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Our intestine is host to a large microbial community (microbiota) 
that educates the immune system and confers niche protection. 
Profiling of the gut-associated microbial community reveals a 
dominance of obligate anaerobic bacteria in healthy individuals. 
However, intestinal inflammation is associated with a disturbance 
of the microbiota—known as dysbiosis—that often includes 
an increased prevalence of facultative anaerobic bacteria. This 
group contains potentially harmful bacterial species, the bloom 
of which can further exacerbate inflammation. Here, we review 
the mechanisms that generate changes in the microbial commu-
nity structure during inflammation. One emerging concept is that 
electron acceptors generated as by-products of the host inflam-
matory response feed facultative anaerobic bacteria selectively, 
thereby increasing their prevalence within the community. This 
new paradigm has broad implications for understanding dysbiosis  
during gut inflammation and identifies potential targets for 
 intervention strategies.
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Enterobacteriaceae
EMBO reports (2013) 14, 319–327; published online 12 March 2013;  
doi:10.1038/embor.2013.27
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Introduction
Over 90% of the cells in the human body are microbes, most of 
which reside in bacterial communities—known collectively as 
microbiota— that inhabit the large intestine. Advances in high-
throughput microbiota sequencing provide a powerful tool for 
profiling the previously hidden microbial diversity in the gut. 
For example, such meta genomic analysis shows that the large intes-
tine is host to a diverse bacterial community the structure of which, 
at the phylum level, is maintained through unknown mechanisms. 
The bacterial species dominating the microbiota in the large bowel 
are strict  anaerobes, which lack the ability to respire oxygen and 
rely on fermentation of complex polysaccharides for growth [1]. 
Towering above all others are obligate anaerobic bacteria belonging 

to the phyla Bacteroidetes (class Bacteroidia) and Firmicutes (class 
Clostridia; [2]). This dominance of Bacteroidia and Clostridia is a 
conserved feature of the large intestine microbiota of both humans 
and mice [2,3].

However, intestinal inflammation can lead to a microbial 
 imbalance—known as dysbiosis—which is characterized by a 
marked decrease in the representation of obligate anaerobic bac-
teria and an increased relative abundance of facultative anaero-
bic bacteria. For example, acute intestinal inflammation triggered 
by pathogenic Enterobacteriaceae (class Gammaproteobacteria, 
 phylum Proteobacteria)—such as Salmonella enterica or Citrobacter 
rodentium—is accompanied by changes in the bacterial com-
munity structure that are marked by an outgrowth of the respec-
tive facultative anaerobic pathogen [4–6]. Similarly, a reduction 
of strictly anaerobic members of the classes Bacteroidia and 
Clostridia, and a concomitant increase in facultative anaerobic 
commensal bacteria belonging to the class Gammaproteobacteria 
(most commonly members of Enterobacteriaceae) or to the class 
Bacilli (phylum Firmicutes), is seen in individuals with inflam-
matory bowel disease  [7–13]. Likewise, a marked decrease in 
Bacteroidia and Clostridia and an increased relative abundance 
of Enterobacteriaceae is also observed in mice when colitis is 
induced chemically [6] or through genetically engineered immune 
defects [14]. Although metagenomics provides a powerful lens for 
viewing these changes in the microbial community structure during 
conditions of intestinal inflammation, the mechanisms responsible 
have remained an enigma. Here, we review advances in the under-
standing of the fundamental principles that govern the phylum-level 
changes in the structure of host-associated  microbial communities 
in the inflamed gut. 

Enterobacteriaceae in the healthy gut
The lumen of the distal gut is a fairly anaerobic environment. The 
traces of oxygen present in this habitat are readily consumed by 
facultative anaerobic bacteria—such as Enterobacteriaceae—
that constitute a small fraction (approximately 0.1%) of the 
micro biota  [2]. The amount of available oxygen seems to limit 
the growth of Enterobacteriaceae in this environment, because 
elevated oxygen levels increase their relative abundance. For 
example, the ileostomy of small bowel transplant patients pro-
vides a portal that allows oxygen to reach the otherwise anaero-
bic distal ileum. An increase in the relative abundance of 
Enterobacteriaceae is observed in close proximity to the ileostomy 
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and the microbial community returns to its normal composition 
after its surgical closure [15]. Thus, once the available oxygen is 
consumed, Enterobacteriaceae are apparently poorly equipped 
to compete with obligate anaerobic bacteria for high-energy 
 nutrients to  support their growth by fermentation.

