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Abstract
Magnetoencephalography (MEG) and electroencephalography (EEG) allow functional brain
imaging with high temporal resolution. While solving the inverse problem independently at every
time point can give an image of the active brain at every millisecond, such a procedure does not
capitalize on the temporal dynamics of the signal. Linear inverse methods (Minimum-norm,
dSPM, sLORETA, beamformers) typically assume that the signal is stationary: regularization
parameter and data covariance are independent of time and the time varying signal-to-noise ratio
(SNR). Other recently proposed non-linear inverse solvers promoting focal activations estimate
the sources in both space and time while also assuming stationary sources during a time interval.
However such an hypothesis only holds for short time intervals. To overcome this limitation, we
propose time-frequency mixed-norm estimates (TF-MxNE), which use time-frequency analysis to
regularize the ill-posed inverse problem. This method makes use of structured sparse priors
defined in the time-frequency domain, offering more accurate estimates by capturing the non-
stationary and transient nature of brain signals. State-of-the-art convex optimization procedures
based on proximal operators are employed, allowing the derivation of a fast estimation algorithm.
The accuracy of the TF-MxNE is compared to recently proposed inverse solvers with help of
simulations and by analyzing publicly available MEG datasets.
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1. Introduction
Distributed source models in magnetoencephalography and electroencephalography
(collectively M/EEG) use thousands of current dipoles that are used as candidate sources to
explain the M/EEG measurements. Those dipoles can be located on a dense three-
dimensional grid within the brain volume, typically every 5 mm, or over a surface of the
segmented cortical mantle [7], both of which can be automatically segmented from high-
resolution anatomical Magnetic-Resonance Images (MRIs). Following Maxwell’s equations,
each dipole adds its contribution linearly to the measured signal. Note that this linearity of
the forward problem is not a modeling assumption but a fact based on the fundamental
physics of the problem.

The task in the inverse problem is to map the M/EEG measurements to the brain, i.e., to
estimate the distribution of dipolar currents that can explain the measured data. Inverse
methods that estimate distributed sources are commonly referred to as imaging methods.
This is motivated by the fact that the current estimate explains the data and can be visualized
as an image, at least at a given point in time. The orientations of the dipoles can be either
considered to be known, e.g., by aligning them with the estimated cortical surface normals
[7], in which case only the dipole amplitudes need to be estimated. Alternatively, the
orientations can be considered as unknown in which case both amplitudes and orientations
need to be estimated at each spatial location.

One of the challenges for distributed inverse methods is that the number of dipoles by far
exceeds the number of M/EEG sensors: the problem is ill-posed. Therefore, constraints
using a priori knowledge based on the characteristics of the actual source distributions are
necessary. Common priors are based on the Frobenius norm and lead to a family of methods
generally referred to as mininum norm estimators (MNE) [45, 19]. Minimum norm
estimates can be converted into statistical parameter maps, which take into account the noise
level, leading to noise-normalized methods such as dSPM [6] or sLORETA [35]. While
these methods have some benefits like simple implementation and a good robustness to
noise, they do not take into account the natural assumption that only a few brain regions are
typically active during a cognitive task. Interestingly, this latter assumption is what justifies
a parametric method known as “dipole fitting” [37] routinely used in clinical practice. In
order to promote such focal or sparse solutions within the distributed source model
framework, one uses sparsity-inducing priors such as a ℓp norm with p ≤ 1 [30, 14].
However, with such priors it is challenging to obtain consistent estimates of the source
orientations [42] as well as temporally coherent source estimates [34].

In order to promote spatio-temporally coherent focal estimates, several publications have
proposed to constrain the active sources to remain the same over the time interval of interest
[34, 11, 46, 15]. The implicit assumption is then that the sources are stationary. While this
conjecture is reasonable for short time intervals, it is not a good model for realistic sources
configurations where multiple transient sources activate sequentially during the analysis
period, or simultaneously, before returning to baseline at different time instants.

When working with time series with transient and non-stationary effects, relevant signal
processing tools are short time Fourier transforms (STFT) and wavelet decompositions.
Contrary to a simple Fast Fourier Transform (FFT), they provide information localized in
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time and frequency (or scale). In particular, time-frequency decompositions, e.g., Morlet
wavelet transforms, are routinely used in MEG and EEG analysis to study transient
oscillatory signals. Such decompositions have been employed to analyze both sensor-level
data and source estimates, but no attempt has been made to use their output in constructing a
regularizer for the inverse problem.

In this contribution, we address the problem of localizing non-stationary focal sources from
M/EEG data using appropriate sparsity inducing norms. Extending the work from [15] in
which we coined the term Mixed-Norm Estimates (MxNE), we propose to use mixed-norms
defined in terms of the time-frequency decompositions of the sources. We call this approach
the Time-Frequency Mixed-Norms Estimates (TF-MxNE). The benefit is that the estimates
can be obtained over longer time intervals while making standard preprocessing such as
filtering or time-frequency analysis on the sensors optional. The inverse problem is
formulated as in [15] as a convex optimization problem whose solutions are computed with
an efficient solver based on proximal iterations.

We start with a detailed presentation of the problem and the algorithm. Next, we compare
the characteristics and performance of various priors with help of realistic simulated data.
Finally, we analyze publicly available MEG datasets (auditory and visual stimulations)
demonstrating the benefit of TF-MxNE in terms of source localization and estimation of the
time courses of the sources.

