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Summary
Molecular mechanisms underpinning nonalcoholic fatty liver disease (NAFLD) are not well
understood. The earliest step of NAFLD is hepatic steatosis, which is one of the main
characteristics of aging liver. Here we present a molecular scenario of age-related liver steatosis.
We show that C/EBPα-S193D knock-in mice have age-associated epigenetic changes and develop
hepatic steatosis at 2 months of age. The underlying mechanism of the hepatic steatosis in old
wild-type (WT) mice and in young S193D mice includes increased amounts of tripartite p300-C/
EBPα/β complexes that activate promoters of five genes that drive triglyceride synthesis. Knock-
down of p300 in old WT mice inhibits hepatic steatosis. Indeed, transgenic mice expressing
dominant-negative p300 have fewer C/EBPα/β-p300 complexes and do not develop age-
dependent hepatic steatosis. Notably, p300-C/EBPα/β pathway is activated in livers of patients
with NAFLD. Thus, our results show that p300 and C/EBP proteins are essential participants in
hepatic steatosis.
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Introduction
Hepatic steatosis is the first step in the development of non-alcoholic fatty liver disease
(NAFLD) and is characterized by accumulation of triglycerides (TGs) in the cytoplasm of
hepatocytes. Hepatic steatosis can progress to non-alcoholic steatohepatitis (NASH), which
is characterized by more severe liver damage. NASH, in turn, progresses to cirrhosis and,
finally, to hepatocellular carcinoma (Cohen et al., 2011; Floreani, 2007; Hebbard and
George, 2011; Schmucker, 2005). Indeed, elderly patients who develop hepatic steatosis are
at high risk for developing liver cancer (Floreani, 2007; Schmucker, 2005; Timchenko,
2009). Therefore, the development of approaches to prevent or correct hepatic steatosis is
important for improved health and extended lifespan in the elderly. The development of
such approaches requires elucidation of the mechanisms that underlie hepatic steatosis. Diet-
based animal models of NAFLD provide significant information regarding liver damage and
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metabolic pathways of hepatic steatosis (Hebbard and George, 2011). Unfortunately, despite
numerous studies of hepatic steatosis in these animal models of NAFLD, the mechanisms
underlying hepatic steatosis remain unclear.

Transcription factor C/EBPα belongs to the C/EBP family of proteins, which are bZIP
proteins containing a basic region and a leucine-zipper region (Johnson, 2005). bZIP
proteins are transcription factors that dimerize with each other and control multiple
functions in different tissues. We and other groups showed that C/EBPα is a strong inhibitor
of liver proliferation (Flodby et al., 1996; Soriano et al., 1998; Timchenko et al., 1997;
Wang et al., 2002; Wang et al., 2001). The biological activities of C/EBPα are regulated by
protein-protein interactions and by post-translational modifications. Ser193, a key amino
acid of C/EBPα, regulates multiple functions of C/EBPα and liver biology (Timchenko,
2009; Wang et al., 2006; Wang and Timchenko, 2005). The main finding of our long-term
studies is that liver proliferation requires dephosphorylation of C/EBPα at Ser193 by the
phosphoinositide 3′-kinase-Akt–protein phosphatase 2A (PP2A) pathway, whereas
phosphorylation of this residue (p-Ser193) by cyclin D3–cdk4 stimulates the growth-
inhibitory activity of C/EBPα. The p-Ser193 isoform of C/EBPα is abundant in livers of old
mice and causes a number of age-related liver dysfunctions of the liver (Jin et al., 2010;
Wang et al., 2010).

Histone modification (i.e., methylation or acetylation) regulates gene transcription. The
acetylation state of histones is controlled by two classes of enzymes: histone
acetyltransferases (HATs) and histone deacetylases (HDACs) (Giles et al., 1998; Lindemann
et al., 2004). Histone hypo-acetylation is involved in a number of malignancies (Halkidou et
al., 2004; Zhang et al., 2005). For example, mutations within the gene coding for the HAT
p300 and a loss of heterozygosity at the p300 gene locus are associated with mammary
tumors and glioblastomas (Giles et al., 1998). HDAC1 expression is increased in livers of
old mice, leading to the formation of HDAC1-C/EBPα complexes and complexes with
another C/EBP family member, C/EBPβ (Wang et al., 2008a,b). Although the role of p300
in aging is not understood, several recent papers show that p300 is involved in the
development of cellular senescence. Li et al. demonstrated that p300 binds to the p16INK4a

promoter and increases transcription of p16INK4a during cellular senescence (Li et al., 2011).
p300 also contributes to cellular senescence through p53-independent and p16INK4a-
independent mechanisms (Prieur et al., 2011). In addition to transcriptional mechanisms,
p300 might participate in senescence by acetylating proteins that regulate longevity (Dansen
et al., 2009). In this article, we present a molecular mechanism for the age-associated
development of steatosis. We use three genetically modified mouse models to show that
p300-dependent regulation of chromatin structure during aging causes the activation of
enzymes that synthesize TGs, leading to hepatic steatosis.

