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Summary
The importance and role of the cellular epigenome in cell fating and development has been studied
for decades. The epigenome encompasses a range of attributes including DNA methylation,
histone modifications, and chromatin remodelers; together these components define the cellular
transcriptome, identity, and function. The cellular epigenome is dynamic in response to
environmental signals, modifiable during normal cell differentiation and is heritable in daughter
cells. This plasticity, however, poses a risk for misregulation and may underlie a number of
hereditary disorders, development defects, and cancer. Although the first epigenetic change
described in cancer was gene hypomethylation [1,2], we know that cancers display global
hypomethylation, as well as, site-specific gene hypermethylation in addition to changes in
chromatin modifications. Mechanisms explaining the sometimes paradoxical epigenetic changes
observed in cancer, their contributions to tumor initiation and progression and how epigenetics
relate to genetic events are poorly understood. In this review we will briefly discuss recent
findings on the epigenomic states observed in colon cancer, in particular, how perturbations to the
genome and epigenome together may contribute to initiation and progression of colon cancer.

Introduction
Intestinal Epithelial Regeneration poses a risk for colon cancer development

Epithelia is a continuous sheet of tightly linked cells that line the digestive tract, urogenital,
and respiratory tract. These epithelial layers protect from the external environment and aid
in nutrient/water absorption and glandular secretions. Most epithelial layers are constantly
regenerated in order to maintain normal adult organ function. Within the intestine a cyclical
regeneration process [3-6] is maintained by adult stem cell populations that reside within the
intestinal crypt [7-12]. The stem cells from the crypt bottoms give rise to a rapidly dividing
transit-amplifying (TA) population. Near the mouth of the crypt, TA cells exit mitosis and
differentiate into all mature cell types of the intestinal epithelium including absorptive
enterocytes and three secretary cells types; goblet, enteroendocrine and Paneth cells [13].
Eventually, differentiated epithelial cells undergo apoptosis and are shed into the intestinal
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lumen. The average life span of a cell in the intestinal epithelium is just 3-5 days [14], so the
mechanisms that regulate stem cell maintenance, proliferation, differentiation, and apoptosis
must be precisely tuned to ensure proper organ maintenance. An imbalance in the
proliferation, differentiation, and apoptosis patterns within the intestinal crypts can lead to
aberrant crypt foci [3-6], which are thought to later progress to an adenoma. The progression
from an adenoma to carcinoma in colon cancer may take decades, supporting the notion that
accumulated genetic and epigenetic changes underlie the multistep developmental process of
colorectal cancer (Figure 1).

The Molecular Genetics of Colon Adenoma Formation
Familial Adenomatous Polyposis (FAP) results from mutations in a single gene known as
adenomatous polyposis coli, APC [15,16]. This syndrome is defined by the appearance of
hundreds to thousands of adenomatous polyps in affected individuals. The APC gene was
discovered by genetic linkage analysis in FAP families [17-19]. Mutations in the APC gene
appear in aberrant crypt foci and early adenomas, suggesting inactivation of APC very early
in adenoma formation [20-22]. Furthermore, mutations in APC have been observed in
70-80% of sporadic colon cancers [23,24]. In support of APC loss as an initiating event in
adenoma, mice lacking functional APC develop numerous intestinal adenomas[25] [26].
Together the data from human and mice place APC as a gatekeeper of colonic epithelial cell
proliferation and differentiation; whose loss may lead to an imbalance in cell turnover.
Supporting this gatekeeper role, a number of studies have investigated whether germline or
de novo somatic mutations in genes such as p53 and RAS, commonly mutated genes in
colon cancer [21,27-29], can efficiently initiate neoplastic processes. These studies show
that the loss of these genes alone does not appear to lead to colorectal neoplasia, instead they
assist in progression from adenoma to carcinoma. Therefore, these studies suggest that the
sequence of mutations and the accumulation of mutations will determine the propensity of
neoplasia [30,31]. A perplexing question in cancer biology is how a single gene mutation
can lead to polyp formation or a marked predisposition to colorectal cancer? A possible
answer to this question originates from the recent data suggesting that the loss of APC in a
cell may affect both intestinal cell fating and cell proliferation, therefore, possibly
explaining the enhanced disease penetrance in FAP patients. These findings suggest a model
wherein genetic lesions coordinate with epigenetic changes that cause improper cell fating
and may help dictate the response to subsequent transforming events.