A preliminary version of this work was presented at the international conference on
Information Processing in Medical Imaging (IPMI) [17]. In this paper we improve the solver
to support loose orientation constraints, depth compensation as well as a debiasing step to
better estimate source amplitudes. We also analyze new experimental data.

Notation: We indicate vectors with bold letters, a ∈ ℝN (resp. ) and matrices with capital
bold letters, A ∈ ℝN×N (resp. ). a[i] stands for the ith entry in the vector, while A[i, ·]
and A[·, i] denote the ith row and ith column of a matrix, respectively. We denote ||A||Fro the

Frobenius norm,  the ℓ1 norm, and

 the ℓ21 mixed norm. AT and A  stand for the matrix
transpose and a Hermitian transpose, respectively.

2. General model and method
After a short introduction to Gabor time-frequency dictionaries for M/EEG signals, we
present the details of our TF-MxNE inverse problem approach. We then detail the proposed
optimization strategy, which uses proximal iterations.

2.1. Gabor dictionaries
Here we briefly present some important properties of Gabor dictionaries, see [8] for more
details. Given a signal observed over a time interval, its conventional Fourier transform
estimates the frequency content but loses the time information. To analyze the evolution of
the spectrum with time and hence the non-stationarity of the signal, Gabor introduced
windowed Fourier atoms which correspond to a short-time Fourier transform (STFT) with a
Gaussian window. In practice, for numerical computation, a challenge is to properly
discretize the continuous STFT. The discrete STFT with a Gaussian window is also known
as the discrete Gabor Transform [12].
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The setting we are considering is the finite-dimensional one. Let g ∈ ℝT be a “mother”
analysis window. Let f0 ∈ ℕ and k0 ∈ ℕ be the frequency and the time sampling rate in the
time-frequency plane generated by the STFT, respectively. The family of the translations
and modulations of the mother window generates a family of Gabor atoms (φmf)mf forming
the dictionary Φ ∈ , where K denotes the number of atoms. The atoms can be written as

(1)

If the product f0k0 is small enough, i.e., the time-frequency plane is sufficiently sampled, the
family (φmf)mf is a frame of ℝT, i.e., one can recover any signal x ∈ ℝT from its Gabor
coefficients (〈x, φmf 〉) = Φ x. More precisely, there exists two constants A, B > 0 such that
[1]:

(2)

When A = B, the frame is tight. When the vectors φmf are normalized the frame is an
orthogonal basis if and only if A = B = 1. The Balian-Low theorem says that it is impossible
to construct a Gabor frame which is a basis. Consequently, a Gabor transform is redundant
or overcomplete and there exists an infinitely number of ways to reconstruct x from a given
family of Gabor atoms. In the following, the considered Φ dictionaries are tight frames.

The canonical reconstruction of x from its Gabor coefficients requires a canonical dual
window, denoted by g̃. Following (1) to define (φ̃mf)mf we have:

where Φ̃ is the Gabor dictionary formed with the dual windows. When the frame is tight,
then we have g̃ = g, and more particularly we have ΦΦ  = ||ΦΦ ||Id8. The representation
being redundant, for any x ∈ ℝT one can find a set of coefficients zmf such that x = Σm,f
zmfφmf, while the zmf verify some suitable properties dictated by the application. For
example, it is particularly interesting for M/EEG to find a sparse representation of the signal.
Indeed, a scalogram, sometimes simply called TF transform of the data in the MEG
literature, generally exhibits a few peaks localized in the time-frequency domain. In other
words, an M/EEG signal can be expressed as a linear combinations of a few oscillatory
atoms. In order to demonstrate this, Fig. 1 shows the STFT of a single planar gradiometer
channel MEG signal from a somatosensory experiment, the same STFT restricted to the 50
largest coefficients (approximately only 10% of the coefficients), and the signal
reconstructed with only these coefficients compared to the original signal. We observe that
the true signal can be well approximated by only a few coefficients, i.e., a few Gabor atoms.
In the presence of white Gaussian noise, restricting the time-frequency representation of a
signal to the largest coefficients denoises the data. This stems from the fact, that Gaussian
white noise in not sparse in the time-frequency domain, but rather spreads energy uniformly
over all time-frequency coefficients [40]. Thresholding or shrinking the coefficients
therefore reduces noise and smoothes the data. This is further explained in the context of
wavelet transforms in [9].

8We can however say nothing about Φ Φ in general.

Gramfort et al. Page 4

Neuroimage. Author manuscript; available in PMC 2014 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In practice, the Gabor coefficients are computed using the Fast Fourier Transform (FFT) and
not by a multiplication by a Φ matrix as suggested above. Such operations can be efficiently
implemented as in the LTFAT toolbox9 [38]. Another practical concern to keep in mind is
the tradeoff between the size of the window g and the time shift k0. A long window will
have a good frequency resolution and a limited time resolution. The time resolution can be
improved with a small time shift leading however to a larger computational cost, both in
time and memory. Finally, as any computation done with an FFT, the STFT
implementations assume circular boundary conditions for the signal. To take this into
account and avoid edge artifacts, the signal has to be windowed, e.g., using a Hann window.

2.2. The inverse problem with time-frequency dictionaries
The linearity of Maxwell’s equations implies that the signals measured by M/EEG sensors
are linear combinations of the electromagnetic fields produced by all current sources. The
linear forward operator, called gain matrix, predicts the M/EEG measurements due to a
configuration of sources based on a given volume conductor model [32]. Given such a linear
forward operator G ∈ ℝN×P, where N is the number of sensors and P the number of sources,
the measurements M ∈ ℝN×T (T number of time instants) are related to the source
amplitudes X ∈ ℝP×T by M = GX.