The dense bacterial communities that inhabit the distal gut 
compete fiercely for a limited quantity of diet-derived or host 
mucus-derived carbohydrate available for fermentation [16,17]. 
Changes in the diet can alter the microbial community structure 
at the species level, but the dominance persists of obligate anaero-
bic Clostridia and Bacteroidia over Enterobacteriaceae [18–22]. A 
comparison of the strategies by which Clostridia, Bacteroidia and 
Enterobacteriaceae acquire fermentable nutrients illustrates why 
the latter might be at a disadvantage during anaerobic growth on a 
 limited quantity of carbohydrate (Fig 1).

The Gram-positive Clostridia lack an outer membrane and use 
glycoside hydrolases to degrade complex carbohydrates. The oligo-
saccharides generated through this process are transported actively 
against a concentration gradient across the cytoplasmic membrane 
by using ABC transporters (Fig 1A; [16]).

The starch utilization system encoded by the sus gene cluster 
of Bacteroides thetaiotaomicron is a well-studied glycan acquisi-
tion strategy conserved among the Bacteroidia. The outer mem-
brane proteins SusD, SusE and SusF bind starch to the bacterial 
surface [23]. The outer membrane protein SusG degrades starch 
into malto-oligosaccharides [24], which are subsequently actively 
transported against the concentration gradient by the energy-
coupled outer membrane import protein SusC [25]. The energy 
required for transport through this class of outer membrane import 
proteins is provided by the proton motive force of the cytoplas-
mic membrane, which is transmitted to the outer membrane 
through the TonB, ExbB and ExbD proteins (reviewed in [26]). 
Finally, periplasmic malto-oligosaccharides are further degraded 
by SusA to glucose, which is actively transported into the cyto-
sol to support growth by fermentation [27]. Sequencing of the 
B.  thetaiotaomicron  genome revealed the presence of 88 gene 
clusters related to the sus system, suggesting that this general strat-
egy is used for degradation of a multitude of carbohydrate sources 
in the intestinal lumen (Fig 1B; [28]).

Escherichia coli is a well-studied member of the Entero-
bacteriaceae commonly present in the large bowel. Malto-
oligosaccharides and maltose cross the bacterial outer membrane 
passively along a concentration gradient through an outer mem-
brane diffusion channel (LamB; [29]). In the periplasm, malto- 
oligosaccharides are degraded to maltose by the α-amylase 
MalS [30,31]. Maltose is bound by the periplasmic binding protein 
MalE [32] and actively transported into the cytosol by an ABC trans-
porter formed by the MalF, MalG and MalK proteins [33–38]. Passive 
transport through outer membrane diffusion channels is a conserved 
feature of carbohydrate acquisition within the Enterobacteriaceae 
(Fig 1C). The only energy- coupled outer membrane import proteins 
present in Enterobacteriaceae transport low-molecular-weight iron 
 chelators—known as siderophores—and vitamin B12 [26].

The above examples illustrate the main difference between the 
carbohydrate acquisition strategies of Clostridia, Bacteroidia and 
Enterobacteriaceae. Both Clostridia and Bacteroidia use glycoside 
hydrolases to degrade complex carbohydrates, make use of binding 
proteins to concentrate carbohydrate at their surface and then use 
an active transport system—that is, an ABC transporter or an energy-
coupled outer membrane import protein—to import substrates 
against a concentration gradient across the first diffusion barrier, 
be it across the cytoplasmic membrane in Clostridia or across the 
outer membrane in Bacteroidia (Fig 1A,B). By contrast, a paucity of 
secreted glycoside hydrolases make Enterobacteriaceae ill-equipped 
to degrade complex carbohydrate. Instead, Enterobacteriaceae rely 
on the presence of oligosaccharides that are transported passively 
across the first diffusion barrier—the outer membrane—through 
diffusion channels (Fig  1C). Using more effective nutrient-uptake 
mechanisms is predicted to confer a competitive growth advantage 
on Clostridia and Bacteroidia over Enterobacteriaceae during anaer-
obic growth on a limited quantity of carbohydrate. This competitive 
growth advantage might at least in part explain the dominance of 
obligate anaerobic Clostridia and Bacteroidia over the facultative 
anaerobic Enterobacteriaceae in the healthy gut.

