Skip to main content
. Author manuscript; available in PMC: 2013 Apr 3.
Published in final edited form as: Biomech Model Mechanobiol. 2008 Nov 2;8(5):345–358. doi: 10.1007/s10237-008-0139-9

Table 1.

Hyperelastic strain energy functions and corresponding uniaxial stress-strain equations

Name Strain energy potential (W) Uniaxial stress (α)—stretch (λ)
equation Initial shear modulus (G0)
Mooney-Rivlin, Neo-Hookean (Mooney 1940; Treloar 1975) W = C1 (I1 – 3) + C2 (I2 – 3); C2 = 0 for Neo-Hookean model
σ = 2C1 (λ – λ−2) + 2C2 (1 – λ−3)
G0 = 2 (C1 + C2); Fitting parameters: C1, C2
Reduced polynomial (Mooney 1940)
W=i=1NCi(I13)i
σ=2(λλ2)i=1NiCi(λ2+2λ13)i1
G0 = 2C1; Fitting parameters: Ci
Ogden (1972)
W=i=1N2Ciαl2(λxαi+λyαi+λzαi3)
σ=i=1N2Ciαi(λαi1λαi/21)
G0=i=1NCi; Fitting parameters: Ci, αi
Fung (Fung 1967; Fung et al. 1979)
W=C2b{exp[b(Ii3)]1}
σ = C (λ − λ−2) exp [b (I1 − 3)]
G0 = C; Fitting parameters: C, b
Van der Waals (Kilian) (Kilian 1985)
W=C{(I1m3)[ln(1I13I1m3))+I13I1m3]23b(I132)3/2}
σ=C(λλ2)[(1λ2+2λ13λm2+2λm13)1bλ2+2λ132]
G0 = C; Fitting parameters: C, b
λm is the limiting tensile stretch; I1m is the corresponding first invariant
Gaylord—Douglas (1987,1990), Tschoegl—Gurer (Gurer and Tschoegl 1985; Tschoegl and Gurer 1985)
W=(C1/2)(I13)+(2C2/b2)(λxb+λyb+λzb3)
σ = C1 (λ − λ−2) + (2C2/b) [λb − λb/2]
G0 = C1 + C2; Fitting parameters: C, C2
Gaylord–Douglas: b = 1 Tschoegl–Gurer: b = 0.34

Assuming material incompressibility, in uniaxial loading in the x-direction, I1 first strain invariant = λx2+λy2+λz2; I2 second invariant = λx2+λy2+λz2, σ = λ (∂W/∂λ), λx = λ, λy = λz = λ−1/2 and strain ε = λ − 1