The computation of the gain matrix G, e.g., with a Boundary Element Method (BEM) [24,
16], requires modeling of the electromagnetic properties of the head [19] such as the
specification of the tissue conductivities. The matrix is then numerically computed. In the
inverse problem one computes a best estimate of the neural currents, X*, based on the
measurements M. However, since P ≫ N, the problem is ill-posed and priors need to be
imposed on X. Historically, the sources amplitudes were computed time instant by time
instant using priors based on ℓp norms. The ℓ2 (Frobenius) norm leads to MNE, LORETA,
dSPM, or sLORETA while several alternative solvers based on ℓp norms with p ≤ 1 have
also been proposed to promote sparse solutions [30, 14]. However, since such solvers work
on an instant by instant basis they do not model the oscillatory nature of electromagnetic
brain signals. Note that even if the ℓ2 norm based methods work time instant by time instant,
the estimates reflect the temporal characteristics of the data, since they are obtained by linear
combinations of sensor data. This, however, implies that the parameters of the inverse solver
are independent of time, which corresponds to assuming that the SNR is independent of
time. Although MNE type approaches have been used with success, the assumption of
constant SNR is clearly wrong since the signal amplitudes vary in time while the noise stays
constant, or may be even smaller during an evoked response. The noise is usually estimated
from baseline periods such as prestimulus intervals or periods when the brain is not yet
responding to the stimulus.

Beyond single instant solvers, various sparsity-promoting approaches have been proposed
[34, 11, 46]. Although they manage to capture the time courses of the activations more
accuratly than the instantaneous sparse solvers, they implicitly assume that the active
sources are the same over the entire time interval of interest. This also implies that if a
source is detected as active at one time point, its activation will be non-zero during the entire
time interval of interest. To go beyond this approach, we propose a solver which promotes
on the one hand that the source configuration is spatially sparse, and on the other hand that
the time course of each active dipole is a linear combination of a limited number of Gabor
atoms, as suggested by Fig. 1. Since a Gabor oscillatory atom is localized in time, sources
can be marked as active only during a short time period. The model reads:

9http://ltfat.sourceforge.net/
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(3)

where Φ  ∈  is a dictionary of K Gabor atoms, Z ∈  are the coefficients of the
decomposition, and E is additive white noise, E ~ (0, λI). Given a prior on Z, (Z) ~
exp(−Ω(Z)), the maximum a posteriori estimate (MAP) is obtained by solving:

(4)

If we consider Ω(Z) = ||Z||1, (4) corresponds to a LASSO problem [39], a.k.a. Basis Pursuit
Denoising (BPDN) [4], where features (or regressors) are spatio-temporal atoms. Similarly
to the original formulation of MCE, i.e., ℓ1 regularization without applying Φ, such a prior is
likely to suffer from inconsistencies over time [34]. Indeed such a norm does not impose a
structure for the non-zero coefficients: they are likely to be scattered all over Z* (see Fig. 2).
Therefore, simple ℓ1 priors do not guarantee that only a few sources are active during the
time window of interest. To promote this, one needs to employ mixed-norms such as the ℓ21
norm [34, 15]. By doing so, the estimates have a sparse row structure (see Fig. 2). However
the ℓ21 prior on Z does not produce denoised time series as it does not promote source
estimates that are formed by a sum of a few Gabor atoms. In order to recover the sparse row
structure, while simultaneously promoting sparsity of the decompositions, we propose to use
a composite prior formed by the sum of ℓ21 and ℓ1 norms. The prior then reads:

(5)

A large regularization parameter λspace will lead to a spatially very sparse solution, while a
large regularization parameter λtime will promote sources with smooth times series. This is
due to the uniform spectrum of the noise (see Section 2.1) and the fact that a large λtime will
promote source activations made up of few TF atoms, each of which has a smooth
waveform.

2.3. Optimization strategy
The optimization strategy, which we propose for minimizing the cost function in (4), is
based on the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) [2], a first-order
schemes that handles the minimization of any cost function  that can be written as a sum of
two terms: a smooth convex term f1 with Lipschitz gradient and a convex term f2,
potentially non-differentiable: (Z) = f1(Z) + f2(Z). In order to apply FISTA, we need to be
able to compute the so-called proximity operator associated with f2, i.e., the proximity
operator associated with the composite ℓ21 + ℓ1 prior [17].

Definition 1 (Proximity operator)—Let ϕ: ℝM → ℝ be a proper convex function. The
proximity operator associated to ϕ, denoted by proxϕ: ℝM → ℝM reads:

While the proximity operators of mixed-norms relevant for M/EEG can be found in [15], in
the case of the composite prior in (5), the proximity operator is given by the following
lemma.
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Lemma 1 (Proximity operator for ℓ21 + ℓ1)—Let Y ∈  be indexed by a double
index (p, k). Z = proxλ||·||1+μ||·||21)(Y) ∈  is given for each coordinates (p, k) by

where for x ∈ ℝ, (x)+ = max(x 0), and by convention .

This result is a corollary of the proximity operator derived for hierarchical group penalties
recently proposed in [23]. The penalty described here can indeed be seen as a 2-level
hierarchical structure, and the resulting proximity operator reduces to successively applying
the ℓ1 and ℓ21 proximity operator. Both of these proximity operators are discussed in detail in
[15].