Results
C/EBPα-S193D mice develop steatosis at 2 months of age

C/EBPα is hyperphosphorylated at Ser193 in livers of old mice (Wang et al., 2006). We
have generated C/EBPα-S193D knock-in mice (further called S193D mice) that express an
age-associated isoform of C/EBPα (Jin et al., 2010; Wang et al., 2010). Young S193D mice
are characterized by dramatic alterations similar to those observed in old mice, including
alteration of chromatin structure with abundant heterochromatin regions (Jin et al., 2010). A
change in the chromatin structure of S193D mice is shown in Supplemental Figure S1. One
of the consequences of this change is the accumulation of TGs in the blood (Jin et al., 2010).
Therefore, we have begun studies of the mechanisms and biological consequences of the
elevation of TGs in S193D mice and in WT old mice. We stained livers of 2-month-old WT
and S193D mice with Oil Red O. The livers of 2-month-old S193D mice developed steatosis
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and had increased numbers of fat droplets in cytoplasm of hepatocytes (Fig. 1A). A
comparison of Oil Red O–staining of livers of young S193D mice and livers of 24-month-
old WT mice revealed that accumulation of fat droplets in S193D livers is similar to that
observed in livers of old mice. Because TGs are the main components of fat droplets in
steatotic livers, we examined the amount of TGs in livers and in blood of young S193D and
old WT mice. TGs were increased in livers and in blood of S193D mice identical to that
observed in old WT mice (Fig. 1B). Thus, young S193D mice mimic old WT mice in the
development of hepatic steatosis and TG accumulation.

Increased expression of enzymes involved in TG synthesis in livers of young S193D mice
and in livers of old WT mice

Young S193D and old WT mice have altered chromatin structure with numerous foci-like
structures containing the marker of heterochromatin, histone H3 trimethylated at Lys9 (Jin et
al., 2010). Therefore, we hypothesized that the alterations of chromatin structure cause
increased production of TGs through several pathways including: 1) activation of genes
involved in the synthesis of fatty acids; 2) activation of enzymes of TG synthesis; and 3)
inhibition of genes involved in the degradation of TG. There were no significant differences
in the expression of the lipogenic pathway enzymes FAS, ACC, and SCD1 or of fatty-liver
uptake enzyme CD36 in livers of S193D mice as compared with those of WT mice
(Supplemental Figure S2A). Likewise, we did not observe differences in the expression of
HSL and ATGL (key enzymes of TG degradation) (Supplemental Figure S2B). Hepatic lipid
analyses revealed no differences in the amounts of diacylglycerol, cholesterol, or free fatty
acids (Supplemental Figure S3); however, we found a dramatic difference in the levels of
enzymes that synthesize TGs. TGs are the end-product of a multistep synthetic pathway
(Chen and Farese, 2005; Kantartzis et al., 2009), the last step of which is catalyzed by the
CoA:diacylglycerol acyltransferases DGAT1 and DGAT2. The enzymes operating upstream
of DGAT in TG synthesis are glycerol-phosphate acyltransferase (GPAT), acylglycerol-
phosphate acyltransferase (AGPAT), phosphatidic acid phosphohydrolase–1 (PPH-1), and
acyl CoA:monoacylglycerol acyltransferase (MGAT). We examined the expression of genes
coding for these enzymes in livers of young S193D mice and in livers of old WT mice.
Quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR) revealed that
expression of GPAT, AGPAT1, DGAT1, and DGAT2 mRNAs is increased in livers of
young S193D and in livers of old WT mice (Fig. 1C). In addition, MGAT2 mRNA was
increased in livers of S193D mice. Western blotting (Fig. 1D) and immunostaining (Fig. 1E)
confirmed that DGAT1 and DGAT2 are increased in livers of young S193D mice and in
livers of old WT mice. These results show that the transcription and translation of five TG-
synthetic enzymes are increased in livers of young S193D and old WT mice. TG synthesis
enzymes are also increased in adipose tissues of S193D mice and old WT mice (data not
shown and Fig. 3D).

Because NAFLD is characterized by insulin resistance, which enhances hepatic fat
accumulation by increasing free fatty acid delivery, we performed an insulin-resistance test
and examined expression of the key gluconeogenic enzymes phosphoenol pyruvate
carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). These studies showed no
significant differences in the insulin resistance or in expression of PEPCK and G6Pase in
S193D mice as compared to WT mice (Supplemental Figure S4). S193D mice exhibit an
early step of fatty liver disease: the accumulation of fat droplets in cytoplasm; however,
other metabolic alterations, such as insulin resistance, might develop as these mice age, but
they are not detectable in young S193D mice.
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p300-C/EBPα/β complexes activate promoters of TG-synthetic genes during development
of hepatic steatosis

We next determined the mechanisms that activate enzymes of TG synthesis in livers of aged
WT mice and in livers of young S193D mice. The analysis of GPAT, MGAT2, AGPAT1,
DGAT1, and DGAT2 promoters revealed that each of these promoters contains one or two
C/EBP consensus binding sequences (Fig. 2A). C/EBPα and C/EBPβ proteins activate
genes through the recruitment of p300 to their promoters (Erickson et al., 2001; Gaub et al.,
2011); therefore, we hypothesized that p300-C/EBPα/β complexes might be involved in the
activation of promoters of TG-synthetic genes. To test this supposition, we examined the
interactions of C/EBPα and C/EBPβ with consensus binding sites within the promoters of
GPAT, DGAT1, and DGAT2. Electrophoretic mobility shift assays showed that purified C/
EBPα and C/EBPβ interact with DNA probes covering the C/EBP binding sites (data not
shown). We next examined whether C/EBP proteins in liver nuclear extracts from S193D
mice interact with these promoters. Use of specific antibodies showed that C/EBPα and C/
EBPβ bind to these promoters as heterodimers because antibodies to each individual protein
supershifted or neutralized all specific bands almost completely (Fig. 2B for the DGAT2
promoter). Thus, C/EBPα and C/EBPβ might control the promoters of genes of TG
synthesis as heterodimers. To test this hypothesis, we performed chromatin
immunoprecipitation (ChIP) assays using chromatin solutions from young WT, young
S193D, and old WT mice with primers covering the C/EBP site in the DGAT1 and DGAT2
promoters. In livers of young WT mice, C/EBPα and C/EBPβ are observed on the DGAT1
and DGAT2 promoters, whereas p300 signals are not detectable. In livers of old WT mice
and of young S193D mice, however, C/EBPα, C/EBPβ, and p300 are abundant on the
DGAT1 and DGAT2 promoters (Fig. 2C). This recruitment of p300 leads to the acetylation
of H3 at Lys9, demonstrating that the DGAT1 and DGAT2 promoters are activated in livers
of young S193D mice and of old WT mice. A similar result was obtained for the GPAT
promoter (data not shown).

