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Abstract
We aimed to improve the diagnostic accuracy of automatic myocardial perfusion SPECT (MPS)
interpretation analysis for prediction of coronary artery disease (CAD) by integrating several
quantitative perfusion and functional variables for non-corrected (NC) data by support vector
machines (SVM), a computer method for machine learning.

Methods—957 rest/stress 99mtechnetium gated MPS NC studies from 623 consecutive patients
with correlating invasive coronary angiography and 334 with low likelihood of CAD (LLK < 5% )
were assessed. Patients with stenosis ≥ 50% in left main or ≥ 70% in all other vessels were
considered abnormal. Total perfusion deficit (TPD) was computed automatically. In addition,
ischemic changes (ISCH) and ejection fraction changes (EFC) between stress and rest were
derived by quantitative software. The SVM was trained using a group of 125 pts (25 LLK, 25 0-,
25 1-, 25 2- and 25 3-vessel CAD) using above quantitative variables and second order
polynomial fitting. The remaining patients (N = 832) were categorized based on probability
estimates, with CAD defined as (probability estimate ≥ 0.50). The diagnostic accuracy of SVM
was also compared to visual segmental scoring by two experienced readers.

Results—Sensitivity of SVM (84%) was significantly better than ISCH (75%, p < 0.05) and EFC
(31%, p < 0.05). Specificity of SVM (88%) was significantly better than that of TPD (78%, p <
0.05) and EFC (77%, p < 0.05). Diagnostic accuracy of SVM (86%) was significantly better than
TPD (81%), ISCH (81%), or EFC (46%) (p < 0.05 for all). The Receiver-operator-characteristic
area-under-the-curve (ROC-AUC) for SVM (0.92) was significantly better than TPD (0.90), ISCH
(0.87), and EFC (0.60) (p < 0.001 for all). Diagnostic accuracy of SVM was comparable to the
overall accuracy of both visual readers (85% vs. 84%, p < 0.05). ROC-AUC for SVM (0.92) was
significantly better than that of both visual readers (0.87 and 0.88, p < 0.03).
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Conclusion—Computational integration of quantitative perfusion and functional variables by
SVM approach allows significant improvement of diagnostic accuracy of MPS, and can
significantly outperform visual assessment based on ROC analysis.

Keywords
Automated Quantification; Coronary Artery Disease; Myocardial Perfusion SPECT; Total
Perfusion Deficit; Support Vector Machines; Machine Learning

Coronary artery disease (CAD) is the leading cause of morbidity and mortality worldwide
(1,2). Myocardial perfusion SPECT (MPS) is the most commonly used noninvasive stress
imaging modality for diagnosis of CAD (3). Multiple MPS features including quantitative
perfusion and functional variables have been previously used for diagnosis of obstructive
CAD (4–8) and they are reported routinely by nuclear cardiology software. However,
algorithms for combining and integrating these variables to improve the overall test
accuracy have not been well developed. Currently none of the software tools provides
combined diagnostic score based on multiple quantitative features.

Support Vector Machines (SVM), a kernel-based method (9) is a machine learning
algorithm. It has been applied in various fields including computational biology due to its
high overall accuracy, ability to deal with large datasets, and its flexibility in modeling
diverse sources of data (10). SVM is a classifier, where a set of input data with several
features are used to assign objects to multiple categories (10). SVM uses the concept of
margin maximization (distances between hyper-surfaces defined in multi-dimensional
variable space) to discriminate between two categories. Margins are computed by various
kernel functions, which allow the SVM to classify with nonlinear class boundaries by
transforming the input variables via nonlinear mappings. Furthermore, in certain
implementations it is also possible to obtain probability estimates for particular classification
(11).

In the current study, we aimed to investigate whether integrating quantitative perfusion and
functional MPS variables using a SVM statistical learning algorithm demonstrate an
improvement in the diagnostic accuracy of automated analysis in predicting severe stenosis,
using invasive coronary angiography as the gold standard. To our knowledge, such an
approach has not been previously reported for quantitative MPS. Such a tool may easily be
integrated within currently available quantitative nuclear cardiology software programs in
order to provide improved automated diagnostic score for interpretation of MPS results.