The pseudo code is provided in Algorithm 1. The Lipschitz constant  of the gradient of the
smooth term in (4) is given by the square of the spectral norm of the linear operator Z →
GZΦ . We estimate it with the power iteration method.

3. Specific modeling for M/EEG inverse problem
The M/EEG literature has shown that general solvers of the statistics literature need to be
adapted to the specificities of the M/EEG inverse problem. Crucial steps in the computation
of the source estimates are noise whitening, depth compensation, handling of source
orientations, and amplitude bias correction.

3.1. Spatial whitening
The model in (3) assumes that the additive noise is Gaussian white with E ~ (0, λI). This
strong modeling assumption is made realistic by a whitening step that relies on estimating
the noise covariance matrix. For this purpose, baseline data is employed, which is recorded
while the subject is at rest e.g. during pre-stimulus periods. If only MEG is recorded, the
noise covariance can be estimated from data recorded without subject, often called empty
room data. This approach provides good estimates of the measurement noise level. Although
the noise level depends on the signal frequency, one usually uses a single frequency-
unspecific noise covariance matrix. An alternative approach for frequency-dependent spatial
whitening is presented in [36].

The whitening step is particularly fundamental when different sensor types are used: EEG
and MEG with gradiometers and magnetometers record signals with different units of
measure and with different noise levels. The whitening step makes data recorded by
different sensors comparable and adapted for joint estimation.

3.2. Source models with unconstrained orientations
When the source orientations given by the normals of the cortical mesh cannot be trusted, it
can be interesting to relax this constraint by placing three orthogonal sources at each spatial
location. When all three orientations are allowed to explain the data equivalently the model
is called free orientation. Moreover, it can be of interest to have intermediate models using
loose orientation constraints [27]. However for such loose and free orientation models, the
TF composite prior needs to be adapted. Let each source be indexed by a spatial location i
and an orientation o ∈ {1, 2, 3}. Let o = 1 correspond to the orientation normal to the cortex,
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and o = 2 and o = 3 the two tangential orientations. We call 0 < ρ ≤ 1, the parameter
controlling how loose is the orientation constraint. The ℓ1 and ℓ21 norms read:

where k indexes the TF coefficients. When ρ = 1 the orientation is free and it amounts to
grouping the orientations in a common ℓ2 norm such as in [34, 20]. Such priors are a
principled way of supporting loose orientation constraints in the context of non-ℓ2 priors.

Observe here that ||Z||1 is not an ℓ1 norm per se. Indeed, it is a ℓ21 norm, but we have chosen
to keep the same notations as in the constrained orientation case for the sake of readability.

In practice, using free orientation models means that at a given location, the current dipoles
selected to explain the data can have an orientation that varies in time similarly to the
rotating dipole model employed in dipole fitting.

3.3. Depth compensation
The principal contribution to M/EEG data comes from superficial cortical gray matter: deep
sources are attenuated due to their larger distance from the sensors. While it is common in
statistics to scale the columns of the gain matrix such that ||Gi||2 = 1, practice with M/EEG
data shows that it is often not a good idea. The rationale in statistics is to avoid favoring
regressors, here sources, just due to the amplitude of the corresponding column in the gain
matrix. When doing this for M/EEG, it tends to favor too much very deep sources which are
less likely to be visible with M/EEG. For this reason, a common practice with MNE type
approaches is to use a softer depth bias compensation. Given a parameter 0 ≤ γ ≤ 1, the
three columns (G[·, (i, o = 1)], G[·, (i, o = 2)], G[·, (i, o = 3)]) of G for the three orientations
at the same location are normalized by

. If γ = 0 it corresponds to no depth
bias compensation and γ = 1 leads to full scaling which may lead to spurious deep sources
appearing in the results.

3.4. Source weighting: fMRI priors?
Mixed-norm regularizations [15] can be written with spatially dependent scalar weights. It
can be used to promote some sources by reducing their regularization. For example, given a

weight vector , one weight per physical location, the TF-MxNE prior can be modified
as:

where Z[i, ·] stands for the ith row of Z. If w[i] is small the regularization for the source at
location i will be small and the source i is likely to be selected to explain the data. Assuming
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that additional location information of the sources is available, e.g., from fMRI, information
is known about the sources, such as fMRI localizations, it would be possible to inject this
knowledge in the prior in order to have fMRI informed sparse estimates. Note that sparsity
promoting priors do not lead to source estimates where every dipole in the source space has
a non-zero activation. It means that, although some regions are promoted by the weights,
they may not contain any estimated source. It indeed may happen that MEG misses sources,
for example if they are radially oriented. In this sense the proposed weighted scheme does
not act as a strong prior on the MEG source localization.

For computational reasons, one can also exploit fast solvers such as dSPM or sLORETA to
derive scalar weights that can help reduce the number of candidate sources. Typically, one
can threshold dSPM/sLORETA estimates and restrict the TF-MxNE solver to a small
portion of the cortex, further improving the computational efficiency of the optimization
algorithm. It corresponds to setting w[i] to infinity (or very large) if the ith spatial location
yields very low dSPM values at all points in time.

3.5. Amplitude bias compensation
Methods based on ℓ1 priors, such as TF-MxNE, are known to impose an amplitude bias on
the solution. This is due to the general bias-variance trade-off in statistical estimation. With
ℓ1 based priors, the high sparsity of the solution comes at the price of a strong amplitude
bias. Given the waveforms for the selected sources it is possible to post-process them and
correct the amplitude bias leading to meaningful amplitudes of the source activations. See
[18] for an example of amplitude bias correction in the context of fMRI decoding.