Based on data from ChIP assays, we hypothesized that the C/EBPα/β dimers form
complexes with p300 and that these complexes activate the TG synthesis genes.
Examination of p300 and C/EBPα/β complexes using high-performance liquid
chromatography (HPLC)-based size-exclusion chromatography showed that young WT
mice contain low-MW complexes of C/EBPα with p300 and C/EBPβ. In young S193D
mice, however, high-MW C/EBPα complexes are observed, which contain both p300 and C/
EBPβ (Fig. 2D). Because C/EBPα and C/EBPβ heterodimers (Johnson, 2005; Timchenko,
2009) and because C/EBPα and C/EBPβ interact with the same region of p300 (CH3
domain, (Erickson et al., 2001; Gaub et al., 2011)), these data show that the high-MW
complexes are formed by C/EBPα/β heterodimers and p300. To test whether C/EBPα/β
heterodimers activate the gene promoters of TG-synthetic enzymes to a greater degree than
do individual C/EBP proteins, we cloned DGAT1 and DGAT2 promoters into a pG3-luc
reporter and cotransfected the promoters with individual C/EBP proteins or with C/EBPα
+C/EBPβ together. Before performing these experiments, we established conditions for the
efficient inhibition of p300 by siRNA (Supplemental Figure S5) and for appropriate molar
ratios of transfected C/EBP genes (Fig. 2E). Using these conditions, we found that each
individual protein activates the DGAT1 and DGAT2 promoters; however, the simultaneous
expression of equal amounts of C/EBPα and C/EBPβ activates these promoters to a greater
higher degree (Fig. 2F). The inhibition of p300 significantly reduces the ability of C/EBPα/
β heterodimers to activate the DGAT1 and DGAT2 promoters (Fig. 2F). Together with data
from the ChIP assays, these results demonstrate that C/EBPα/β heterodimers cooperate with
p300 in the activation of the DGAT1 and DGAT2 promoters.

Jin et al. Page 4

Cell Rep. Author manuscript; available in PMC 2013 April 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Inhibition of p300 in livers of old WT mice and knock-down of DGAT1 and DGAT2 in livers
of young S193D mice inhibit hepatic steatosis

To determine whether hepatic steatosis in old WT mice and in young S193D mice involves
the p300-DGAT1/2 pathway, we first inhibited p300 expression in the liver of old WT mice
by siRNA. We used the in vivo–jetPei method of siRNA delivery (Polyplus transfection),
which targets the injected siRNAs mainly to the liver and lung. After 1 week, animals were
sacrificed and our investigation revealed that p300 expression was dramatically inhibited by
siRNA in the liver but not in adipose tissue (Fig. 3A). The inhibition of p300 significantly
reduced hepatic steatosis (Fig. 3B) and reduced the amount of TGs in the liver (Fig. 3C).
These results indicate that the development of hepatic steatosis in WT old mice involves
p300.

We next determined whether p300-mediated activation of DGAT1 and DGAT2 plays a
causal role in development of hepatic steatosis in young S193D mice. We knocked down
DGAT1 and DGAT2 expression using the siRNA technique described above and
investigated liver steatosis at 7 days post inhibition. Western blotting showed that the
amounts of DGAT1 and DGAT2 proteins are significantly inhibited by siRNAs in the liver,
whereas the expression of these proteins was not affected significantly by siRNAs in adipose
tissue (Fig. 3D). Oil Red O staining showed that the inhibition of both DGAT1 and DGAT2
concomitantly reduced the amount and size of the fat droplets (Fig. 3E) and amount of TGs
in livers of S193D mice (Fig. 3F). Thus, increased expression of TG-synthetic enzymes in
the liver of S193D mice is a key event in the development of hepatic steatosis.

High-fat diet (HFD) causes hepatic steatosis much faster in S193D knock-in mice than in
WT mice

Because S193D mice have increased amounts of C/EBPα/β-p300 complexes, we examined
whether S193D mice are more sensitive to developing hepatic steatosis when fed HFD. For
these studies, we used 1-month-old mice because, at this age, S193D mice exhibit minor
steatosis (Fig. 4A). WT and S193D mice were fed HFD for 3 and 12 weeks, and the
development of hepatic steatosis was examined by several approaches. Hematoxylin and
eosin (H&E) staining showed S193D livers contain a much greater number of fat droplets
than do WT livers at 3 and 12 weeks of HFD. The most dramatic difference was observed at
3 weeks (Fig. 4A, left). Oil Red O staining confirmed these data and revealed that amount of
fat droplets was significantly greater in livers of S193D mice treated with HFD (Fig. 4A,
right). HFD also caused the increase of TG in the serum and in the livers of both WT and
S193D mice, but this increase was greater in S193D mice (Fig. 4B and C). Because the
differences in TG are associated with higher levels of enzymes of TG synthesis in S193D
mice, we have examined expression of DGAT1 and DGAT2 proteins. Figure 4D shows that
HFD increases the levels of these enzymes significantly higher in S193D mice than in WT
mice. To confirm these observations, we stained the livers with DGAT2-specific antibodies.
HFD led to increased DGAT2 in livers of S193D mice to a greater amount than that
observed in livers of WT mice (Fig. 4E). These observations are consistent with the
hypothesis that large amounts of C/EBPα/β-p300 complexes more strongly activate DGAT1
and DGAT2 promoters in S193D mice treated with HFD. Thus, these studies demonstrated
that S193D mice develop hepatic steatosis under HFD conditions much faster and to a
greater degree than do WT mice.