MATERIALS AND METHODS
Patients Population

Consecutive subjects who were referred to the Nuclear Medicine Department of Sacred
Heart Medical Center, Eugene, Oregon, from March 1, 2003 to December 31, 2006 for rest
and stress electrocardiography (ECG)-gated MPS, in whom gated information was available
for both phases, were selected (12). All patients with a prior history of CAD or significant
valve disease were excluded. MPS and coronary angiography had to be performed within 60
days without a significant intervening event. The low likelihood (LLk) studies were obtained
from patients who performed an adequate treadmill stress test, did not have correlating
coronary angiography available, but had < 5% likelihood of CAD using the Diamond and
Forrester criteria based on age, sex, symptoms, and ECG response to adequate treadmill
stress testing (13). Based on these selection criteria, 957 sequential studies were identified to
form the study group.
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Training and Testing Groups
This population consisted of two subgroups of patients: 623 patients with correlative
angiography as described above and 334 patients with a LLk of CAD who were classified as
normal. We chose to split our population into minimal training and larger testing groups in
order to keep the testing population as large as possible. From our internal experience in
perfusion quantification with normal databases, a small number of LLk datasets (25–50)
were sufficient for the creation of normal databases (14), while increasing that number did
not significantly change the normal distribution. In this application, we needed to include a
representative population with varying degree of the disease. We chose to include an equal
number of cases assigned to normal and abnormal groups in order to ensure equal
contribution from different perfusion and/or functional abnormalities. The objective was to
create a balanced model that would be applicable to normal and abnormal scans. Therefore,
the training group consisted of 125 patients (25 LLK, 25 0-vessel, 25 1-vessel, 25 2-vessel,
and 25 3-vessel CAD). The remaining 832 patients were used during the testing phase. The
clinical characteristics of the two groups are listed in Table 1. The study protocol was
approved by the Institutional Review Board (IRB).

Image Acquisition and Reconstruction Protocols
The details of image acquisition and tomographic reconstruction have been previously
described (15). In brief, studies were performed by using standard 99mTc-sestamibi rest/
stress protocols. All subjects were imaged at 60 min after the administration of 99mTc-
sestamibi at rest followed by stress images taken at 15–45 min after either
radiopharmaceutical injection during treadmill testing or adenosine infusion with low-level
exercise. Vertex, dual-detector scintillation cameras (Philips Medical Systems, Milpitas,
CA, USA) with low energy, high-resolution collimators were used to acquire MPS.

Ungated and gated tomographic reconstruction was performed by use of the AutoSPECT
(16) and Vantage Pro programs (Philips Medical Systems). Emission images were
automatically corrected for non-uniformity, radioactive decay, and motion during
acquisition, and subjected to three-point spatial smoothing. Attenuation-correction was not
used in this study. The alignment of the projection data to the reconstruction matrix was
applied to determine the mechanical center of rotation. Butterworth filters were applied to
obtain the MPS with an order of 10 and cutoff of 0.50 for rest MPS, and an order of 5 and
cutoff of 0.66 for stress MPS. For gated images time binning was performed both into 8-bin
(70%) and 16-bin (30%).

Automated Analysis
In this proof-of-concept study, we have selected three common quantitative features
routinely used during interpretation of MPS (two perfusion and one functional feature) to
provide a minimal set of quantitative variables known to be clinically important, and
conservatively guarding against any potential over-fitting with a larger number of features.

Stress Total Perfusion Deficit (TPD)—Stress MPS images were quantified using
normal limits and previously developed simplified approach (6). Perfusion parameters were
derived automatically based on the concept of total perfusion deficit (TPD) (17). Briefly, an
ellipsoidal model and contours derived by the QPS algorithm (18–20) were used to extract
polar map samples. An optimal normalization factor was established by an iterative search
for the minimal absolute count difference between the counts in the normal part of the
myocardium and the corresponding count distribution in the normal database. This scheme
avoided normalization based on an arbitrary selection of pixels (maximum or percentile
maximum). Subsequently, an abnormality threshold of 3.0 average (mean absolute)
deviations was applied, which is approximately equivalent to 2.5 SD, to estimate the extent
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of hypoperfusion. This value is similar to the threshold used in other MPS quantification
methods (21). The perfusion defect extent was calculated as the percentage of the total
surface area of the left ventricle for which test data were below the abnormality threshold.

Ischemic Changes (ISCH)—Following image registration and normalization as
previously described (5), the stress–rest count difference was derived from the voxels
contained within only the stress contour volume, since rest scans were spatially aligned to
stress scans. The integrated count differences were then divided by the total rest counts,
resulting in a relative count change measure, which we defined as the measure of ischemia
(ISCH). This perfusion measurement does not require normal databases and is obtained
independently from the TPD measurement. This measure has a complementary character to
TPD measurement.

