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Abstract
CaV1.1 is the prototype for the other nine known CaV channel isoforms, yet it has functional
properties that make it truly atypical of this group. Specifically, CaV1.1 is expressed solely in
skeletal muscle where it serves multiple purposes; it is the voltage sensor for excitation-
contraction (EC) coupling and it is an L-type Ca2+ channel which contributes to a form of activity-
dependent Ca2+ entry that has been termed Excitation-Coupled Ca2+ Entry (ECCE). The ability of
CaV1.1 to serve as voltage-sensor for EC coupling appears to be unique amongst CaV channels,
whereas the physiological role of its more conventional function as a Ca2+ channel has been a
matter of uncertainty for nearly 50 years. In this chapter, we discuss how CaV1.1 supports EC
coupling, the possible relevance of Ca2+ entry through CaV1.1 and how alterations of CaV1.1
function can have pathophysiological consequences.
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CaV1.1 is the prototypical voltage-gated Ca2+ channel. Like the other L-type (CaV1.X) Ca2+

channels, it is defined by its being responsive to inhibition or potentiation by 1,4-
dihydropyridines. It was the first of the CaV family to be cloned [1] and it was the first ion
channel to have a null mouse model [2]. Yet CaV1.1 is so atypical of the CaV family, one
could say that it is the unicorn of the family. Compared to the other nine CaV channels, it
activates slowly and inactivates even more slowly. Its expression is restricted to one tissue—
skeletal muscle—where it is the only CaV channel expressed in differentiated fibers.
Moreover, CaV1.1 requires the influence of the type 1 ryanodine receptor (RyR1) to support
its L-type channel function. However, the physiological significance of L-type Ca2+ current
via CaV1.1 is uncertain [3,4], and the ability of CaV1.1 to carry out its most important
function does not depend on Ca2+ flux at all [5,6].
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CaV1.1 is the prototypical CaV channel
As noted above, α1S (CaV1.1) was the first principal α1 subunit of a CaV channel for which
a complete cDNA sequence was obtained, which like the initial cloning of many other ion
channels was accomplished by the Numa laboratory in the 1980’s [1]. Their work made use
of rabbit skeletal muscle, which abundantly expresses receptors for 1,4-dihydropyridine
receptors (DHPRs), although it must be noted that the equivalence of DHPRs and voltage-
gated Ca2+ channels was at the time a source of much debate [7,8] In any event, sequencing
of tryptic fragments of purified DHPRs was used to design oligonucleotide primers for
reverse transcription of muscle mRNA. From the resulting cDNA sequence, they concluded
that the basic structure was much like the first rat brain Na+ channel (now known as NaV1.1)
which they had cloned just prior [9]. Like NaV1.1, the α1S subunit of the channel had four
repeats, having sequence similarity with one another (Fig. 1). The amino- and carboxyl-
termini, as well as the loops linking the four repeats (I-II, II-III, III-IV) were proposed to be
cytoplasmic. These cytoplasmic regions are now known to be important for interactions with
other proteins and play roles in gating, expression and targeting of CaV1.1 [reviewed in 10].
Each of the four repeats is comprised of six α-helices, and the fourth helix (S4) of each
repeat has a distinctive motif of evenly spaced basic residues which correspond to the
voltage-sensing particle that Hodgkin and Huxley had proposed thirty years earlier for
neuronal Na+ channels [11]. Importantly, the channel differed from NaV1.1 in that the
residues that corresponded to the Na+ channels’ D-E-K-A selectivity filter were E-E-E-E
[12,13]. This tetra-acidic structure was postulated to facilitate selective passage of Ca2+ and
other divalent cations such as Ba2+, Mg2+, Mn2+ and Sr2+ through the pore of L-type
channels by providing binding sites for two separate divalents [14]. To this day, this motif is
known to be important for the selectivity of CaV1.1; neutralization of just one of these
residues in the third conserved repeat will nearly ablate the ability of the channel to conduct
divalents and will convert it into a Na+-selective channel [5,15-17].

CaV1.1 is assembled as heteromultimer together with α2δ-1, β1a and γ1

subunits
The skeletal muscle L-type Ca2+ channel is comprised of CaV1.1 and auxiliary α2δ-1, β1a,
and γ1 subunits. With the exception of α2δ-1, expression of each of these subunit isoforms
is largely restricted to skeletal muscle [18,19, but see 20]. Ablation of either α2δ-1 or γ1
expression has only modest effects on channel current density [21-26]; the main effect of
α2δ-1 is to slow activation kinetics [24-26] and that of γ1 is to cause a depolarizing shift of
channel inactivation [21-23], but the broader physiological significance of these effects is
not clear. On the other hand, β1a is nearly essential for channel function [27,28]. Like CaVβ
subunit isoforms in other tissues, the β1a subunit facilitates trafficking of CaV1.1 to the
plasma membrane. However, the specific targeting of the assembled CaV1.1 channel
complex to the junctional membrane is dependent on CaV1.1 [29-31]. Within the junctional
membrane, individual CaV1.1-containing heteromultimers are arranged into groups of four
(“tetrads”), in which the four CaV1.1 channels are aligned with the four subunits of every
other RyR1 homotetramer (Fig. 2-left) [30, 32-38]. By itself, the highly-registered tetradic
organization of CaV1.1 at triad junctions is perhaps the most concrete evidence of physical
interactions linking CaV1.1 to RyR1. This view is fortified by the observations that long
duration pharmacological manipulation of RyR1 conformation with high concentrations of
ryanodine (>200 μM) reduces the average, center-to-center distance between adjacent
DHPRs within a tetrad [38] and shifts activation of both L-type current [39,40] charge
movement [40] to more hyperpolarized test potentials.