Transgenic mice expressing dominant-negative p300 do not develop age-associated
steatosis

The p300 molecule contains several critical domains including a histone acetyltransferase
domain, transactivation domains, and protein interaction domains CH1, CH2, and CH3 (Fig.
5A). The CH3 domain interacts with many transcription factors, including C/EBPα and C/
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EBPβ, but does not have acetyltransferase and activation domains. Therefore, given that
p300 participates in the activation of TG-synthetic genes, we generated transgenic mice that
express the only CH3 domain of p300 (dnp300). A typical picture of genotyping is shown
(Fig. 5B). The dnp300 transgenic mice were born normal and did not have visual
abnormalities. A whole-body scan, however, revealed that the 12-month-old dnp300
transgenic mice display significantly less body fat than do WT mice (Fig. 5C). These results
suggest that endogenous p300 is involved in increased fat storage and that dnp300 reduces
this activity. We next examined accumulation of fat droplets in 20-month-old dnp300 and in
control WT mice of the same age and found that 80%–95% of hepatocytes in the livers of
old WT mice have fat droplets in cytoplasm (Fig. 5D). Only 15%–20% of hepatocytes in
livers of 20-month-old dnp300 mice have cytoplasmic fat droplets. Thus, the examination of
dnp300 mice indicates that p300 is required for the development of age-associated hepatic
steatosis.

Dominant-negative p300 (dnp300) reduces the amount of p300-C/EBPα/β complexes in the
liver

p300-C/EBPα/β complexes are important for the development of hepatic steatosis in S193D
mice; therefore, we evaluated the hypothesis that dnp300 reduces hepatic steatosis through
disruption of these complexes. To examine p300 and C/EBP complexes in old WT and old
dnp300 mice, nuclear extracts were separated by size-exclusion chromatography, and
fractions were scrutinized, as described in Fig. 2D. p300 was detected in all
chromatographic fractions; however, p300 was not detected in high-MW fractions
containing the proteins from dnp300 mice (Fig. 5E). Because dnp300 interacts with many
transcription factors, we suggest that dnp300 disrupts high-MW complexes of WT p300 and
its interacting proteins. It is also possible that the remaining amounts of p300 complexes are
below the sensitivity threshold of our assays. In livers of old mice, C/EBPα is
hyperphosphorylated at Ser193 (Wang et al., 2006; Wang and Timchenko, 2005) and forms
high-MW complexes with chromatin remodeling proteins (Wang et al., 2008a; Wang et al.,
2006). In agreement with previous observations, we found that the major fraction of C/
EBPα from old WT mice existed in fractions containing high-MW complexes and that a
portion of C/EBPβ was also detected in fractions containing high-MW complexes. On the
contrary, in the extracts from dnp300 livers, both C/EBP proteins are found in the fractions
containing low-MW complexes. Immunoprecipitating C/EBPα from each fraction and
Western blotting with p300-specific and C/EBPβ-specific antibodies has shown that WT old
mice contain high-MW p300-C/EBPα/β complexes and that these complexes are not
detectable in livers of dnp300 mice. Notably, a portion of C/EBPα from livers of dnp300
mice is still observed in high-MW complexes that do not contain p300. This portion perhaps
represents previously characterized complexes of C/EBPα with HDAC1 and Brm (Wang et
al., 2008b; Wang et al., 2006). Thus, these studies demonstrate that dnp300 disrupts
complexes of endogenous WT p300 with C/EBPα/β. Consistent with the lack of p300-C/
EBPα/β complexes, dnp300 mice are resistant to the development of hepatic steatosis under
HFD (Fig. 5F).

Double S193D-dnp300 mice are resistant to developing HFD-mediated hepatic steatosis
To further examine the role of dnp300 in inhibition of steatosis, we crossed S193D and
dnp300 mice, and the double hetero-S193D-dnp300 mice (further called S193D-dnp300)
were used for the experiments on HFD-mediated steatosis. Figure 6A shows genotyping of
S193D-dnp300 mice. We treated these mice and WT mice with HFD and examined
development of hepatic steatosis at 3 and 12 weeks. Intriguingly, the S193D-dnp300 livers
looked different from WT livers at 12 weeks after initiation of HFD, showing less white
color (Fig. 6B). H&E and Oil Red O staining showed that livers of S193D-dnp300 mice are
resistant to the development of steatosis within 12 weeks of HFD treatment (Fig. 6C).
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Immunostaining of WT and S193D-dnp300 livers with DGAT1-specific and DGAT2-
specific antibodies revealed that HFD significantly increased the expression of these
enzymes in WT mice, but the elevation of DGAT1 and DGAT2 was lower in livers of
S193D-dnp300 mice (Fig. 6D, DGAT1 results not shown). ChIP assays using the DGAT1
and DGAT2 promoters showed that HFD-treated WT mice exhibited recruitment of p300 to
both promoters, followed by acetylation of histone H3 at Lys9. In S193D-dnp300 mice,
however, HFD treatments did not lead to the recruitment of endogenous p300 to the
promoters (Fig. 6E and F, upper images). ChIP assays using antibodies specific for a c-myc
epitope, which is fused to dnp300 (Fig. 5), showed that c-myc–dnp300 occupied the DGAT1
and DGAT2 promoters in livers of S193D-dnp300 mice after HFD treatments. This
occupation was associated with the inhibition of the promoters because histone H3 is
trimethylated at Lys9 on the promoters (Fig. 6E and F, bottom images).