Post-stress Ejection Fraction Changes (EFC)—EFC changes have been shown to be
helpful in diagnosing CAD (8). However, an exact combination of EFC with perfusion
measurements in diagnosing CAD has not been established. Stress and rest left ventricular
(LV) ejection fraction (EF) were automatically calculated using Quantitative Gated SPECT
(QGS) utilizing gated perfusion images via a volume-based approach as previously
described (22). The LV cavity volume was measured as the territory bound by the
endocardium and its valve plane for every interval in the cardiac cycle. The end-diastolic
(EDV) and end-systolic (ESV) volumes were identified using the time-volume curve (22).
The differences between stress and rest EF was defined as EFC.

Motion and Thickening Changes (MTC)—Automated regional motion and thickening
scores were derived as previously described by our group (23). Regional motion in
millimeters (mm) was defined as the distance between end-diastolic (ED) and end-systolic
(ES) mid-myocardial surface in the direction normal to the mid-myocardial surface for each
polar map location. Thickening at each polar map point in % was defined as the increase of
myocardial thickness (distance between the endocardial and epicardial surface) at the ES
phase as compared to the ED phase, and also in the direction of the mid-myocardial surface
normal (23). Using normal motion and thickening limits created based on LLk patients,
automated motion and thickening scores were derived using a 17-segment model (23). The
motion score ranged between 0 to 5: 0 normal, 1 mildly, 2 moderately, 3 severely
hypokinetic, 4 akinetic, and 5 dyskinetic. The thickening score ranging between 0 to 3: 0
normal, 1 mildly abnormal, 2 moderately to severely abnormal, and 3 no systolic wall
thickening (23). The motion and thickening change scores were calculated separately by
subtracting the rest image score from the stress image score.

Visual Analysis
Visual interpretation of MPS images was based on short axis, horizontal, and vertical long-
axis tomograms divided into 17 segments using QPS interactive 17-segment graph (22).
MPS images were scored independently by two expert board-certified readers (Reader 1
with 30 years and Reader 2 with more than 10 years of clinical experience in nuclear
cardiology) using a five-point scoring system (0, normal; 1, mildly decreased; 2, moderately
decreased; 3, severely decreased; and 4, absence of segmental uptake). Visual reading was
performed with the expert being blinded to computer-generated myocardial perfusion
quantification results or any clinical information, such as patient history. The readers scored
both the stress and rest 17 perfusion segments using the 5-point scale described above. The
readers could review stress and rest perfusion data, raw projection data and gated function
data (24). Subsequently, summed stress scores (SSS) and summed rest scores (SRS) were
calculated by summing the 17 segment stress and rest scores, respectively. In addition, a
summed difference score (SDS) was calculated as SSS minus SRS. All visual scores were
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recorded automatically in the batch files and directly converted for the statistical analysis,
eliminating manual transfer.

Support Vector Machines Algorithm
Model creation—We used SVM statistical learning algorithm, open source LIBSVM
implementation (11), to combine quantitative perfusion (TPD and ISCH) and functional
variables (EFC). In addition, we also combined quantitative perfusion (TPD and ISCH) with
functional variables MTC and absolute stress EDV and ESV. The SVM algorithm has been
extensively described in computer science literature (25,26). Briefly, SVM searches for the
optimal division of the feature space (to normal/abnormal) with a hyper-plane by
maximizing margins (distances) from the plane to support vectors (points closest to the
plane). The points positioned clearly outside of the hyper-plane on two sides were discarded
by the algorithm when searching for the hyperplane. This method is resistant to over-fitting,
as only the points close to hyper-plane (decision plane) are considered in the fitting. The
distances from the hyper-plane are then converted to probability estimates, which provide an
estimate of probability of the outcome category, as described in LIBSVM: A library for
support vector machines by Chang and colleagues (11).