In addition to promoting trafficking of the CaV1.1 complex to the membrane, β1a is essential
for efficient tetrad formation. Triad junctions of the β1-null zebrafish mutant relaxed display
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randomly positioned CaV1.1 particles in freeze-fracture replicas (Fig. 2-right); transgenic
overexpression of β1a in relaxed embryos restores the orthogonal CaV1.1 tetradic arrays
[30]. The rescue of tetrads is an exclusive function of β1a [37]. The observations made in the
zebrafish model system make it tempting to envision β1a as the molecular glue that holds
tetrads together by linking CaV1.1 to RyR1. Interestingly, the possibility of a direct
interaction of β1a with a cluster of positively charged amino acids (3495-3502) in the
cytoplasmic amino-terminal region of RyR1 has been raised based on the in vitro binding of
β1a to a another fragment of RyR1 (3490-3523) inclusive of this stretch of residues [41]. In
more recent studies, peptides corresponding to a minimal sequence (residues 490-524)
within the most distal 35 residues of the β1a carboxyl-terminus were found to bind to native
RyR1 in SR vesicles [42,43]. In contrast to these in vitro data which suggest that β1a can
bind to RyR1 independently of CaV1.1, β1a does not appear to bind to RyR1 in vivo in
CaV1.1-null (dysgenic) myotubes [29, 31,44]. These latter data imply that if an association
between β1a and RyR1 occurs in vivo, this association requires the presence CaV1.1.

CaV1.1 is the voltage sensor for EC coupling
Excitation-contraction (EC) coupling in skeletal muscle requires the transduction of a
plasmalemmal depolarization within the transverse-tubule network into a transient elevation
in myoplasmic Ca2+ emanating from the stores of the sarcoplasmic reticulum (SR) that
activates the contractile filaments [45]. It has been known since the early 1970’s that EC
coupling in skeletal muscle does not require the entry of extracellular Ca2+ [46] but relies on
the outward movement of charged, membrane-bound gating particles [47]. The identity of
these voltage-sensing particles would remain a mystery for another decade, at which point it
was observed that myotubes cultured from a perinatally lethal mouse line (dysgenic) lacked
dihydropyridine-sensitive voltage-gated Ca2+ current (Fig. 3-middle column) [2]. Around
the same time, Ríos and Brum [48] demonstrated that charge movement and EC coupling
were inhibited in parallel by the dihydropyridine antagonist nifedipine. Together, these
independent works fingered the L-type Ca2+ channel/DHPR as the voltage sensor. Nearly
absolute proof came along a short time later when the newly cloned CaV1.1 restored L-type
current, charge movement and EC coupling when expressed in dysgenic myotubes (Fig. 3-
right column) [49-52] and today CaV1.1 is universally believed to be the voltage-sensor for
EC coupling in skeletal muscle.

A recent in vivo example underscores the lack of a requirement for Ca2+ entry via CaV1.1
for skeletal-type EC coupling. Zebrafish have two distinct CaV1.1 α1S subunit isoforms
(α1S-a and α1S-b) that have both lost the ability over time to conduct L-type current [53].
These two channels have distinct residue substitutions in the pore helix that block Ca2+

permeation while sparing the ability of both to trigger EC coupling. Specifically, α1S-a has a
tryptophan-glycine doublet in place of an methionine-glutamate pair in the P-loop of Repeat
I and α1S-b has an aspartate for asparagine swap near the selectivity filter of Repeat II.
These non-conducting channels are characteristic of higher teleosts, but the evolutionary
pressure driving the non-conducting amino acid substitutions in zebrafish and other bony
fish [53] remains a mystery.