The role DNA methylation in cancer and cell fating
Although genetic mutations have been implicated in the initiation of many cancers,
epigenetic and genetic alterations are likely to act synergistically in cancer development.
One of the first epigenetic abnormalities discovered in a number of cancers was the loss of
DNA methylation at CpG dinucleotides [2,32]. This loss of methylation was observed in
very early stages of premalignant adenomas with no significant bulk changes in methylation
from adenoma to carcinoma [33,34]. This hypomethylation was thought to have significant
implications on gene activation, loss of heterozygosity, and global chromosomal stability
[35-37]. At the time, however, there were no obvious mechanisms explaining DNA
demethylation or its biological importance. In parallel, however, the field made rapid
progress in understanding DNA hypermethylation and the enzymes that facilitate this
process. Evidence for targeted and predictable hypermethylation changes came from
analysis of patient samples that resulted in a characteristic pattern of methylation referred to
as a CpG island methylator phenotype or CIMP+ [38]. Clear examples of gene
hypermethylation leading to inactivation of important tumor suppressor genes was first
observed at the mismatch repair enzyme MLH1 in colon cancers [39]. This list of
hypermethylated gene promoters in colorectal cancer (CRC) has grown extensively and now
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includes key tumor suppressor such as retinoblastoma (RB) [40], P16 [41], RARB, and
SFRP [42,43]. It is important to note that epigenetic alterations commonly observed in colon
cancers such as candidate gene hypermethylation and genome-wide DNA hypomethylation
are also evident in normal aged colonic tissue [44-46]. These observations raise the question
whether epigenetic marks acquired during aging or in response to oncogene activation might
play important roles in priming tumorigenesis and cancer progression. Reversing the
methylation state at these hypermethylated promoters/loci, such as MLH1, can be achieved
using drugs that inhibit DNA methyltransferase and remain an interesting approach for
reprogramming tumor cell with aberrant methylation. [47,48].

Today genome-wide analysis of DNA methylation using expanded promoter arrays have
expanded our view of how and where methylation changes happen. Furthermore these
genome-wide array studies have revealed that most of the methylation changes observed in a
variety of cancers occur in CpG island shores rather than promoters [49]. In addition, this
analysis showed that cancer specific differentially methylated loci varied across normal and
colon, lung, breast, thyroid and wilms tumor subtypes [50]. Interestingly separate, parallel
studies have revealed that these variable cancer loci are often differentially methylated or
misregulated when comparing embryonic stem cells (ES) and induced pluripotent stem cells
(iPSCs) [51]. Thus suggesting that the mechanisms of differentiation and reprogramming
that are employed in normal development maybe shared in reprogramming toward cancer.

In addition to the targeted changes at specific loci, factors such as nuclear organization,
architecture, and genomic sequence may impart profound changes in genome wide
methylation patterns. For example, a close examination of the genome using shotgun
bisulfite sequencing in normal mucosa, three colorectal cancers, and two adenomatus polyps
verified previous findings and revealed many new and interesting insights [52]. First, when
investigating global DNA methylation changes by comparing the methylation of tumor to
adjacent normal mucosa three distinct methylation profiles were found: (1) regions
hypomethylated in both tumors and normals, (2) regions that are demethylated in tumors
only (3) regions that acquired methylation in tumor. The methylation prone regions in
tumors corresponded with CpG islands in and outside promoters, and were also highly
enriched for marks of polycomb repressive complex 1 and 2 activity in hESCs and
methylated in normal development [53-56]. Furthermore, the methylation prone loci were
generally depleted of certain transcription factor sequences such as Sp1, YY1, and NRF1,
which confer methylation protection in cancer [57,58]. Notably, the authors find that focal
and large blocks of the genome are demethylated [50], and the regions of hypomethylation
within tumors corresponded with an increase in gene expression in these tumors.
Interestingly, these large blocks of hypomethylation overlapped with previously described
partially methylated domains (PMDs) in IMR90 cells [59], demonstrating a shared attribute
between immortalized cell lines and tumor cells. Furthermore, these large blocks of
hypomethylation are defined by the nuclear lamina associated domains (LADs) [52]. These
observations clearly indicate that changes in DNA methylation can occur throughout the
genome and may require a variety of mechanisms all of which may serve to improperly fate
cells. These changes could, therefore, be a major mechanism for initiating transformation or
generating transformation competent cells.

Although the hypomethylation observed in adenomas and carcinomas [60-64] suggests
altered cell plasticity and potential growth advantage, the mechanism through which this
happens and the biological impacts are unclear. Many have speculated that this global
change may be achieved passively (absence of maintenance methyltransferase activity) or
actively (targeted enzymatic removal of mC mediated by the DNA demethylases) or a
combination of both. Recent work, however, has shed light on this possibility by
demonstrating that aberrant DNA methylation can occur soon after the loss of APC. For
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example, human FAP adenomas and apcmcr zebrafish have elevated transcript levels of the
DNA demethylase machinery components (i.e. Mbd4, AID, Apobec2a, Gadd45a) [65-69].
The increase in DNA demethylase components corresponded with an increase in expression
and reciprocal decrease in methylation at a number gene promoters implicated in intestinal
cell fate specification and colorectal cancers such as aldh, and hoxd13 determined by
MEDIP arrays. Knockdown of the DNA demethylase components restored DNA
methylation in apcmor zebrafish. Furthermore, the upregulation of the DNA demethylase
machinery was due to a previously described lack of retinoic acid [65-69]. Treatment of
apcmcr zebrafish with retinoic acid, reduced the DNA demethylase components and restored
intestinal cell fating; fating determined by an increase in IFABP expression and reduction in
aldh1a2 levels. Furthermore, knockdown of the DNA demethylase components alone in
apcmcr zebrafish also induced intestinal cell differentiation, suggesting that the upregulation
of DNA demethylases maintained intestinal cells in a progenitor like state [65-69]. These
data support a role for APC in controlling cell fate specification through its regulation of the
DNA demethylases and place this demethylation as the initiating event that precedes
disregulated cell proliferation. Consistent with this notion, Apc min mice carrying a genetic
deletion for Apobec1 −/−, a cytidine deaminase, have reduced polyp formation [70].