From metagenomics to mechanisms
One important consequence of intestinal inflammation is diarrhoea, 
the flushing action of which limits the availability of fermentable 
high-energy carbon sources to host mucus-derived carbohydrate. 
The more effective nutrient-uptake mechanisms used by Clostridia 
and Bacteroidia are predicted to confer an advantage in this environ-
ment. However, intestinal inflammation is associated with phylum- 
level changes in the microbiota composition, characterized by an 
increase in facultative anaerobic bacteria [39]. How can inflam-
mation diminish the competitive anaerobic growth advantage of 
 obligate anaerobic bacteria over Enterobacteriaceae?

To answer this question, it is important to understand how inflam-
mation alters the nutritional environment in the distal gut. Intestinal 
inflammation is accompanied by the release of antimicrobials, a 
host defence mechanism designed to eradicate microbes from tissue 
or from close vicinity to the epithelium. Some antimicrobials  with-
hold nutrients by interfering with the microbial acquisition of trace 
elements, such as iron or zinc [40,41]. For example, on stimula-
tion with IL-22, epithelial cells release the antimicrobial lipocalin 2 
into the intestinal lumen [41]. Lipocalin 2 binds to entero bactin, 
thereby preventing bacteria from using this siderophore for 
iron acquisition  [42–44]. The release of lipocalin 2  can provide 
a selective advantage for enteric pathogens that have specific 

Glossary

ABC ATP-binding cassette 
DMSO dimethyl S-oxide
DSS dextran sulphate sodium
DUOX2 dual function NAD(P)H oxidase 2
ExbB/D excretion of enterobactin gene B/D
IFN-γ interferon gamma
IL-22 interleukin 22
iNOS inducible nitric oxide synthase
LamB outer membrane receptor for phage λ
MaLE/F/G/K/S maltose utilization genes E/F/G/K/S
MoaA molybdopterin synthesis protein A
MPO myeloperoxidase
NADPH nicotinamide adenine dinucleotide phosphate
NF-κB nuclear factor kappa B
SOD superoxide dismutase
SopE Salmonella outer protein E
Sus starch utilization system
TonB phage T1 resistance locus B
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lipocalin 2 resistance mechanisms [41]. However, many commen-
sal Enterobacteriaceae are susceptible to lipocalin 2, suggesting that 
its release is probably not responsible for the phylum-level changes 
in microbial communities associated with gut inflammation.

A second group of antimicrobials produced during inflamma-
tion are reactive oxygen species (ROS) and reactive nitrogen spe-
cies (RNS). On stimulation with pro-inflammatory cytokines, such 
as IFN-γ, the intestinal epithelium can produce hydrogen perox-
ide (H2O2) by activating DUOX2 (Fig 2; [45]). In addition, IFN-γ 
induces expression of the NADPH oxidase 1 (Nox1) gene, encod-
ing a second NADPH oxidase of epithelial cells that generates 
superoxide radicals (O2

–
; [46]). Severe intestinal inflammation can 

be accompanied by transmigration of neutrophils into the intesti-
nal lumen and subsequent generation of superoxide radicals by the 
phagocyte NADPH oxidase (PHOX). The generation of superoxide 
radicals by phagocytes is essential for host defence, as illustrated 
by the existence of recurrent bacterial infections in individuals 
with chronic granulomatous disease, an illness caused by PHOX-
deficiency [47–49]. Neutrophils also express SOD and MPO, which 
convert superoxide radicals to hydrogen peroxide and hypochlorite 
(OCl–). Furthermore, stimulation with IFN-γ can induce expres-
sion of the Nos2 gene in the intestinal epithelium [50]. The enzyme 
encoded by Nos2, iNOS, catalyses the production of nitric oxide 
from L-arginine [51]. Phagocytes recruited to the gut mucosa 
during inflammation are another cellular source of iNOS [52]. 
Elevated levels of iNOS during inflammation can alter the luminal 
environ ment of the large bowel, as indicated by raised nitric oxide 
concentrations in colonic luminal gas of individuals with inflam-
matory bowel disease [53–55]. Finally, nitric oxide can react with 
a superoxide radical, giving rise to peroxynitrite (ONOO–), a potent 
bactericidal  RNS [56,57].