The non-channel function of the EC coupling voltage-sensor makes CaV1.1 truly peculiar
amongst CaV channels since it is the only isoform capable of efficiently coupling membrane
depolarization to activation of an RyR via a Ca2+ entry-independent, conformational
coupling mechanism [51,54,55]. The only other similar phenomenon that has been described
is intracellular Ca2+ release in nerve terminals of the neurohypophysis, which depends upon
an interaction between a yet-to-be determined CaV1.X channel and RyR1 [56-58]. In any
event, the fairly well-conserved CaV1.2 channel cannot gate RyR1 in cultured dysgenic
myotubes without Ca2+ flowing into the myoplasm through the channel pore [5,54,55]. The
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inability of CaV1.2 [51,54,59], CaV2.1 [60], CaV3.2 [61] and the Musca domesticus muscle
L-type channel [62,63] to restore conformational coupling with RyR1 in dysgenic myotubes
enabled the investigation of key elements for EC coupling within CaV1.1 via chimeric
approaches. The studies that utilized CaV1.1-based chimeras arrived at the conclusion that
II-III linker was a structure indispensable for skeletal-type EC coupling [51] and, in
particular, the sequence spanning residues 720-764/5 in the center of the linker were
“critical” for this function (Fig. 1) [59,62,64]. Kugler and colleagues suggested that residues
744-751 within the critical domain form a random coil conformation (rather than an α-
helix), and that this random coil enables CaV1.1 to interact with other junctional proteins
(e.g., RyR1) upon membrane depolarization [64]. In this study, Kugler et al. also identified
four amino acids within the critical domain (A739, F741, P742, D744) which they suggested
deter formation of the α-helical conformation of the II-III loop that impedes EC coupling.

The carboxyl-terminal portion of the loop connecting the “critical domain” to Repeat III, a
region which displays substantial sequence similarity amongst L-type Ca2+ channels, was
later identified as a key structure in a study that employed insertion of fluorescent protein
(Fig. 1) [65]. CaV1.1 channels which had YFP introduced at either residue 760 or 785 were
incapable of supporting voltage-dependent Ca2+ release from the SR despite somewhat
normal channel expression and the apparent retention of the structural integrity of the critical
domain. At this point, it is not known whether the carboxyl-terminal portion of the II-III
linker is directly involved in gating RyR1 during EC coupling or whether it is merely a
specialized conduit for communication between the critical domain and the channel’s
voltage-sensing elements.

Although there is general consensus that the II-III loop is an essential player in skeletal-type
EC coupling, a handful of studies that have applied synthetic peptide mimics of II-III loop
segments to isolated RyR1 in reconstituted lipid bilayers have produced results which led to
the notion that a segment of the amino-terminal portion of the II-III loop known as the “A
domain” (residues 681-690, minimally; Fig. 1) directly interacts with, and activates, isolated
RyR1 [66-68]. Most recently, an A domain peptide was found to bind an isolated segment of
RyR1, the ubiquitous SPRY2 domain, and this interaction supported increased Po of RyR1
in lipid bilayers [69,70]. While provocative, experiments that have tested the importance of
the A domain for EC coupling in a cellular context have failed time and time again.
Specifically, scrambling or total ablation of this region has little or no effect on the
magnitude or voltage-dependence of SR Ca2+ release in response to depolarization
[44,65,71-76].

Roles for the other intracellular linkers in EC coupling and/or other general CaV1.1
functions have also been identified through deletion or chimera strategies. The CaV1.1 I-II
loop is the site for interaction with the β1a subunit, which, as discussed above, supports
membrane trafficking and is required for the tetradic arrangement of CaV1.1 within triad
junctions (Fig. 2-right). Skeletal-type EC coupling is absent in muscle cells genetically null
for β1a [27,28,30] and is restored by expression of β1a and, to a much lesser extent by β2a
[37,77], whereas β3 and β4[78] and the Musca domesticus βM [37] are all ineffective.

Based initially on the analysis of deletion mutants and of β1a/β2a chimeras [77,79], much
current attention is focused on the role of the carboxyl-terminus of β1a in EC coupling. A
synthetic peptide corresponding to the carboxyl-terminal 35 residues of β1a binds to purified
RyR1s in vitro and, much like A domain peptides, activates RyR1s in lipid bilayers [42].
Within this stretch of residues, a hydrophobic heptad motif unique to β1a was identified as
being an important element for EC coupling and triple mutation of three of these residues
(L478, V485 and V492) to alanine impaired the ability of rabbit β1a to support EC coupling
in mouse β1 null myotubes [80]. However, the same mutations were inconsequential to EC
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coupling and tetrad formation when expressed in zebrafish relaxed (β1 null) myotubes [81]
and β1a-based peptides with these substitutions enhanced RyR1 Po to the same extent as
peptides with wild-type sequence [43]. Though the requirement for the presence of the β1a
carboxyl-terminus for the EC coupling is widely accepted, these diametrically opposed
results obtained in divergent (mammalian vs. osteoicthyes and lipid bilayers) systems have
given rise to uncertainty of the role of the hydrophobic heptad repeat in coupling with RyR1.

The influences of the other intracellular regions of CaV1.1 on EC coupling are not as
prominent as that of the I-II and II-III loops. The short amino-terminus appears largely inert
[82]. The III-IV loop is not directly involved in EC coupling but indirectly can control Ca2+

release from the SR by influencing CaV1.1 gating [83]. The III-IV loop also is the only
intracellular site on CaV1.1 for mutations linked to the pharmacogenetic disorder malignant
hyperthermia [84-86]. Finally, the carboxyl-terminus plays a part in channel expression and
targeting of the channel to triad junctions [60,87] and is the site for many intermolecular
interactions [reviewed in 10].