p300-C/EBPα-DGAT2 pathway is activated in patients with fatty liver disease
We next asked whether p300-C/EBPα/β pathway is utilized in human patients with fatty
liver diseases. The key step in the development of hepatic steatosis in mice includes
hyperphosphorylation of C/EBPα at S193 and subsequent formation of C/EBPα-p300
complexes. Therefore, we first examined whether phosphorylation of the human C/EBPα is
increased in patients with fatty liver diseases. The human C/EBPα (serine is located in
position 190) has significant differences in the amino-acid sequence flanking Ser190 (Fig.
7A), and antibodies to mouse p-Ser193 C/EBPα do not recognize human C/EBPα.
Therefore, we generated antibodies that specifically interact with the human p-Ser190
isoform of C/EBPα. Western blotting showed that the p-Ser190 isoform of human C/EBPα
is abundant in human fatty livers and that treatment of protein extracts with PP2A [which
removes the phosphate from this serine (Wang et al., 2004)], eliminating the interaction of
the antibody with C/EBPα protein (Fig. 7A). In tissue sections from six patients with fatty
liver disease and tissue sections from four healthy livers of age-matched patients, we found
the p-Ser190 isoform of human C/EBPα is detectable in a few hepatocytes of normal
patients whereas up to 90% of hepatocytes from fatty livers contain the p-Ser190 isoform of
C/EBPα (Fig. 7B and C). We next examined whether p-Ser190 C/EBPα colocalized with
p300 in livers of patients with NAFLD and observed two major differences between normal
and NAFLD livers: an increased number of hepatocytes with colocalized p300 and p-
Ser190-C/EBPα in NAFLD and an increased number of hepatocytes with multiple sites of
colocalizations of p-Ser190-C/EBPα and p300 (Fig. 7D and Supplemental Figure S6). The
number of hepatocytes with p300-C/EBPα complexes increased approximately 45% in
patients with NAFLD, whereas in normal livers, the increase was approximately 5%. The
number of hepatocytes with multiple colocalizations of C/EBPα and p300 increased in
patients with NAFLD and represents approximately 25% of hepatocytes. We tested the
amount of DGAT2 (the downstream target of the C/EBPα-p300 complexes) present and
found it increased in p300-C/EBPα–positive hepatocytes from NAFLD livers (Fig. 7E).
Thus, these results reveal that the p300-C/EBPα-DGAT2 pathway is activated in patients
with fatty liver disease.

Discussion
The molecular mechanisms that underpin age-associated development of steatosis are not
well understood. Several recent publications revealed that alterations of the chromatin
structure occur in livers of old mice (Jin et al., 2010; Kreiling et al., 2011; Wang et al.,
2010), suggesting that this change might be involved in hepatic steatosis. In this paper, we
examined this hypothesis using several genetically modified animal models and WT young
and old mice. Because C/EBPα is hyperphosphorylated at Ser193 in livers of old mice, we
generated C/EBPα-S193D mice, which mimics age-like isoform of C/EBPα, and showed
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that this age-like mutation causes several changes in liver physiology similar to those
observed in old mice (Jin et al., 2010). Comparison of the TG amounts in livers of young
S193D mice and in old WT mice revealed that the increase in S193D mice was similar to
those observed in livers of old mice and that young S193D mice develop steatosis in a
similar manner to that in old WT mice. Thus, these observations suggested that molecular
mechanisms of the steatosis in young S193D mice might be similar to those in age-
associated hepatic steatosis in WT mice. Further examination of this hypothesis showed that
these mechanisms are identical and include the activation of the gene promoters of TG-
synthetic enzymes by p300-C/EBPα/β complexes. The critical role of p300 in the
development of hepatic steatosis is shown by experiments with siRNA to p300 (Fig. 3) and
by examination of three genetically modified animal models: S193D mice, dnp300 mice,
and double S193D-dnp300 mice. Our hypothesis for the mechanisms underlying age-
associated hepatic steatosis (Fig. 7) is supported by previous studies demonstrating that
expression C/EBPα and C/EBPβ is altered in livers of old mice (Timchenko et al., 2006;
Wang et al., 2006). Further support is provided by our findings that the amounts of p300-C/
EBPα/β are increased in livers of young S193D mice and in livers of old WT mice.
Examination of the gene promoters of the key TG synthesis enzymes GPAT, DGAT1, and
DGAT2 showed that p300-C/EBPα/β activates these promoters during the development of
hepatic steatosis in several animal models. The disruption of the p300-C/EBPα/β complexes
by dnp300 blocks the activation of the DGAT1 and DGAT2 promoters and correlates with
the inhibition of the age-associated steatosis and with inhibition of steatosis initiated by
HFD.

