Table 1.
Hyperelastic strain energy functions and corresponding uniaxial stress-strain equations
Name | Strain energy potential (W) Uniaxial stress (α)—stretch (λ) equation Initial shear modulus (G0) |
|
---|---|---|
Mooney-Rivlin, Neo-Hookean (Mooney 1940; Treloar 1975) | W = C1 (I1 – 3) + C2 (I2 – 3); C2 = 0 for Neo-Hookean model | |
σ = 2C1 (λ – λ−2) + 2C2 (1 – λ−3) | ||
G0 = 2 (C1 + C2); Fitting parameters: C1, C2 | ||
Reduced polynomial (Mooney 1940) | ||
G0 = 2C1; Fitting parameters: Ci | ||
Ogden (1972) | ||
; Fitting parameters: Ci, αi | ||
Fung (Fung 1967; Fung et al. 1979) | ||
σ = C (λ − λ−2) exp [b (I1 − 3)] | ||
G0 = C; Fitting parameters: C, b | ||
Van der Waals (Kilian) (Kilian 1985) | ||
G0 = C; Fitting parameters: C, b | ||
λm is the limiting tensile stretch; I1m is the corresponding first invariant | ||
Gaylord—Douglas (1987,1990), Tschoegl—Gurer (Gurer and Tschoegl 1985; Tschoegl and Gurer 1985) | ||
σ = C1 (λ − λ−2) + (2C2/b) [λb − λ−b/2] | ||
G0 = C1 + C2; Fitting parameters: C, C2 | ||
Gaylord–Douglas: b = 1 Tschoegl–Gurer: b = 0.34 |
Assuming material incompressibility, in uniaxial loading in the x-direction, I1 first strain invariant = ; I2 second invariant = , σ = λ (∂W/∂λ), λx = λ, λy = λz = λ−1/2 and strain ε = λ − 1