CaV1.1 channel properties are atypically dependent on conformational
coupling with RyR1

The unique conformational coupling mechanism between CaV1.1 and RyR1 is bidirectional.
As described above, the EC coupling, or “orthograde,” signal is transduced from the
voltage-sensing regions of CaV1.1 to the pore region of RyR1 via the cytoplasmic foot
region of RyR1 (Fig. 4). The first recordings of L-type currents from dyspedic (RyR1 null)
myotubes revealed that there is also an RyR1-mediated “retrograde” signal that is
communicated to the channel-activating machinery of CaV1.1. In particular, very low
amplitude L-type currents were observed in dyspedic myotubes by Nakai and colleagues
[88], despite nearly normal membrane expression of CaV1.1 inferred from measurement of
charge movements. The reduction in current density was corrected by exogenous expression
of RyR1. Thus, the increase in conductance to charge ratio indicated that the presence of
RyR1 increases CaV1.1 currents by elevating channel relative Po. The retrograde signal
influences CaV1.1 activation kinetics [89-91] and, like orthograde coupling, is dependent on
the integrity of the critical domain [92].

Interestingly, RyR1 mutations that alter RyR1 function also affect certain biophysical
properties of CaV1.1. For instance, hyperpolarizing shifts in channel activation have been
consistently observed in animal models of malignant hyperthermia caused by RyR1
mutations. Gallant et al. [93] saw a small hyperpolarizing shift in activation of L-type Ca2+

current in swine myotubes homozygous for the RyR1 R615C mutation, but speculated that
series resistance errors could have been responsible. A nearly 10 mV hyperpolarizing shift
in CaV1.1 activation was also reported for myotubes obtained from engineered Y522S
homozygous mice [94], as was a small (~3 mV), but significant, hyperpolarizing shift in
adult Y522S heterozygous interosseus fibers [95]. Similarly, our group observed about a 7
mV hyperpolarizing shift in L-type current activation for mouse myotubes homozygous for
the engineered R163C mutation [96]. Hyperpolarizing shifts in charge movement have also
been observed for both R163C myotubes [96] and Y522S fibers [95], but not in swine
R165C myotubes [97]. In regard to EC coupling, each of these malignant hyperthermia
models [R163C, Y522S, R615C; 94-96,98,99] and dyspedic myotubes expressing RyR1
constructs carrying a number of different malignant hyperthermia-linked mutations [100]
have also displayed hyperpolarizing shifts in SR Ca2+ release in response to depolarization
suggesting that RyR1 malignant hyperthermia mutations shift the equilibrium of CaV1.1
towards the state(s) active for EC coupling and L-type channel activation.
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CaV1.1 displays depolarization-induced shifts into high Po mode 2 gating
CaV1.1 and the other L-type channels have three broadly-defined gating modes which have
been characterized both at macroscopic and single channel levels [17,101]. Mode 0
represents the closed state of the channel, mode 1 is characterized by brief (~1 ms) openings
and mode 2 displays longer duration openings which are promoted both by exposure to 1,4-
dihydropyridine agonists (e.g., (−)Bay K 8644) and by strong depolarization [101-104]. On
the macroscopic level, the point of entry into mode 2 is difficult to assess during
depolarizing step potentials and is most evident in the augmented amplitude and slowed
decay of tail currents elicited by repolarization from steps to more negative potentials
[17,105].

Does CaV1.1 undergo calcium-dependent inactivation?
Another means in which CaV1.1 differs from other high voltage-activated CaV channels is
its apparent lack of calcium-dependent inactivation (CDI) [106]. This inhibitory feedback
mechanism has been rigorously investigated in CaV1.2, CaV1.3, and CaV2.1 channels and
been found to require anchoring of calmodulin (CaM) to a conserved IQ motif in the
carboxyl-termini of each of these the channels [107-110]. Even during longer
depolarizations that certainly facilitate substantial Ca2+ entry [15], wild-type CaV1.1
inactivates very little and what little inactivation there is appears to be dependent on test
potential rather than current amplitude. The lack of CDI for native L-type channels in
myotubes could be a consequence of factors intrinsic to CaV1.1. For example, introduction
of non-conserved CaV1.1 residues into and near the IQ domain of CaV1.2 ablates both CaM-
binding to the carboxyl-terminus and CDI in HEK293 cells [111]. Interestingly, CaV1.2
channels which normally display considerable CDI in both native and heterologous systems
[see CDI paper of this series], inactivate very little when expressed in dysgenic myotubes
[51,54]. This latter observation suggests that extrinsic factors related to the architecture of
triad junctions could also contribute to the lack of CDI for CaV1.1. It must be noted that
mild CDI has been reported in cultured normal myotubes [112] and adult mouse flexor
digitorum brevis (FDB) fibers [113]. Thus, the topic of whether CaV1.1 is prone to CDI
merits further investigation in light of these latter results.