Several high-affinity C/EBP consensus binding sites exist in the gene promoters of five TG-
synthetic enzymes. Although both DGAT1 and DGAT2 are important modulators of energy
metabolism (Yen et al., 2008), DGAT2 appears to be the dominant DGAT enzyme
controlling TG homeostasis in vivo (Stone et al., 2004). DGAT2-deficient (Dgat2−/−) mice
survive for only a few hours after birth. In contrast, Dgat1−/− mice are viable and have an
approximately 50% reduction in adiposity (Smith et al., 2000; Tsai et al., 2007), maintain a
lean phenotype even on HFD, and are resistant to diet-induced obesity (Smith et al., 2000).
Studies in transgenic mice confirmed that overexpression of either DGAT enzyme can cause
TG accumulation of cytosolic lipid droplets in the liver (Monetti et al., 2007). The reduction
of DGAT2 by antisense oligonucleotide improves hepatic steatosis and hyperlipidemia in
obese mice (Yu et al., 2005). Consistent with literature data showing the critical roles of
DGAT1 and DGAT2, our studies with knocking down the expression of these enzymes
revealed that the increase in DGAT1 and DGAT2 is the main pathway of the steatosis
development in S193D mice. The mechanistic studies in this paper were focused on the
liver; however, we also showed that expression of enzymes of TG synthesis is increased in
adipose tissues (Fig. 3). We suggest that alterations of adipose tissues also contribute to
development of steatosis. However, because inhibition of DGAT1 and DGAT2 in the liver
was sufficient to block steatosis in S193D mice, we think that elevation of enzymes of TG
synthesis in the liver is critical for hepatic steatosis. Importantly, we observed that the C/
EBPα-p300-DGAT2 pathway is activated in patients with NAFLD. These findings suggest
that the inhibition of C/EBPα-p300 pathways might be considered a therapeutic approach to
prevent the development of hepatic steatosis.

Experimental Procedures
Animal Experiments

Experiments with animals were approved by the Institutional Animal Care and Use
Committee at Baylor College of Medicine (protocol AN-1439). We have used WT young
(2–4 months), WT old (22–24 months), young C/EBPα-S193D and S193D-dnp300 mice.
Generation and characterization of C/EBPα-S193D mice were described in previous papers
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(Jin et al., 2010; Wang et al., 2010). Livers were harvested and kept at −80°C. Mice were
fed either a standard laboratory chow diet or HFD (D12331, Research Diets, New
Brunswick, NJ) for 3 or 12 weeks. Data in the manuscript are obtained with 3–5 mice per
experiment with three to four independent repeats.

Generation of transgenic mice expressing dominant-negative CH3-p300 (dnp300) and
double knock-in transgenic S193D-dnp300 mice

To generate transgenic mice that express the CH3 domain of p300, we used the chicken β-
actin promoter plus the CMV-IE enhancer to clone a 993-bp cDNA from the mouse p300
gene. To examine the dnp300 molecule in further experiments, the CH3 domain was fused
to a c-myc epitope tag (Fig. 5A). Genotyping analysis was performed using primers:
Forward: 5′-AGC ACC ACG TGG AGA CAC GC-3′; Reverse: 5′-GGC AGG GAG CAG
TTG GCG TT-3′. To obtain S193D-dnp300 mice, we crossed homozygous S193D mice and
dnp300 mice. We used heterozygous S193D-dnp300 mice because further crossing of these
heterozygous mice with homozygous S193D mice reduced the amount of dnp300 expressed.

Human samples from patients with fatty liver disease
We used six tissues sections from patients with fatty liver disease obtained from OriGene
Technologies. Four tissue sections from normal patients were used as the controls.

Liver histology and immunohistochemistry
The livers were fixed overnight in buffered 10% formaldehyde, embedded in paraffin, and
sectioned at a thickness of 4 μm. The sections were stained with H&E using a standard
protocol or with different antibodies against DGAT1 (ab54037, Abcam) or DGAT2
(ab96094, Abcam). For Oil Red O staining, the 7-μm liver cryosections were stained with
commercially available kits (IW-3008, IHC World).

Biochemical assays
Serum TGs were measured in facilities at Baylor College of Medicine. Liver TGs were
quantified by commercially available kits (ab65336, Abcam)

Antibodies and Reagents
Antibodies used were specific for C/EBPβ (C-19), C/EBPα (14AA), DGAT1 (H-255),
DGAT2 (H-70), ATGL (H-144), HSL (H-300), P300 (N-15 or C-20) (Santa Cruz
Biotechnology), for AGPAT (4613) (Prosci, Inc., for DGAT1 (ab54037) and DGAT2
(ab96094) (Abcam), and for acetyl-histone H3 (9649s) and histone H3 trimethyl Lys9
(9754s) (Cell Signaling). Monoclonal anti-β-actin antibody was from Sigma. P300 small
interfering RNA (siRNA, sc-29431) and control siRNA-A were from Santa Cruz
Biotechnology.

Cotransfection studies
Hep3B2 cells were transfected using the Fugene 6 transfection reagent (Roche Molecular
Biochemicals) according to the manufacturer’s protocol. Forty-eight hours after transfection,
a luciferase assay was performed using the Dual-Luciferase Reporter Assay System
(Promega). Luciferase activity was normalized by the Renilla internal control.

Protein isolation and Western blotting
Protein extracts were isolated from livers of young and old mice as described previously (Jin
et al., 2009; Wang et al., 2004). Inhibitors of phosphatases were included in all buffers used
for the isolation of proteins or protein-protein complexes. Proteins (50–100 μg) were loaded
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on gradient (4%–20% Bio-Rad) polyacrylamide gels, transferred onto membranes, and
probed with antibodies against proteins of interest. To verify protein loading, each filter was
re-probed with β-actin–specific antibody.

Chromatin immunoprecipitation assay
ChIP assays were performed using the ChIP It kit as described previously (Jin et al., 2009;
Wang et al., 2008b; Wang et al., 2007). Briefly, chromatin solutions were prepared from
livers of young, old, and HFD mice. C/EBPα, C/EBPβ, p300, acetyl-histone H3 (Lys9), and
trimethyl-histone H3 (Lys9) were immunoprecipitated from the solutions. The sequences of
primers used in the ChIP assay are shown in Supplemental Materials.