A first natural approach to correct for the amplitude bias is to compute the least squares
solution restricted to the active set of sources provided by the TF-MxNE solution. It
amounts to computing a dipole fit with a known set of dipoles, which is no longer an ill-
posed problem. However, this procedure affects the source time courses, and the signal
smoothness promoted by the TF-MxNE is lost. Hence, rather than re-estimating the source
time courses using least squares, we correct the amplitude bias by scaling the TF-MxNE
results. For this purpose, we introduce a diagonal scaling matrix D, whose diagonal elements
are scaling factors for all sources in the active set. These scaling factors are constrained to be
above 1 to actually remove the bias, and are constant over time. Furthermore, in the case of
free orientation, they are identical for all orientations at a given location in order to preserve
the source characteristics and orientations estimated using TF-MxNE. The bias corrected
source estimate X̃ is computed using D as X ̃ = DX = DZΦ . We estimated the scaling
matrix D based on the following convex optimization problem:

The optimization problem can also be solved efficiently with FISTA after writing the
constraint on D as an indicator function over a convex set  = {D s.t. Dii ≥ 1, and Dij = 0, if i
≠ j}:
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4. Practical details
This section presents the details in the efficient implementation of Algorithm 1. We also
discuss the choice of the hyperparameters (regularization parameters).

4.1. Implementation
Algorithm 1 requires to compute Gabor transforms at each iteration which can be
computationally demanding. However, due to the ℓ21 sparsity inducing prior, only a few
rows of Z have non-zero coefficients. The Gabor transform is therefore computed for only a
limited number of rows, equivalently a small number of active sources. This makes the
computation of YΦ  (cf. Algorithm 1 line 6) much faster.

Also when a tight frame is used, the ℓ21 norm of a signal does not change when Φ is applied.
This means that the ℓ21 proximity operator can be applied to temporal data to discard some
sources from the active set without computing the STFT. This comes from the fact that if
prox||·||21 (x) = 0 for a time series x then prox||·||1+||·||21 (Φx) = 0.

Since the proposed optimization problem is convex, the solution does not depend on initial
conditions. Hence, in order to further reduce the computation time, it is beneficial to
initialize the TF-MxNE solver with the ℓ21 MxNE solution obtained with the same spatial
regularization, since MxNE can be computed efficiently using active set strategies [15].
Note again that the ℓ21 MxNE solution is used as an initialization and not for restricting the
source space.

4.2. Selection of the regularization parameters
Model selection in the present case amounts to setting the regularization parameters λspace
and λtime, as well as the parameter of the Gabor transform, namely the time resolution with
k0 and the frequency resolution, function of the window length T. The parameter k0 and T
will depend on the length of a time interval during which signals can be considered
stationary. A too high sampling of the time-frequency plane will also lead to high
computational costs. The regularization parameters have an effect on the spatial sparsity, the
number of active dipoles, and the temporal smoothness of the source time series. Different
strategies exist to set such model parameters (cross-validation, discrepancy principle etc.).

In the case of ℓ21 priors, one can prove that there exists a value of  for λspace such that

if , then Z* is filled with zeros, i.e., no source is active. This provides a

convenient way to specify the regularization parameter as the ratio of λspace and ,
between 0 and 1. In the next section if λspace is given as a percentage it corresponds to this
ratio, rescaled to percents. For convenience, the parameter λtime can then be also scaled by

. The benefit of the reparametrization of the regularization parameter is that they
become much less sensitive to the dataset. Assuming Φ is a tight frame then ||X||21 = ||XΦ||21
= ||Z||21, then one can show based on the optimality conditions for the ℓ21 mixed-norm [15]
that:

5. Results
In the following, we first evaluate the accuracy of our solver with simulations. We then
apply our solver to two MEG/EEG datasets.
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5.1. Simulation study
In order to have a reproducible and reasonably fast comparison of different priors, we
generated a small simulation dataset with 20 EEG electrodes and 200 sources. Four of these
sources were randomly selected to be active. The ECD waveforms (Fig. 4(a)) represent 1
high and 3 low frequency components. The time course of the oscillatory high frequency
component is modeled by a Gabor atom, whereas the time courses of the low frequency
components were obtained from a somatosensory evoked potential study [22] by fitting
manually ECDs to the P15, N20 and P23 components. To make the comparison of the priors
independent of the forward model and the sources spatial configuration, the linear forward
operator was a random matrix, whose columns were normalized to 1. The scaling of the
columns is not mandatory here but simplifies the parameter setting by making it independent
of the number of simulated sensors. White Gaussian noise or realistic 1/f noise, simulated
with an auto-regressive (AR) process of order five calibrated on real MEG data, was added
to the signals to achieve a desired signal-to-noise ratio (SNR). Following the notation of (3),
we define SNR as 20 log10(||M||Fro/||E||Fro).

Figure 3 presents the RMSE on the estimation for different solvers as a function of

 for two different values of λtime, with and without correcting
for the amplitude bias. High and low noise conditions were investigated, with both white
and AR noise. The parameter λspace was chosen on a logarithmic grid from 10−2 to 102.5.
The Gabor dictionary is tight, constructed with a 64 sample window g with k0 = 4 samples
time shift.