Excitation-Coupled Ca2+ Entry and CaV1.1
Over many years, the extremely slow activation of the skeletal muscle L-type Ca2+ current
has cast doubt on whether CaV1.1 actually can mediate significant Ca2+ entry into muscle
fibers during the short duration (~5 ms) of a tubular action potential. The discovery of
Excitation-coupled Ca2+ Entry (ECCE) by Cherednichencko and colleagues [114] has
sparked new interest in this topic. ECCE was initially described as a large, slowly
developing mode of Ca2+ entry into skeletal muscle that occurs in response to either
repetitive or prolonged membrane depolarization [26,114-119]. Such Ca2+ entry was
detected in both cultured myotubes and adult muscle fibers, either as Ca2+ transients in the
presence of ryanodine or as Mn2+ quench of the ratiometric Ca2+ indicator Fura-2
[26,114,115,117,118]. ECCE has also been assessed indirectly in cells in which SR Ca2+

release has not been blocked by ryanodine as the difference between the Ca2+ transients
measured in the presence and absence of external Ca2+ [15,116,119]. Interestingly, ECCE
was absent in myotubes that are null for either RyR1 or CaV1.1 α1S or β1a subunits
[15,16,114,115,118]. It was also sensitive to block by dihydropyridine antagonists, large di-
and trivalent cations and other widely used non-selective cation channel blockers such as
SKF-96356 and 2-aminoethyl diphenylborate (2-APB) [15,114,116]. At first glance, the
ablation of ECCE in these cases would have pointed directly to the L-type channel as the
mediator of ECCE. Even so, Cherednichenko et al. [114] proposed that ECCE is
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independent of L-type Ca2+ current via the pore of CaV1.1 because ECCE (as assessed by
Mn2+ quench of Fura-2 dye) persisted in dysgenic myotubes transfected with an CaV1.1
pore mutant (SkEIIIK) thought to conduct only outward monovalent flux [5]. The
persistence of ECCE in SkEIIIK-expressing dysgenic myotubes led to the idea that another
Ca2+-permeable channel whose gating was coupled directly to the intact CaV1.1-RyR1
complex was responsible for conducting the Ca2+ entry attributed to ECCE.

Initial investigations of the molecular basis of ECCE focused on TRPC3 channels which are
abundantly expressed in skeletal muscle [120] and Orai1/STIM1 complexes responsible for
store-operated Ca2+ entry in skeletal muscle [118,121,122]. For both, ECCE seemed to be
unaffected by siRNA or dominant-negative constructs targeting either channel type
[118,123]. The lack of contribution from either these channels prompted a re-examination of
the CaV1.1 pore as the ECCE pathway. Indeed, the native L-type channel conducted Mn2+

and supported ECCE-like Ca2+ entry during long, weak depolarizations. Moreover, ECCE
was substantially reduced in dysgenic myotubes expressing SkEIIIK in comparison to
normal myotubes [15]. Thus, the majority of Ca2+ entry attributed to ECCE seemed actually
to flow through Ca 1.1. Still, the lack of Ca2+ V entry observed in dysgenic myotubes
expressing SkEIIIK by Bannister et al. [15] contrasted on the surface with the robust Mn2+

quench originally observed by Cherednichencko et al. [114]. These results were reconciled
by the fact that SkEIIIK does become permeable to Ca2+ or Mn2+ when it enters mode 2
gating as it would during long, weak depolarization by elevated K+ or during repetitive
electrical stimulation [15,16].

Even though the molecular identity of the permeation pathway remains a matter of some
debate [3,4], the voltage-sensor for activation of ECCE is by definition housed in CaV1.1.
For this reason, any physiological impact of ECCE is directly controlled by CaV1.1. In the
original characterization of ECCE, Cherednichencko et al. [114] showed that the rate of
Mn2+ quench increases with frequency of electrical field stimulation. During continuous
application of tetanic stimuli, Ca2+ entry with similar pharmacology to ECCE has been
shown to maintain myoplasmic Ca2+ levels, suggesting that such dihydropyridine-sensitive
Ca2+ flux may play a role in store replenishment during vigorous activity.

Mutations in CaV1.1 are directly linked to pathophysiological alterations of
muscle