Changes in Chromatin Packaging in Cancer Initiation and Progression
The histone code at or outside promoters affects DNA methylation dynamics in a stem/
progenitor or differentiated cell. For example regions highly enriched for marks of the
polycomb repressive complex 1 and 2 activity in hESCs commonly acquire DNA
methylation in normal development/differentiation [53-56]. Interestingly, these same gene
promoters acquire methylation in colon adenomas. Recently, the misregulation of post-
translational histone modifications has become increasingly apparent in a number of human
cancers, and is caused by the deregulation of factors that mediate the reading, writing, and
removal. For example, in addition to global changes to DNA methylation and H3K27me, a
generalized loss of H4K16 acetylation and H4K20 methylation is found in both lymphoma
and colorectal cancer and correlated with transcriptional silencing [71]. Future studies are
needed to explore the role of histone modifications, remodelers, and transcription factors in
the facilitation in intestinal cell turnover and tumor initiation and progression. Achieving a
comprehensive understanding of the roles of chromatin remodelers and modifiers in normal
intestinal fating and how they are misregulated in cancer may be of therapeutic potential.

Uncontrolled cell proliferation and its role in Colon cancer initiation and
progression

The current data now point to misregulation of epigenetics as a major factor in governing
intestinal cell fating and colon tumor initiation. Changes in the intestinal cell epigenome
may precede and/or enhance the activity of other oncogenes such as Wnt, RAS and p53,
which are needed for neoplastic progression. Indeed, a number of studies suggest that loss of
cell fating precedes disregulation of proliferation stimulated by signaling pathways such as
Wnt/beta - catenin [23,75-82]. In support of this possibilitiy, a number of studies that have
failed to correlate the loss of APC with activation of WNT signaling as determined by the
presence of nuclear b-catenin, particularly in early adenomas [83-87]. An absence of nuclear
b-catenin suggests a role for others factors, such as mehthylation changes as key to adenoma
initiation upon loss of APC. Support for this model comes from work in human cells lines,
human FAP adenomas, and APC morphant zebrafish [86] showing a need for loss of APC as
well as RAS activation in promoting proliferation of undifferentiated intestinal cells. These
findings are consistent with previous observations in mice, wherein, loss of APC and KRAS
mutation causes an increase in adenoma size, number and invasiveness [88,89]. Further, this
enhanced proliferation appears to expand the number of cells bearing putative stem cell
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markers within the tumor epithelium [90]. Taken together the data suggest that epigenetic
changes work in concert with proliferative signals for initiation and progression of colon
tumors. Future studies with help define whether specific epigenetic landscapes may be
necessary and permit transformation by oncogenes such as RAS.

Concluding remarks
Emerging evidence suggests that both genetic alterations and epigenetic aberrations
contribute to the initiation and progression of human cancers, including colon cancer. Loss
of a major tumor suppressor, APC, appears to induces aberrant DNA methylation and that
this misprogramming contributes to mis-fating of intestinal cells as a common mechanism to
drive colon tumorigenesis. These changes in DNA methylation, along with changes in
histone modifications, create a new landscape for the correct interpretation of cell signals
that usually govern normal cell turnover. Mis-interpretation of these signals due an altered
epigenetic state can lead to the misregulation of gene expression and selected growth
advantage of tranformed cells. Therefore, further definition of mechanisms targeting
epigenetic modifications in the normal intestinal epithelium and in precancerous, and
cancerous lesions offers the promise of identifying opportunities for early cancer detection
and intervention.
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1. APC modulates the intestinal epigenomic landscape and cell fate through its
regulation of RA/DNA demethylases.

2. Misregulation of the epithelial cell epigenome governs intestinal cell fate and
colon tumor initiation.

3. Global intestinal epigenomic changes may enhance oncogene activity and may
facilitate neoplastic progression
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Figure 1.
Model Figure
Colon cancer development is a multistep process with known perturbations to the genome
and/or epigenome of colonic epithelial or progenitor cells. These perturbations together
contribute to initiation and progression of colon cancer. Although, this may be an over
simplification of the process, the loss of APC represents a common starting point. Upon loss
of APC, the attenuated retionic acid levels and the concomitant upregulation in the DNA
demethylases may perturb the differentiated cell fate or may prevent proper colonic
progenitor cell differentiation. The upregulation in the DNA demethylases may contribute to
the global hypomethylation or facilitate the second hit mutation in a tumor suppressor gene,
which provides cancer cells a growth advantage and metastatic potential.
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