total reads (Table 3). The analysis also showed

that some differences exist in the analysis results of clean reads and

control reads, such as number of contigs, N50 size and number of

ORF predicted (Table 3). This is because the alignment method

did not remove all of the contaminating reads, and a small

proportion of contaminating reads were left in the clean reads,

which affected the further analysis result.

For the simulated metagenomic data, the assembly and gene

prediction results were significantly different, with 6,989 contigs

and 24,237 genes obtained from total reads, and 2,933 contigs and

22,307 genes obtained from clean reads, respectively (Table 3).
The clean reads exhibited a very similar set of statistics to those of

control reads (Table 3). The GC contents and distribution pattern

of clean reads and control reads are very similar, which are

distinctly different from that of total reads (Figure 5A). The

individual rarefaction curves of both clean reads and control reads

showed a similar pattern of increasing bacterial diversity, which

were different from those of total reads (Figure 5B). Remarkably,

when 946 sequences were sampled, clean reads and control reads

both showed two-fold more bacterial richness than total reads,

indicating that the eukaryotic contamination could reduce the

richness of bacterial species dramatically (Figure 5B). The

Figure 3. Possible source species identified from simulated genomic data by rDNA-reads based method of QC-Chain. (A) 18S reads
distribution identified by rDNA-reads based method. (B) 16S reads distribution identified by rDNA-reads based method. (C) Quantitative distribution
of the reads identified by random-reads based method.
doi:10.1371/journal.pone.0060234.g003
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functional distribution and abundance analysis based on COG

database also reported similar relative abundances in the four

categories of ‘‘metabolism’’, ‘‘information storage and processing’’,

‘‘cellular processes and signaling’’ and ‘‘poorly characterized’’

based on clean and control reads; while those based on total reads

are significantly different (Figure 5C). Significant differences of
the functional abundance were observed between clean reads and

total reads (t-test p-value = 0.01), as well as between control reads

and total reads (t-test p-value = 0.002). No significant difference was

found between clean reads and control reads (t-test p-val-

ue = 0.288).

All these analyses and comparisons revealed that the subsequent

analytical results based on clean reads and control reads are in

high accordance, and remarkably divergent from those of total

reads. The significant improvement of the subsequent analysis

result using after-QC reads indicated that our QC processes,

especially contaminating screening methods, have a significant

impact on the quality of the NGS data and benefit the subsequent

analysis extensively. It is possible that with the development of

more accurate alignment algorithms, improved results in down-

stream analysis could be expected.

Comparison with Existing QC Methods
Generally, the QC processing of NGS data should include at

least two fundamental aspects: (1) low sequencing-quality reads

filtration, and (2) contamination identification and removal.

Currently, most of the QC tools are designed specifically to

evaluate and filter reads with low sequencing-quality. These tools

are developed based on different algorithms and have different

features, which may have one or more limitations in different

aspects [3]. For example, for the tag sequences removal, the

FASTX_Toolkit provides a tool for this purpose, but it depends on

user input of the tag sequences once at a time, making the

procedure time-consuming and complicated for multiple tag

filtrations. PRINSEQ cannot be used to trim the tag sequences

directly, but just estimates whether the dataset contains these

sequences and checks whether they are removed sufficiently after

trimming. Other tools such as CUTADAPT [17] are able to deal

with multiple adapters in a single run, but it cannot perform other

Figure 4. Possible source species identified from simulated metagenomic data by rDNA-reads based method of QC-Chain. (A) 18S
reads distribution identified by rDNA-reads based method. (B) Quantitative distribution of the reads identified by random-reads based method.
doi:10.1371/journal.pone.0060234.g004

Table 3. Genome assembly and ORF prediction using total, clean and control reads of simulated data, respectively.

Dataset
Assembly size
(Mb) # contigs N50 (bp)