In SVM, the training vectors (xi ) are mapped into a n-dimensional feature space by the
kernel functions. Kernel functions other than linear allow non-linear class boundaries.
Mathematically, any kernel function is defined by

(1)

Where xi are the training vectors. There are four basic kernels available on SVM: linear,
polynomial, radial, and sigmoid (27). We used a polynomial kernel of degree (d =2) in the
form of equation 2 (11):

(2)

to allow nonlinear classification. SVM transforms the nonlinear feature space to higher-
dimensional linear space with the use of the kernel function. The penalty for the positive
class was assumed to be equal to the ratio of abnormal to normal cases (1.5 in the training
set), as recommended for unbalanced datasets (27). Subsequently, optimal parameters for
the penalty factor for the error term (C) and kernel parameter γ, were found by a grid search
technique, where the combination of C and γ are optimized for the best cross-validation
accuracy (27). The grid search analysis is performed only on the training set. Based on these
parameters, the SVM model was created.

Furthermore, for comparison we assessed the diagnostic accuracy of the SVM model using
linear kernel function, with d equal to 1 in equation 2.

Testing—The test group patients (N = 832) were divided by SVM into 2 categories (CAD,
and no CAD) in the testing phase. The model defined as described above was validated with
the test group. None of the cases used in the model creation used in the testing phase. The
probability estimates returned by SVM were categorized as normal (< 0.50) and abnormal
(≥0.50). These probability estimates were used to construct ROC curves.

Definition of Abnormal MPS
Automated Analysis—SVM threshold was derived automatically during the testing
phase. In order to compare diagnostic performance of the SVM method to individual
features, we used previously established thresholds. A TPD value of ≥ 3% on per-patient
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basis was considered abnormal (12). The ISCH value of ≥ 3% was considered abnormal
based on previously established thresholds (5). An EFC value of ≥ 5% was considered
abnormal based on previously established thresholds (8).

Visual Analysis—SSS ≥ 4 was considered abnormal (12). SDS ≥ 2 was considered
abnormal (12).

Conventional Coronary Angiography
Conventional coronary angiography was performed according to standard clinical protocols
within 60 days of the myocardial perfusion examination. All coronary angiograms were
visually interpreted by an experienced cardiologist. A stenosis of 50% or greater narrowing
of luminal diameter of the left main or 70% or greater narrowing of the other coronary
arteries was considered significant and was used as the gold standard for the detection of
CAD.

Statistical Analysis
Continuous variables were expressed as the means ± standard deviation, and categorical
variables were expressed as percentages (%). A Z-test was performed to compare the
sensitivity, specificity, and accuracy of the various quantitative variables versus SVM, as
well as SVM versus visual analysis. For all analyses, p values < 0.05 were considered
statistically significant. Receiver-operator-characteristic (ROC) curves were analyzed to
evaluate the ability of SVM versus various quantitative variables for forecasting ≥70%
stenoses of the coronary arteries. In addition, ROC curves were also analyzed to evaluate the
ability of SVM classification versus visual scoring for forecasting ≥70% stenoses of
coronary artery. The differences between the ROC areas under the curves (ROC-AUC) were
compared using the Delong method (28).

RESULTS
SVM versus Quantitative Perfusion and Functional Analysis

Figure 1 compares the sensitivity, specificity, and accuracy of the quantitative measures
TPD, ISCH, EFC, and SVM for detection of ≥ 70% CAD on a per-patient basis. When the
TPD was compared to the SVM analysis, the specificity and accuracy of SVM was
significantly higher than the TPD analysis (p < 0.05). The sensitivity, however, was similar
between the SVM (84%) and TPD (85%) analysis. When ISCH was compared to the SVM
analysis, the sensitivity and accuracy of SVM was significantly higher than that for TPD (p
< 0.05). The specificity, however, was similar between the SVM and ISCH analysis. The
sensitivity, specificity, and accuracy of SVM were higher than EFC (p < 0.05). The ROC
curves comparing TPD, ISCH, EFC, and SVM probability estimates are shown in Figure 2.
Table 2 also demonstrates the number of patients in whom the diagnosis was correctly
changed based using SVM versus TPD alone. In the majority of cases, one or both of the
other factors (ISCH and EFC) established the correct diagnosis. The ROC-AUC for SVM
probability estimates (0.92) was significantly better (p < 0.001 for all) versus TPD (0.90),
ISCH (0.87), and EFC (0.60).