Many observations can be made from these results. First, the spatio-temporal solvers,
namely MxNE and TF-MxNE, outperform instantaneous MNE and MCE. Second, we
observe that a small value of λtime in TF-MxNE leads to results similar to MxNE which is
fully expected since we use a tight frame that does not change the ℓ2 norm of a signal.
Finally, we observe that correcting for the amplitude bias clearly improves the results in all
conditions and particularly with high values of λspace. This suggests to run the solver with a

high value of λspace (high percentage of ) which also leads in practice to a faster
convergence of the solver. Note also that, as expected, violation of the modeling assumption
about the noise, namely Gaussian white noise, produces a degradation in the performance of
the solver in the AR condition. Figure 4 shows the reconstructions for the best λspace
according to Figure 3 for the ℓ1, ℓ21 MxNE and the TF-MxNE (with and without bias
correction). It can be observed, that the TF-MxNE method with the composite TF prior is
able to reconstruct the smooth time course of the simulated sources contrary to ℓ1 and ℓ21
priors.

The TF composite prior was then challenged on a realistic EEG configuration with a 4-shell
spherical head model (radii 0.90, 0.92, 0.96 and 1) and 60 electrodes placed according to the
international 10-5 electrode system. The source waveforms were the same as before. The
source space in Fig. 5 consisted of 152 sources in a regular grid (0.2 spacing) inside the
innermost sphere. Source orientations were randomly selected. Figure 5 shows the head
model and reconstructions obtained with ℓ21 MxNE and the TF-MxNE. Even if the
performance drops down due to the limited spatial resolution of EEG, the TF composite
prior gives the best RMSE and is able to reconstruct and separate the high frequency
component.

5.2. Experimental results with MEG/EEG data
We also applied the TF-MxNE solver to publicly available data: the auditory and visual
conditions in the data shipped as sample data with the MNE software (http://martinos.org/
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mne/). In this MEG/EEG experiment, checkerboard patterns were presented into the left and
right visual field, interspersed by tones to the left or right ear. The interval between the
stimuli was 750 ms. Occasionally a smiley face was presented at the center of the visual
field. The subject was asked to press a key with the right index finger as soon as possible
after the appearance of the face. We will report results obtained on the responses evoked by
the auditory stimuli presented to the left ear and visual stimuli shown in the left hemifield.

Data were collected in a magnetically shielded room using the whole-head Elekta Neuromag
Vector View 306 MEG system (Neuromag Elekta LTD, Helsinki) equipped with 102 triple-
sensor elements (two orthogonal planar gradiometers and one magnetometer per location).
EEG data from a 60-channel electrode cap was acquired simultaneously with the MEG.

The signals were recorded with a bandpass of 0.1 – 172 Hz, digitized at 600 samples/s and
averaged offline triggered by the stimulus onset. All epochs containing EOG signals higher
than 150 μV peak-to-peak amplitude were discarded from the averages. Peak-to-peak
rejection parameters for EEG was set to 80 μV, for magnetometers 4000 fT and for
gradiometers 2000 fT/cm. This resulted in respectively 55 and 67 averaged epochs for the
left auditory and left visual conditions. Evoked data were baseline corrected using 200 ms of
pre-stimulus data. The same data segment was used to estimate the noise covariance matrix
for spatial whitening. The M/EEG recordings contained two bad channels (1 EEG and 1
MEG), leading to a total of 364 combined M/EEG channels. Signal-space projection (SSP)
correction was applied to MEG magnetometers data to suppress environmental noise and
biological artifacts [41].

The anatomical MRI data were collected with a Siemens Trio 3T scanner with a T1-
weighted sagittal MPRAGE protocol, which were employed for cortical surface
reconstruction using FreeSurfer. Two multi-echo 3D Flash acquisitions were also performed
to extract the inner skull surface for the 3-layers boundary-element model used for forward
model computation. The dipolar sources were sampled over the cortical mantle with 5 mm
average distance between sources leading to a total of 7498 dipoles.

5.2.1. Auditory data—The sources were estimated assuming loose orientation constraint
(ρ = 0.2) and depth bias compensation with γ = 0.9. The Gabor dictionary was tight,
constructed with a 16 samples (≃ 27 ms) long window g with k0 = 4 samples time shift and
f0 = 1 sample frequency shift. A scalar weighting as described in Section 3.4, was performed
with a dSPM solution obtained with the same depth weighting and loose orientation. The
λtime parameter was set to 1%. Results are presented in Figure 6.

In order to compare the estimated sources of the TF-MxNE, we computed the solution using
an ℓ21 MxNE with the same spatial regularization. It amounts to setting λtime in the TF-
MxNE to zero and hence not promoting any temporal regularization. This can be observed
in the Figure 6 where both MxNE and TF-MxNE lead to bilateral auditory sources given an
λspace = 50%. However the TF-MxNE, leads to smooth time courses and true zero
activations during baseline. Note that any sparse solver that would only promote spatial
sparsity without modeling the dynamics of the signal would fail to estimate true null
activations during baseline.

Further looking at the time series of the sources, it can be observed that the contralateral
auditory cortex activates before the ipsilateral. This is consistent with the literature. The
peak to peak latency difference between right and left cortices for the main activity, known
as the N100, can be clearly quantified on the smooth waveforms provided by the TF-MxNE.
It is for this subject equal to 16 ms. These experimental results show how the proposed
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method can provide both fine spatial localization and temporal smoothness, which e.g.
allows to fully exploit the temporal resolution of M/EEG for chronometry.