# ORF
predicted

# ORFs matching
reference FPR*

Total reads 20.4 381 174,181 10,143 6,736 33.6%

Genomic Clean reads 11.6 2,693 9,422 6,116 5,617 8.2%

Control reads 11.6 1,517 187,516 5,531 5,484 0.9%

Total reads 24.4 6,989 84,411 24,237 NA NA

Metagen-omic Clean reads 22.0 2,933 69,821 22,774 NA NA

Control reads 22.3 2,933 96,904 22,307 NA NA

*FPR: false positive rate of the genes predicted, using S. cerevisiae as reference.
doi:10.1371/journal.pone.0060234.t003
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processing tasks such as duplication filtration. Additionally, the

speeds of most of the existing quality filtration tools are not

satisfactorily fast. On the other hand, identifying all possible

contaminations and removing them require both advanced

computational technologies and computational resources. Univer-

sal alignment method such as BLAST is extremely time-

consuming. Other alignment programs, such as Bowtie [5] and

BWA [14], can complete the alignment considerably fast, but rely

heavily on the known information of the contaminating species. In

our QC strategy, both the read quality filtration and contamina-

tion identification/removal are considered and the processing is

realized through parallel computation, which could significantly

accelerate the quality control process. Comparisons of different

features of the NGS QC tools, including QC-Chain, FastQC,

FASTX-Toolkit, PRINSEQ, NGS QC Toolkit and DeconSeq are

listed in Table 4.

Taking the simulated genomic data for example, we compared

the subsequent analysis results using different tools. When

applying QC-Chain on the dataset, the results showed a significant

improvement in the downstream analysis (Table 3), but when

other tools such as FastQC, FASTX-Toolkit, PRINSEQ or NGS

QC were applied, since the simulated data were designed to be of

high-quality reads, few reads were filtered because of low

sequencing-quality and the analysis result is equivalent to that

obtained from total reads. On the other hand, none of the above

tools (except QC-Chain) contains method to screen and identify

possible contaminating reads ab initio. When there is no available

information of the possible contaminating species, the contami-

nating reads could not be identified, and the results of DeconSeq

(an alignment tool depends on known species) would also be the

same as those based on total reads.

Conclusion
With an aim to design a fast, accurate and holistic solution for

the quality control of NGS data, we developed QC-Chain,

a method which could identify and filter both low sequencing-

quality reads and contaminating reads. Read quality process

module (Parallel-QC), together with rRNA identification module

(improved Parallel-META) and in-house scripts were used in this

method to accomplish the comprehensive quality control process.

After trimming and filtering the low sequencing-quality reads by

Parallel-QC, possible contaminating sources could be identified

and quantified de novo, without any a prior information of the

contamination species. All reads after filtration are then evaluated

by a holistic approach, which takes into consideration of down-

stream analyses that include genome assembly, gene prediction

and annotation, to evaluate whether these reads are of high

quality. Additionally, both reads processing and identification of

the contaminations are quite fast since they are based on parallel

computation.

QC-Chain has been tested on simulated genomic and

metagenomic datasets, as well as on some real datasets for some

of its modules (read quality assessment and trimming). The results

showed that sequencing artifacts, including low quality bases, tag

sequences and duplications could be trimmed with high speed.

Moreover, contaminating species could be screened and identified

qualitatively and quantitatively. Furthermore, downstream anal-

ysis results based on the reads passed the QC-Chain system

showed significantly higher consistency with control reads,

compared to raw reads. Therefore, reads that passed this

integrated workflow should be able to serve as high-quality and

relatively clean reads for further analysis.

As a general QC method, QC-Chain could be further improved

for application on more diverse NGS data, such as methylome

Figure 5. Comparison of the results from clean, total and control reads of simulated metagenomic data. (A) GC distribution pattern. (B)
Rarefaction curve that could discriminate the richness of different bacterial species, Y-axies: species count, X-axis: the number of reads. (C) Functional
categories based on COG database. Abundance of each category between the three datasets was compared pair-wise (*p,0.05; **p,0.01; NS: not
significant).
doi:10.1371/journal.pone.0060234.g005
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sequencing data in which there is a high proportion of biased and

duplicated reads [18]. Another possible improvement of current

QC-Chain would be higher speed and accuracy, especially on

quantitative analysis of both known and unknown contaminations.
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Table 4. Comparisons of key features of QC-Chain and other QC tools.

Tools QC-Chain
NGS QC
Toolkit

FASTX-Toolkit
0.0.13 FastQC 0.10.1 PRINSEQ DeconSeq

Parallelization Yes Yes No No No No

Pairing information Yes Yes No No No No

Sequencing quality evaluation Yes Yes Yes Yes Yes No

Sequencing quality trimming Yes Yes Yes No Yes No

Duplication trimming Yes Yes Yes No Yes No

Multiple tag sequences filtration Yes Yes No No No No

De novo contamination screening Yes No No No Yes* No

Contaminating reads removal Yes No No No No Yes

*Indirect evaluation for metagenomic data.
doi:10.1371/journal.pone.0060234.t004
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