The sensitivity, specificity, and diagnostic accuracy of SVM using linear kernel function
(d=1) for detection of > 70% CAD on per-patient basis. The sensitivity was 89%, the
specificity was 77%, and the overall diagnostic accuracy was 82%. When comparing
polynomial SVM to linear SVM, the diagnostic accuracy and specificity were significantly
higher (p < 0.05), while the sensitivity was significantly lower (p = 0.046).
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We also assessed the sensitivity, specificity, and diagnostic accuracy of SVM by combining
quantitative perfusion (TPD and ISCH) and functional variables regional MTC and absolute
stress EDV and ESV, which are shown in Table 3. The sensitivity of quantitative perfusion
with MTC and absolute volumes significantly decreased, while the specificity significantly
improved when compared to the combined method using quantitative and changes in EF,
with accuracy remaining approximately the same. In addition, the ROC-AUC was also not
significantly different.

SVM versus Visual Analysis
Figure 3 compares the sensitivity, specificity, and accuracy of SVM versus to readers (SSS)
for detection of ≥ 70% CAD on per-patient basis. The sensitivity, specificity, and accuracy
of SVM were comparable to Reader 1. When compared to Reader 2, the sensitivity of SVM
was significantly better (p < 0.05). The specificity and diagnostic accuracy of SVM were
similar to Reader 2. The ROC curves comparing SVM and the two visual readers are shown
in Figure 4. The ROC-AUC for SVM probability estimates was significantly better (p <
0.03) than both readers. In addition, we also compared the sensitivity, specificity, and
accuracy of SVM versus SDS in Figure 3 for detection of ≥ 70% CAD on per-patient basis.
These values were not significantly different than those obtained using SSS.

DISCUSSION
In this study, we were able to demonstrate significant improvement in diagnostic accuracy
for detection of obstructive CAD utilizing the SVM machine learning algorithm, which
combined quantitative perfusion and functional variables. There has been significant interest
in improving the overall diagnostic performance on MPS, in hopes of identifying individuals
with significant CAD who might benefit from earlier intervention, as well as preventing the
need for unnecessary invasive evaluation in patients with false positive MPS (21). Although
individual quantitative measurements have previously been used for diagnosis of obstructive
CAD (5,8,15), to our knowledge, this is the first study indicating improvement in diagnostic
accuracy of MPS utilizing learning algorithms combining multiple features.

Statistical learning algorithms have been used in cardiovascular medicine to predict multiple
features including those at increased risk of decompensated heart failure (29) as well as
predictors of onset of atrial fibrillation (30). Prior studies have demonstrated that
quantitative analysis can be a useful supplement to the visual analysis (31,32), providing an
accurate and objective method for assessment of the extent, severity, and reversibility of
perfusion defects. The ability to combine multiple quantitative features could further
enhance the value of quantitative MPS tools for diagnosis of obstructive CAD. In this study,
we have demonstrated that the combination of SVM with the currently available automated
software improves significantly the overall diagnostic accuracy of the quantitative analysis
system. To our knowledge, this is the first report of SVM application for this purpose.

We also compared the diagnostic accuracy of SVM using different quantitative perfusion
and functional analysis. The combination of quantitative perfusion and regional MTC using
SVM resulted in a significant decline in sensitivity, significant improvement in specificity,
and similar accuracy. These findings are consistent with prior studies demonstrating a
decline in sensitivity and improvement in specificity when using regional functional data
(33). Therefore, it appears that both changes in global and regional wall motion between
stress and rest provide incremental diagnostic value when utilizing the SVM combined
method; however, global ejection fraction may be a more reasonable approach based on the
fact that both specificity and accuracy improve without a significant decline in sensitivity.
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We compared the diagnostic accuracy of SVM versus two experienced visual readers. Prior
studies have shown less variability when using automated analysis versus semi-quantitative
analysis (34), especially when compared to less experienced readers (35,36). The diagnostic
accuracy of SVM, combining multiple quantitative features, was at least comparable to two
experienced readers from high volume centers. Therefore, SVM analysis might play an
integral role as an automated diagnostic tool suggesting diagnostic classification (and
potentially the decision value to indicate the confidence in decision) for the less experienced
reader who may be less certain about normal variation in uptake (37). The SVM library
could be easily integrated with standard quantitative nuclear cardiology tools (SVM library
is freely available and can be distributed with other software). SVM probability estimates
have a simple intuitive interpretation as the distance from the decision line, which can
facilitate clinical acceptance and allow a measure of the confidence in the proposed
classification.