Examination of p300-C/EBPα/β complexes by size-exclusion chromatography
P300-C/EBPα/β complexes were isolated by HPLC-based chromatography of nuclear
extracts on SEC400 column (BioRad) as described previously (Wang et al., 2006). Briefly,
1.5–2 mg of nuclear extracts was loaded on the SEC400 column. Fractions were collected
and analyzed by Western blotting with antibodies to C/EBPα, C/EBPβ, and p300. C/EBPα
was immunoprecipitated from each fraction, and C/EBPβ and p300 were examined in these
IPs.

Real-time quantitative reverse transcription-polymerase chain reaction
Total RNA was isolated from mouse livers using RNeasy Plus mini kit (QIAGEN)
according to the manufacturer’s instructions. cDNA was synthesized using an oligo(dT)
primer and Superscript III reverse transcriptase (Invitrogen). The real-time PCR mixtures
contained 1× Brilliant II SYBR green QPCR master mix (Stratagene), 200 nM of each
primer, 1× ROX dye (Invitrogen), and the synthesized cDNA. PCR amplification was
performed in triplicate in a 96-well plate for each sample on an ABI PRISM 7000 sequence
detection system (Applied Biosystems). The relative expressions were normalized to β-
actin. The sequences of PCR primers are shown in Supplemental Materials.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Epigenetic alterations correlate with hepatic steatosis in old mice