Mutations in CaV1.1 have been identified as causative for two congenital muscle
pathophysiologies, hypokalemic periodic paralysis (HypoKPP) [124,125] and malignant
hyperthermia [126,127]. CaV1.1 was first identified as being a locus for HypoKPP by Ptáček
and colleagues in 1994 [128]. A PCR-based investigation revealed multiple probands with
mutations resulting in H/G substitutions for R1239, the second basic residue in the voltage-
sensing S4 helix of Repeat IV. At least fourteen other HypoKPP mutations of charged
residues in the voltage sensing helices of Cav1.1 (R528H, R900H and R1239H; Fig. 1) and
the skeletal muscle Na+ channel (NaV1.4) have been identified since [129-131]. Curiously,
the mild effects which these alterations of the putative voltage-sensing structures of CaV1.1
and NaV1.4 have on either channel’s conventional biophysical characteristics could not
explain the onset of a HypoKPP episode satisfactorily [131-139]. For example,
electrophysiological analysis of myotubes derived from muscle biopsies of affected
individuals carrying the CaV1.1 Repeat II S4 R528H mutation revealed only a small
reduction in current density and slowed activation kinetics [135]. Subsequent work on
HypoKPP-linked NaV1.4 mutants revealed the mechanism of channel dysfunction in
HypoKPP to be the creation of a transmembrane “gating pore” that conducts protons
through the channel via a route other than the classic ionic permeation via the central pore
[140-142]. The presence of zwitterionic histidines at the second conserved basic residue
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position of in NaV1.4 voltage-sensing helices enables passage of protons when the voltage
sensors are in the resting position, thereby enabling the passage of these smallest of
monovalent cations into the intracellular space. Electrophysiological analysis of mouse FDB
fibers in which the human orthologue (NaV1.4 R669H) had been introduced genetically
demonstrated that resultant inward ω-current conducted by the gating pore is the basis for
muscle fiber depolarization when external K+ is reduced and is therefore sufficient to trigger
a HypoKPP episode [143]. It is thought that mutations in CaV1.1 S4 helices such as R528H
also cause HypoKPP episodes by conducting ω-current in the same manner as NaV1.4
mutants [131]. If this is case, the dysfunction of CaV1.1 that causes HypoKPP episodes is
unrelated to its ability to function as either voltage-sensor for EC coupling or as an L-type
Ca2+ channel.

In addition to the >120 known causative mutations for malignant hyperthermia in RyR1
[144], five mutations have been identified in CaV1.1 [84-86,145,146]. These five missense
mutations encode the following substitutions: 1) R174W, 2) T1354S 2) R1086H, 3)
R1086C, and 5) R1086S (Fig. 1). Of these, the R174W, R1086H and T1354S substitutions
have been functionally characterized [146-148]. In each case, the mutation had only subtle
effects on the ability of CaV1.1 to trigger Ca2+ release from the SR in response to
depolarization. In regard to the effects of the mutations on the ability of the channel to
conduct L-type Ca2+ current, the primary effects of R1086H and T1354S mutations were
lowered relative Po and accelerated channel activation, respectively [146,147]. The impact
of the R174W mutation on L-type current was much more severe than R1086H or T1354S,
as it abolished channel activation in response to 200 ms depolarizations [148].

Taken together, the minor effects on EC coupling and the varied functional consequences on
the L-type current raise many questions regarding the causative role for CaV1.1 mutations in
malignant hyperthermia susceptibility. Recently, it has been proposed that altered resting
coupling between mutant CaV1.1 and RyR1 may underlie malignant hyperthermia
susceptibility. The basis for this proposal is that resting myoplasmic Ca2+ levels of dysgenic
myotubes lacking CaV1.1 are elevated to levels reminiscent of those in muscle of malignant
hyperthermia mouse models and in dyspedic myotubes expressing mutant RyR1s [149-151].
The increased resting Ca2+ levels observed in dysgenic myotubes were rectified by
expression of CaV1.1 [151] but persisted when the CaV1.1 R174W mutant was introduced
into these cells instead [148]. Since the R174W mutation had little effect on EC coupling
and abolished channel function, it was proposed that altered resting coupling between
CaV1.1 and RyR1 promotes a ryanodine-insensitive, RyR1-mediated SR Ca2+ leak pathway
[152] that leads to elevated myoplasmic Ca2+ levels and hypersensitivity to halogenated
anesthetics in CaV1.1 R174W-expressing dysgenic myotubes.

Reduced CaV1.1 expression contributes to aging-related strength deficits
Muscle weakness in older individuals is partially attributable to depressed muscle
excitability---a process termed “EC uncoupling.” Previous studies have shown that EC
uncoupling in both human and rodent muscle is characterized by decreased voltage-triggered
SR Ca2+ release [153,154]. Concurrent reductions in L-type current amplitude and maximal
intramembrane charge movement indicate that reduced SR Ca2+ release in older mammals is
a consequence of reduced number of EC coupling voltage-sensors (i.e., CaV1.1 channels)
resident in the plasma membrane of the transverse tubule network. This idea is further
supported by a reduction in radioactive dihydropyridine binding in muscle membrane
preparations from older rats [155]. Although a reduction in membrane expression of CaV1.1
has been established as the basis of age-related EC uncoupling [156], the molecular signals
that drive this process remain unclear.
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Interestingly, Piétri-Pouxel [157] recently demonstrated that expression of CaV1.1 is
required for maintaining muscle integrity. In this study, mouse hindlimb muscle that had
been infected with siRNA directed to CaV1.1 had gross atrophy, reduced fiber diameter and
substantially more fibrosis that the control contralateral muscle. Although the authors of the
study did not attempt to determine whether the atrophic effects of CaV1.1 ablation were a
consequence of loss of EC coupling, L-type current, and/or downstream use-dependent
contractile activity, their findings raise the possibility that CaV1.1 activity-dependent Ca2+

entry via is involved in maintaining muscle mass.