This study has several limitations. Coronary angiography was used as the gold standard for
this study with its known limitations. The degree of stenosis was interpreted visually rather
than quantified, which may have resulted in overestimation of stenosis. In addition, patients
with LLk of CAD were included in our analysis and were considered to have a normal
angiogram. Furthermore, integration using SVM was applied to a population with suspected
but not known CAD. However, the detection of CAD is typically useful only in this group.
In the current study, we excluded patients with a prior history of CAD and significant valve
disease, therefore the results of this study might not be applicable to these patients. We
selected only a limited number of quantitative features in order to demonstrate proof-of-
concept and prevent over-fitting in large feature space. However, even with such a limited
number of features, we could demonstrate significant improvement in diagnostic accuracy.
In addition, we used a binary approach (normal versus abnormal) both for visual and
automatic analysis. Further studies are likely needed to define the possible equivocal range
and the potential use of such a category in the context of disease detection. Furthermore,
although the splitting of training and testing was consistent with our internal experience,
future studies using different training arrangements may be needed to further evaluate this
proof-of-concept. Finally, although we had a large patient population, the results were
obtained on only one particular camera system. Based on these limitations, further
multicenter evaluations will be required to confirm these results.

CONCLUSION
Computational integration of several quantitative perfusion and functional variables by
SVM approach allows improvement of diagnostic accuracy and specificity of MPS. In
addition, the diagnostic accuracy of SVM was at least comparable to visual analysis, and can
potentially outperform visual assessment based on ROC analysis.
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Figure 1.
Sensitivity, specificity and accuracy of Support Vector Machines (SVM) versus Total
Perfusion Deficit (TPD), Ischemic Change (ISCH), and Ejection Fraction Change (EFC) for
detection of ≥70% coronary artery lesions. Red indicates significant difference compared to
SVM (p < 0.05).
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Figure 2.
The Receiver Operating Characteristic (ROC) curves comparing the Support Vector
Machines (SVM) and Total Perfusion Deficit (TPD), Ischemic Change (ISCH), Motion and
Thickening Change (MTC), and Ejection Fraction Change (EFC) for detection of ≥70%
coronary artery lesions. * Indicates statistically significant difference compared to a SVM (p
< 0.05).
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Figure 3.
Sensitivity, specificity and accuracy of Support Vector Machines (SVM) versus visual
analysis (SSS and SDS) for detection of ≥70% coronary artery lesions. * Indicates
statistically significant difference compared to SVM (p < 0.05).
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Figure 4.
The Receiver Operating Characteristic (ROC) curves comparing the Support Vector
Machines (SVM) and visual analysis for detection of ≥70% coronary artery lesions. *
Indicates statistically significant difference compared to SVM (p < 0.05).
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TABLE 1

Baseline characteristics of the patients

Train Test p – value

Number 125 832 N/A

Age (years) 60 ± 12 60 ± 12 NS

Male % 50% 50% NS

Diabetes Mellitus % 18% 18% NS

Hypertension % 57% 55% NS

Hyperlipidemia % 44% 47% NS

Smoking % 19% 20% NS

LLk 25 309 N/A

0 – Vessel CAD 25 151 N/A

1 – Vessel CAD 25 172 N/A

2 – Vessel CAD 25 116 N/A

3 – Vessel CAD 25 84 N/A

N/A = Not Applicable, NS = Not Significant, LLk = Low-likelihood, CAD = Coronary Artery Disease
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TABLE 2

Number of times the diagnosis was correctly changed when using SVM versus TPD

N ISCH EFC Both

Correctly identified as positive 10 10 (5.0% ± 1.1) 6 (−5.5% ± 3.1) 6 (pos)

Correctly identified as negative 53 49 (1.4% ± 1.5) 48 (1.5% ± 5.7) 44 (neg)

N = number, ISCH = ischemic change, EFC = ejection fraction change, pos = positive cases, neg = negative cases. Average values and standard
deviations for the quantitative parameters are provided within the parenthesis.
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TABLE 3

Comparison of SVM combining quantitative perfusion with different functional parameters

SVM: TPD +
ISCH + EFC

SVM: TPD + ISCH + MTC SVM: TPD + ISCH + Volumes

Sensitivity 84% 77%* 74%*

Specificity 88% 93%* 94%*

Accuracy 86% 86% 85%

ROC-AUC 0.92 0.91 0.92

*
Significantly different than SVM combining TPD, ISCH, and EFC, P < 0.05. TPD = Total perfusion deficit, ISCH = ischemic change, EFC =

ejection fraction change, MTC = Motion and thickening change.
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