In order to illustrate, what fraction of the data has actually been explained by the bilateral
auditory sources obtained with our choice of hyperparameters λspace and λtime, we present
in Figure 6-a the original data restricted to the gradiometers as well as in Figure 6-b the data
predicted by the sources. Note that all MEG and EEG sensors were used for the localization.
However, we show only the gradiometer signals due to visualization purposes. We observe
that with the regularization parameters used, the evoked components predicted by the
sources are mostly before 150 ms, including the P50 and N100.

For comparison with alternative solvers, we show in Figure 7 the TF-MxNE source
locations superposed to dSPM reconstructions and LCMV beamformer [44] outputs 100 ms
after stimulation. Since LCMV does not exploit the cortical orientation information, the map
peaks are located at the gyri, below the auditory cortex in the temporal lobe.

5.2.2. Visual data—We used the same model parameters (loose orientation, depth bias,
scalar weighting, λtime and Gabor dictionary) as for the auditory condition. The spatial

regularization was however changed to λspace = 30% of . Results are presented in
Figure 8.

Figure 8(a) presents the raw evoked response, restricted to the gradiometers. Sources
reconstructions lead to three dipoles. According the automatic parcellation of the cortex
provided by FreeSurfer, two sources are localized in the early visual cortex V1, while a third
one is positioned on the dorsal part of the secondary visual cortex (V2). One can then
quantify the temporal latencies. Between the largest peaks for the early V1 sources the
latency is zero which suggests that it could be the same source not properly modeled with a
single cortically constraint dipole. Between the V1 sources and the later V2 source the
latency is equal to 7 ms, which is very reasonable according to the literature [5]. Here again
one can observe the source time series are truely set to zero during baseline.

Using the implementation details provided in Section 4.1, the computation on each dataset
presented in this section takes about 30 seconds on a standard laptop computer.

For comparison with alternative solvers, we show in Figure 9 the TF-MxNE source
locations superposed to dSPM reconstructions and LCMV beamformer [44] outputs at the
time instants corresponding to the two peaks in the evoked response. For LCMV, the data
covariance was computed from 40 ms to 150 ms. One can observe that for the early peak all
three methods agree to locate the main source in V1 along the calcarine fissure, although
dSPM and LCMV lead to more smeared maps. For the second peak, it is pleasing to see how
well LCMV and TF-MxNE agree on the site of the blue source, located in the dorsal part of
V2 according to the FreeSurfer parcellation.

6. Discussion
While time-frequency analysis is commonly used in the context of M/EEG both in the
sensor and source space, it has rarely been used to better model the source dynamics in the
context of the inverse problem. Some earlier contributions, such as [10, 13, 26, 28], apply a
two-step approach. First TF atoms are estimated from sensor data, typically with greedy
approaches like Matching Pursuit. Subsequently, the inverse problem is solved on the
selected components using parametric [13], scanning [26] or distributed methods [10, 28].
Such methods suffer from several limitations. They implicitly assume that the source
waveforms correspond to single TF atoms, while real brain signals are better modeled by a
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combination of atoms as proposed in this contribution. In addition, estimation errors made in
the first step have a direct impact on the accuracy of the sources estimates. This is a
particularly critical issue since the first step does not take into account the biophysics of the
problem, i.e., the solution of the forward problem.

Certainly motivated by the ability of dipole fitting methods to explain M/EEG data, spatial
sparsity of source configurations has also been a recurrent assumption to improve the
performance of the M/EEG distributed source models. However, variational formulations
based on mixed-norms [34, 15], or Bayesian methods with sparsity inducing mechanisms
[11, 46] that have been proposed so far in the literature do not model the transient oscillatory
nature of brain signals. These approaches make the strong assumption that the source time
courses are stationary. For example, results are strongly dependent on the time interval
considered. Also the solutions obtained by these solvers are invariant with respect to the
permutation of the columns of M, i.e., the temporal sequence of the data is immaterial. This
contribution does not suffer from this limitation by explicitly modeling the temporal
dynamics of the signals.

To improve over MNE type methods, by removing the assumption of a constant SNR over
time and to correlate the time instants together, one should mention recently proposed state-
space models based on Kalman filters and smoothers [29, 25]. Such methods, although
promising, are still computationally demanding and could suffer from more practical issues
like rather long time series to estimate the latent parameters reliably and the necessity to
work with fixed orientations.

In [40], an inverse solver that models the transient and non-stationary responses in M/EEG
is proposed. A probabilistic model with wavelet shrinkage is employed to promote spatially
smooth time courses. The estimation however relies on model approximations with no
guarantee on the solution obtained. The most related work to ours, beyond the field of M/
EEG, is probably [31] where sparsity is also promoted on the TF decompositions. The
related optimization problem, is however solved with a truncated Newton method which can
only be applied to differentiable problems. The non-differentiability of the cost function is
tackled by using smooth approximation in the minimization. Moreover, Newton methods are
known to be fast in the neighborhood of the solution, but little is known about the global
convergence rate. In [33], it is proved that a suitable Newton technique has the same rate of
convergence as the accelerated first order schemes like the one we are employing in TF-
MxNE. In this contribution, we do not address the problem of learning spatial basis
functions as in [43] as doing so would make the cost function non-convex, which would
deteriorate the speed of convergence and would also make the solver dependent on the
initialization. However, using a pre-defined dictionary of spatial basis functions in line with
[3, 21] and multiplying the gain matrix with this dictionary, our prior could be used to
estimate spatially extended sources with temporally smooth waveforms. This would,
however, be significantly more computationally expensive.