Developing and differentiated muscle express different CaV1.1 splice
variants

The idea that CaV1.1 could support substantial Ca2+ entry in myotubes was bolstered by the
discovery of a high conductance embryonic/neonatal splice variant of CaV1.1 [158]. The
newly described CaV1.1e variant is missing exon 29, which encodes 19 residues within the
short segment connecting helices S3 and S4 of the fourth conserved repeat (Fig. 1). qRT-
PCR analysis of CaV1.1 transcript levels revealed that CaV1.1e comprises nearly 80% of
CaV1.1 expressed in wild-type myotubes. Although CaV1.1e was able to engage EC
coupling with similar efficiency as the original variant cloned from adult muscle (CaV1.1a)
[1], L-type Ca2+ currents conducted by CaV1.1e displayed very different properties (Fig. 5).
Since CaV1.1e activated at significantly more hyperpolarizing potentials and had an
augmented Po, the current was more than seven times larger than the CaV1.1a variant. Block
of Ca2+ entry with Cd2+ and La3+ also revealed a large component of Ca2+ transient that is a
consequence of the current conducted by CaV1.1e. The findings of Tuluc et al. [158] not
only explained why native L-type currents in myotubes are different in voltage-dependence
and amplitude from dysgenic myotubes expressing adult rabbit CaV1.1 channels, but also
demonstrated that native L-type currents in myotubes are capable of supporting robust Ca2+

entry [159].

Even before the absence of L-type current in dysgenic muscle was established [2], it was
known that the diaphragms of dysgenic mice had altered innervation. In particular, dysgenic
diaphragms display dispersed acetylcholine receptor (AChR) clusters rather than the central
band of clusters present in diaphragm of normal mouse embryos [160-162]. Similarly, the
diaphragms of β1 null embryos display dispersed AChR clusters, and increased expression
of both MuSK, an established promoter of AChR clustering, and AChRs [163].
Accompanying the changes in muscle, there is extensive sprouting of motor axons in both
dysgenic [161] and β1 null mice [163], whereas motor axons terminate at the central band of
AChRs in wild-type mice. The muscle-specific re-introduction of β1a (a transgenic
technology that was unavailable in early characterizations of the dysgenic line) restores
centrally located AChR clusters and, as a consequence, also eliminates the extensive nerve
branching.

One common defect in these two effectively CaV1.1 null mouse models appears to be Ca2+

influx via CaV1.1. In particular, treatment of C2C12 cells with the L-type channel
antagonists isradipine and verapamil caused increased transcript levels of AChR and MuSK,
whereas treatment with the L-type channel agonist (−)Bay K 8644 reduced the levels of both
transcripts [163]. Interestingly, earlier work using a similar approach on cultured muscle
cells had shown that the activity-dependent stabilization of AChRs at the endplate is
dependent on L-type Ca2+ entry [164]. Taken together, these results provide support for the
idea that the large Ca2+ currents produced by the embryonic/neonatal CaV1.1e splice variant
[158] may be important for normal embryonic and neonatal development [165].
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Ca2+ influx via the CaV1.1e variant may contribute to pathology of muscle in the multi-
organ disorder, myotonic dystrophy type 1 (DM1). DM1 patients exhibit the re-emergence
of the embryonic CaV1.1e variant as a result of altered activity of the splice factors, MBNL1
and CUGBP1 [166]. Moreover, normal adult mouse FDB fibers expressing morpholinos
designed to promote skipping of exon29 showed an increase in peak density, and
hyperpolarizing shift in activation, of L-type Ca2+ current which are consistent with the
behavior of CaV1.1e expressed in dysgenic myotubes. The morpholino-treated FDB fibers
also displayed enhanced voltage-evoked myoplasmic Ca2+ transients, which were shown by
the addition of Cd2+ and La3+ to the external medium to contain a significant contribution
from the L-type Ca2+ current. Thus increased entry of Ca2+ via CaV1.1e represents a
possible contributor to the dystrophic phenotype of DM1, an idea which is supported by the
increased presence of central nuclei in tibialis anterior muscle of adult mice expressing
CaV1.1e [166].

Summary
The unique capability of CaV1.1 to serve as voltage sensor for EC coupling has long
overshadowed its more traditional ability to conduct L-type Ca2+ current. However, the
recent work indicating that Ca2+ does indeed enter muscle cells during depolarization
through a dihydropyridine-sensitive pathway has given rise to a new curiosity about Ca 1.1
as a Ca2+ V channel. In this regard, the emergence of the high-conductance Ca 1.1e splice
variant has demonstrated that Ca2+ V flux though the L-type channel can be rapid,
substantial and physiologically relevant. Moreover, the reappearance of this embryonic
variant in muscle of DM1 patients has shown that L-type Ca2+ entry certainly has
pathological consequences.

Even though interest in CaV1.1 as channel has undergone a renaissance, the atypical role of
EC coupling voltage sensor still commands more experimental attention, as it underlies an
essential and conserved biological function. While there is consensus amongst investigators
that the α1S II-III loop and the β1a subunit make indispensable contributions to EC coupling,
the precise role(s) of these components of CaV1.1 remain enigmatic. In addition, the
conformational changes that occur in the membrane-bound portions of the channel upon
depolarization have not yet been characterized and how these molecular rearrangements are
transduced to RyR1 to engage Ca2+ efflux from the SR is even more of a conundrum. Taken
together, the investigation of these dual functions of the prototypical, yet most atypical, CaV
channel will assuredly fascinate and frustrate muscle biologists for some time to come.
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Bannister and Beam Highlights

□ This article reviews the dual functions of the skeletal muscle L-type Ca2+ channel.