• Increase of enzymes of TG synthesis is involved in age-related steatosis

• p300-C/EBPα/β complexes cause activation of enzymes of TG synthesis

• p300-C/EBP pathway is activated in patients with NAFLD
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Figure 1.
Young S193D mice develop hepatic steatosis at the age of 2 months. A. Livers of 2-month-
old (young) S193D mice and livers of 24-month-old WT mice were stained with Oil Red O.
Scale bars: 10 μm. B. Amounts of TG in serum (upper) and liver (bottom) of young S193D
and old WT mice are increased. Bar graphs show results of the analyses with eight mice of
each genotype and each age group. * p<0.05, S193D versus WT, # p<0.05 old versus young.
C. mRNA levels of enzymes of TG synthesis are increased in livers of S193D mice and in
livers of old WT mice. Q-RT-PCR was performed with RNA isolated from livers of young
WT and S193D mice (upper image) and from livers of WT old mice (bottom image). D.
Protein levels of GPAT, DGAT1, and DGAT2 are increased in livers of S193D mice.
Western blotting was performed with protein extracts isolated from the livers of young WT
and S193D mice (upper) and old WT mice (bottom). Each membrane was re-probed with
antibodies to β-actin. E. Immunostaining of livers of young WT, young S193D and old WT
mice with antibodies to DGAT1 and to DGAT2. Note that livers of old WT mice and young
S193D mice have enlarged hepatocytes (Jin et al., 2010). Scale bar: 10 μm. F. The number
of DGAT1- and DGAT2-positive hepatocytes in livers of young WT, young S193D, and old
WT mice. Bar graphs show the results of analyses of three animals of each group. * p<0.05,
** p<0.01, old WT versus young WT, # p<0.05 young S193D versus young WT.
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Figure 2.
p300-C/EBPα/β complexes occupy and activate the gene promoters driving TG-synthetic
enzyme expression in livers of S193D mice. A. Promoters of GPAT, DGAT1, DGAT2,
MGAT2, and AGPAT1 contain C/EBP sites. Locations and sequences of C/EBP having
sites are shown. B. Electrophoretic mobility shift assay performed with the DGAT2 probe
and nuclear extracts from S193D mouse livers. Antibodies to C/EBPαμ and C/EBPβ were
included in the binding reactions. Positions of C/EBPα/β complexes and supershift (SS) are
shown. C. C/EBP proteins recruit p300 to DGAT1 and DGAT2 promoters in livers of
S193D mice and in livers of old WT mice. C/EBPα, C/EBPβ, p300, histone H3 acetylated at
Lys9, or trimethylated on Lys9 were immunoprecipitated from chromatin solutions and
examined in PCR reactions with primers amplifying C/EBP sites on the DGAT1 and
DGAT2 promoters. In; 1/100 input. D. High-MW p300-C/EBPα/β complexes are abundant
in livers of young S193D mice. Nuclear extracts from WT and S193D livers were separated
by size-exclusion chromatography. The position of size-exclusion markers is shown at the
top. Location of the p300 and C/EBP proteins in the fractions was determined by Western
blotting with specific antibodies. C/EBPα-IP; C/EBPα was immunoprecipitated from each
fraction and p300 and C/EBPβ were detected in these IPs. E. Amounts of C/EBPα and C/
EBPβ proteins in cells transfected with individual DNAs coding for α, β, or both. In the
case where both α and β were transfected, one-half the amount used in the single (α or β)
transfections was used so that the total transfected equaled the amount used singly in α or β.
Total lysates were isolated and examined by Western blotting with antibodies to C/EBPα
and C/EBPβ. Bar graphs: Levels of C/EBP proteins were calculated as ratios to β-actin. F.
p300-C/EBPα/β heterodimers activate the DGAT1 (upper) and DGAT2 (bottom) promoters
more strongly than do individual C/EBPα and C/EBPβ proteins. DGAT1-luc and DGAT2-
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luc reporter constructs were cotransfected with constructs expressing C/EBPα, C/EBPβ, or
both proteins. A similar experiment was performed in cells with inhibited p300. Data in Fig.
2E and F represent summary of 3–4 independent experiments.
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Figure 3.
p300 and p300-mediated elevation of DGAT1 and DGAT2 are responsible for the
development of hepatic steatosis in old WT mice and in young S193D mice. A. Inhibition of
p300 by siRNA in livers of old WT mice. Western blotting shows p300 in liver and in
adipose tissues of mice treated with p300-specific siRNA and with control non-targeting
RNA (NTG). β-actin is a control for protein loading. B. Oil Red O staining of livers of old
WT mice treated with NTG and with siRNA to p300. C. Amounts of TG in livers of old WT
mice treated with siRNA to p300. Bar graph is an average of 3 independent experiments. D.
Knock-down of DGAT1 and DGAT2 inhibits hepatic steatosis in S193D mice. Western
blotting was performed using antibodies to DGAT1 and DGAT2 with protein extracts
isolated from liver and adipose tissues. β-Actin shows protein loading. NTG, treatments of
S193D mice with control non-targeting RNA. E. A typical picture of Oil Red O staining of
livers at 7 days after delivery of DGAT1 and DGAT2 siRNAs. NTG; treatments of WT and
S193D mice treated with non-specific RNA. F. Bar graphs show amounts of TG in the livers
of mice treated with DGAT1 and DGAT2 siRNAs as an average of three independent
experiments.
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Figure 4.
Development of hepatic steatosis by HFD is accelerated in S193D mice. A. A typical picture
of H&E (left) and Oil Red O (right) staining of WT and S193D livers under HFD
conditions. Upper image shows staining of the livers under normal diet (N diet). Scale bar:
40 μm. B and C. Amounts of TGs in serum and in livers of WT and S193D mice at
different time points of HFD. Data from three animals of each genotype are presented as bar
graphs. D. Amounts of DGAT1 and DGAT2 in livers after HFD. Western blotting was
performed with protein extracts isolated at 3 and 12 weeks after initiation of HFD. Bar
graphs show ratios of DGAT1 and DGAT2 to β-actin. E. Examination of DGAT2
expression in livers of WT and S193D mice by immunostaining. Bar graphs show the
number of DGAT2-positive hepatocytes in livers of WT and S193D mice. Scale bar: 10 μm.
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Figure 5.
Transgenic mice expressing dominant-negative p300 (dnp300) do not develop hepatic
steatosis with age and under HFD conditions. A. Generation of transgenic animals
expressing dnp300. Scheme showing the localization of the CH3 domain used in the
generation of the transgenic animals. B. PCR genotyping gel indicating three animals
display genomic insertion of the transgene. Dn and wt; PCR from control plasmids
containing dominant-negative and WT cDNAs. Western blotting (bottom image) shows
expression of c-myc–dnp300 in livers of transgenic animals. CRM; cross reactive molecule.
C. The total fat is reduced in transgenic mice. A whole-body scan was performed on WT
and dnp300 mice. Bar graphs represent an average of 5 animals of each genotype. D.
Numbers of fat droplets are reduced in livers from dnp300 mice (20 months of age) as
compared with the numbers WT animals (20 months of age). Hepatocytes from WT or
dnp300 mice were stained with Oil Red O. The number of hepatocytes with fat droplets was
calculated in livers of WT and dnp300 mice. The bar graph picture shows a summary of
three repeats with five animals of each genotype. E. dnp300 disrupts C/EBPα/β-p300
complexes in livers of old mice. Protein extracts from livers of 20-month-old WT and
dnp300 mice were separated on the SEC400 column. Fractions were analyzed as described
in the legend to Fig. 2D. F. dnp300 mice do not develop hepatic steatosis within 12 weeks of
HFD protocol.
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Figure 6.
Dnp300 inhibits development of steatosis in S193D mice. A. Genotyping of the double
S193D-dnp300 mice. The picture shows PCR-based genotyping of dnp300 and digestions of
the PCR products with BamHI enzyme (S193D genotyping) is shown. B. A typical picture
of livers of WT and S193D-dnp300 mice at 12 weeks after initiation of HFD. C. H&E and
Oil Red O staining of the livers. Scale bar of H&E staining: 40 μm. Scale bar of Oil Red O
staining: 10 μm. D. Expression of DGAT2 in livers from WT and S193D-dnp300 mice. Bar
graphs show number of DGAT2-positive hepatocytes as an average of three repeats with
three mice of each genotype. E and F. Examination of the p300-C/EBPα/β complexes on
the DGAT1 and DGAT2 promoters using the ChIP assay. The ChIP was performed as
described in the legend to Fig. 2C.
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Figure 7.
C/EBPα-p300-DGAT1/2 pathway is elevated in livers of patients with non-alcoholic fatty
liver disease. A. Generation of antibodies to human p-Ser190 isoform of C/EBPα.
Sequences of mouse and human C/EBPα surrounding Ser193 and Ser190 are shown.
Asterisks show differences in the sequences. Bottom: Western blotting with antibodies to p-
Ser190 human C/EBPα. F+PP2A; proteins from patients with fatty liver were treated with
phosphatase PP2A. B. Immunostaining of normal livers and livers from patients with fatty
liver diseases using antibodies to p-Ser190 isoform of C/EBPα. The slides were stained with
DAPI. C. Percentage of p-Ser190-C/EBPα positive hepatocytes in livers of normal patients
and in livers of patients with fatty liver disease. D. Amounts of p-Ser190–C/EBPα-p300
complexes are increased in livers of NAFLD patients. The same liver sections were stained
with antibodies to p-Ser190-C/EBPα, to p300, and with DAPI. Merge shows colocalization
of C/EBPα and p300 in nucleus. Bar graphs show total number of hepatocytes with
colocalization of C/EBPα and p300 and number of hepatocytes with multiple foci of
colocalizations. E. Amounts of DGAT2 are increased in livers of patients with fatty liver
diseases. Liver sections were stained with antibodies to DGAT2 and with DAPI. Bar graphs
show percentage of DGAT2-positive hepatocytes. F. A model showing hypothetical
mechanisms for the age-associated hepatic steatosis.
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