In this work, we demonstrated how physiologically motivated priors for brain activations
can be accounted for in a mathematically principled framework in M/EEG source analysis.
Using a composite prior, the sparsity of spatial patterns, the temporal smoothness, and the
non-stationarity of the source signals were well recovered. Thanks to the structure of the
cost function considered, mainly its convexity, an efficient optimization strategy was
proposed. The problem being convex, the solver is not affected by improper initialization
and cannot be trapped in local minima. Simulations indicated benefits of the approach over
alternative solvers, while results with well understood MEG data confirm the accuracy of
the reconstruction with real signals. Both results show that our solver is a promising new
approach for mining M/EEG data.
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Highlights

• our method solves the M/EEG inverse problem without assuming source
stationarity

• we localize sources in space, time and frequency in one step

• we provide results on simulations and two publicly available MEG datasets

• the solver uses short time Fourier transforms (STFT) and modern optimization
techniques

• the solver is tractable and fast on real data
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Figure 1.
a) Short-time Fourier transform (STFT) of a single channel MEG signal sampled at 1000 Hz
showing the sparse nature of the transformation (window size 64 time points and time shift
k0 = 16 samples). b) STFT restricted to the 50 largest coefficients c) Data and data
reconstructed using only the 50 largest coefficients.
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Figure 2.
Sparsity patterns promoted by the different priors: ℓ2 all non-zero, ℓ1 scattered and
unstructured non-zero, ℓ21 block row structure, and ℓ21 + ℓ1 block row structure with intra-
row sparsity. Red color indicates non-zero coefficients.
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Figure 3.
Comparison of RMSE in the source space as a function of λspace (SNR=6bB and SNR=0bB
with Gaussian white noise and AR noise). TF priors improve the reconstruction and the best
accuracy is obtained with the TF ℓ21 + ℓ1 prior for both noise conditions. The bias correction
improves the performance of the reconstruction in both cases, particularly for high values of
λspace.
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Figure 4.
Simulations results with SNR = 6 dB. (a) A simulated source activations. (b) Noiseless
simulated measurements. (c) Simulated measurements corrupted by noise. (d-e-f) Estimation
with ℓ1 prior. (g-h-i) Estimation with ℓ21 prior [34]. (j-k-l) Estimation with composite TF
prior. (m-n-o) Estimation with composite TF prior and debiasing. (f-i-l-o) show the sparsity
patterns obtained by the 3 different priors as explained in Fig. 2. Result (j) shows how the
composite TF prior improves over (d) and (g). (l) presents also a higher level of sparsity
compared to (f) and (i).
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Figure 5.
Results with real EEG lead field (SNR=3dB). The 4 dipoles are color coded. Magenta dots
show the 3D grid of sources. Dark dots show the EEG sensors locations. Contrary to TF ℓ21
+ ℓ1, ℓ21 fails to recover the deep green dipole time course.
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Figure 6.
Results obtained with TF-MxNE and MxNE for left-ear auditory stimulation with unfiltered
combined MEG/EEG data. Estimation was performed with the loose orientation parameter
0.2, with depth compensation of 0.9 on a set of 7498 cortical locations (G ∈ ℝ364×22494).

The estimation with λspace = 50% of  leads to 2 active brain locations at the auditory
cortices. TF-MxNE leads to smooth time courses and zeros during baseline.
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Figure 7.
Comparison of TF-MxNE, dSPM, and LCMV for an auditory stimulation. The images show
the TF-MxNE solutions overlayed with dSPM estimates (a) and LCMV output map (b) 100
ms after stimulation. Since LCMV does not exploit the cortical orientation information, the
map peaks are located at the gyri, below the auditory cortex in the temporal lobe.
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Figure 8.
Results obtained with TF-MxNE for a visual stimulation (checkerboard stimulus in the left
visual field) with unfiltered MEG data. Estimation was performed with a loose orientation
(parameter 0.2), with a depth compensation of 0.9 on a set of 7498 cortical locations (G ∈
ℝ364×22494). Estimation with λspace = 30% of  leads to 3 active brain locations in the
contralateral visual cortex (V1 and V2). TF-MxNE leads to smooth time courses and zeros
during baseline.
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Figure 9.
Comparison of TF-MxNE, dSPM, and LCMV for a visual stimulation (checkerboard
stimulus in the left visual field). The images show the TF-MxNE solutions overlayed with
dSPM estimates (a) and LCMV output maps (b) for two different time points corresponding
to the main peaks in Figure 8(a). For the early peak, there is a very good agreement between
all three methods although dSPM and LCMV maps are smeared in space. For the later peak,
LCMV and TF-MxNE agree on the location of the blue source.
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Algorithm 1

FISTA with TF dictionaries to minimize 4

Input: Measurements M, gain matrix G, regularization parameter λ > 0 and I the number of iterations.

Output: Z*

1: Auxiliary variables: Y and Zo ∈ ℝP×K, and τ and τo ∈ ℝ.

2: Estimate the Lipschitz constant  with the power iteration method.

3: Y = Z* = Z, τ = 1, 0< μ < 

4: for i = 1 to I do

5:  Zo = Z*

6:  Z* = proxμλΩ(Y + μGT(M − GYΦ )Φ)

7:  τo = τ

8:

9:

10: end for
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