□ CaV1.1 is the voltage sensor for excitation-contraction coupling in skeletal muscle.

□ CaV1.1 also conducts L-type Ca2+ current.

□ Mutations in CaV1.1 have been linked to episodic muscle disorders.

□ A CaV1.1 variant is involved in development and contributes to myotonic dystrophy 1.
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Fig. 1. Schematic representation of the CaV1.1
Cartoon illustrating the membrane topology of CaV1.1. Like NaV channels and the other
nine members of the CaV family, CaV1.1 is a single polypeptide composed of four relatively
conserved repeats (I, II, II and IV) containing six α-helices apiece. The fourth α-helix of
each has a regularly spaced sequence of basic residues that is believed to be critical for
voltage-sensing. The segments linking the repeats, as well as the amino- and carboxyl-
termini, are intracellular. The I-II-linker is the site of interaction with the predominantly
intracellular β1a subunit (illustrated). The red box in the II-III loop represents the “critical
domain” which is essential for engaging EC coupling (residues 720-765) [59]. The black
box within the blue box represents the “A domain” (residues 681-690) [66,68]. The green
box represents the highly conserved carboxyl-terminal domain [65]. The carboxyl terminus
contains a proteolytic cleavage site at residue A1664 (hatch) [167], although this cleavage
does not appear to affect the ability of CaV1.1 to couple to RyR1 [168]. The yellow segment
indicates the position of an alternative splice (exon29) in the extracellular S3-S4 linker of
Repeat IV [158]. The red explosions indicate known hypokalemic periodic paralysis
(R528H, R900H and R1239H; please see text for references) mutations and the yellow stars
signify residue substitutions that have been linked to malignant hyperthermia susceptibility
(R174W, R1086H/C/S and T1354S; please see text for references).
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Fig. 2. Tetradic organization of CaV1.1 channels at plasma membrane junctions requires the
CaVβ1a subunit
Electron micrographs of freeze-fracture replicas of zebrafish membrane junctions are shown
in both panels. In wild-type muscle (left), CaV1.1-containing channels exist in tetrads
aligned with the four subunits of every other RyR1 homotetramer; each tetrad is highlighted
by a red dot. In relaxed, or β1 null, muscle, the CaV1.1 particles are sparse and tetrads are
absent (right). Figure modified from Schredelseker et al. [30] with permission from the
publisher; ©The Proceedings of the National Academy of Sciences of the USA, 2005.
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Fig. 3. Restoration of L-type current and EC coupling in dysgenic (CaV1.1 null) myotubes
EC coupling, as indicated by contractions elicited by focal electrical (top row), and Ca2+

currents recorded at +30 mV in the whole-cell configuration (bottom row) from normal
myotubes (left panels), naïve dysgenic myotubes (middle panels) and CaV1.1-expressing
dysgenic myotubes (right panels). Note the persistence of some T-type Ca2+ current in naïve
dysgenic myotubes. Figure modified from Tanabe et al. [49] with permission from the
publisher.
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Fig. 4. Communication between CaV1.1 and RyR1 is bi-directional
The orthograde, or EC coupling, signal is communicated from CaV1.1 to RyR1. This signal
is absent from dyspedic (RyR1 null) myotubes (bottom left). This signal is restored by
reintroduction of the SR Ca2+ release channel (bottom right). Interestingly, dyspedic
myotubes have meagre L-type Ca2+ current (top left), despite normal CaV1.1 expression.
Reintroduction of RyR1 substantially increases L-type current density (top right), indicating
that conformational coupling between CaV1.1 and RyR1 also produces a “retrograde” signal
that serves to increase CaV1.1 relative Po. Figure modified from Nakai et al. [88] and
Grabner et al. [92] with permission from the publishers.
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Fig. 5. A high-conductance CaV1.1 splice variant expressed in developing skeletal muscle
L-type currents recorded from dysgenic myotubes expressing either an adult α1S isoform
(CaV1.1a) [1] or an embryonic α1S isoform lacking exon 29 [158] are shown in (A-left). A
comparison of I-V relationships shows that CaV1.1e has considerably larger current density
and a hyperpolarizing shift in the voltage-dependence of activation relative to CaV1.1a (A-
right). Myoplasmic Ca2+ transients are augmented for CaV1.1e (B-left), but the increase and
hyperpolarizing shift in Fluo-4 signal represents the contribution of the L-type current
because the ΔF/F-V relationship is nearly identical when Ca2+ entry via CaV1.1 is blocked
by Cd2+ and La3+ (B-right). Figure modified from Tuluc et al. [158] with permission of the
publishers; © Elsevier, 2009.
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