Although the production of RNS and ROS creates a hostile envi-
ronment in close proximity to the mucosal surface, the generation 
of these radicals has important side effects. As peroxynitrite, super-
oxide, hydrogen peroxide and hypochlorite diffuse away from the 
epithelium, they quickly react with organic sulphides and tertiary 
amines present in the intestinal lumen to form the respective S-oxides 
(R2-SO) and N-oxides (R3-N

+-O–; Fig 2; [58,59]). For example, when 
dietary contents have been flushed out by diarrhoea, enterocytes 
released from the tips of villi are the main source of membrane lipids, 
such as phosphatidylcholine and sphingomyelin, in the intestinal 
lumen. A nutrient derived from phosphatidylcholine or sphingo-
myelin is choline. Choline is degraded by the gut microbiota to tri-
methylamine (TMA; [60])—a compound that can be oxidized by 
peroxynitrite, superoxide, hydrogen peroxide and hypochlorite to tri-
methylamine N-oxide (TMAO; [58,59]). Alternatively, peroxynitrite 
can be converted to nitrate (NO3

–) in a reaction catalysed by carbon 
dioxide [61]. As a result, nitrate production in the gut lumen is a by-
product of chemically induced colitis [62]. Feeding mice the iNOS-
inhibitor aminoguanidine hydrochloride prevents nitrate production 
during colitis [63]. iNOS is responsible for the production of nitrate 
during inflammation, suggesting that nitrate is host-derived rather 
than originating from the diet. Ultimately, these processes convert 
bactericidal RNS and ROS into non-toxic products—that is, S-oxides, 
N-oxides and nitrate—the presence of which causes a marked 
change in the growth conditions encountered in the distal gut. 

The lumen of the large bowel is largely devoid of exogenous 
electron acceptors that would support the growth of bacteria by 
anaerobic respiration. As a result, fermentation of carbohydrates is 
the main strategy by which microbial communities in the healthy 
large intestine support their anaerobic growth. However, the gen-
eration of S-oxides, N-oxides and nitrate as by-products of the 
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host inflammatory response opens a new alternative for facul-
tative anaerobic microbes to grow in this environment (Fig  2). 
Enterobacteriaceae can use S-oxides, N-oxides and nitrate as ter-
minal electron acceptors for anaerobic respiration by expressing 
DMSO, TMAO and nitrate reductases, respectively [64]. By contrast, 
Clostridia and Bacteroidia have a primitive electron transport chain 
and lack the terminal oxidoreductases needed to use the exogenous 
electron acceptors generated during inflammation [17].

E. coli encodes three nitrate reductases in the narGHJI, narZYWV 
and napFDAGHBC operons, two DMSO reductases in the dmsABC 
and ynfFGH operons, and three TMAO reductases in the torCAD, 
torYZ and yedYZ operons [65]. Nitrate, DMSO and TMAO reduc-
tases, as well as two formate dehydrogenases (FdnG and FdoG), 
contain molybdenum as a crucial catalyst for electron transfer reac-
tions. The functions of FdnG and FdoG are linked to respiration, 
because they couple respiratory electron acceptors to the electron 
donor formate, a fermentation end product present in the large intes-
tine  [66,67]. Formate dehydrogenases and respiratory reductases 

contain molybdenum within a molybdopterin cofactor [68]. MoaA 
catalyses the first reaction in the biosynthesis of this molybdopterin 
cofactor [69]. Therefore, an E. coli moaA mutant is deficient for several 
respiratory pathways, including nitrate, DMSO and TMAO respira-
tion. When mice with DSS-induced colitis are challenged with various 
E. coli strains, the E. coli wild-type is recovered from the large intestine 
at a 100-fold higher level than an E. coli moaA mutant. By contrast, 
wild-type and moaA mutants are recovered in similar numbers from 
the non-inflamed intestine of mock-treated control mice [63]. These 
results suggest that the presence of exogenous electron acceptors in 
the inflamed gut confers a substantial fitness advantage to E. coli—
and probably to other commensal Enterobacteriaceae—by support-
ing their growth through anaerobic respiration. This fitness advantage 
contributes to a bloom of commensal Enterobacteriaceae, thereby 
giving rise to the phylum-level changes in the microbiota composition 
that accompany intestinal inflammation (Fig 2). In other words, one of 
the mechanisms responsible for dysbiosis in the inflamed gut is that 
the host response selectively feeds facultative anaerobic bacteria.
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Virulence factors change what is on the menu
The enhanced growth of commensal Enterobacteriaceae in 
the inflamed gut of individuals with inflammatory bowel dis-
ease could be viewed as an accident in which, as Louis Pasteur 
would put it, “chance favours the prepared microbe”. However, 
the fitness advantage conferred by host-derived electron accep-
tors also represents a potent selective force that is probably 
responsible for the evolution of pathogenic species within the 
Enterobacteriaceae (Sidebar A; Fig  3). For example, the genus 
Salmonella comprises a group of pathogens that are closely 
related to E. coli. Since diverging from a common ancestor with 
E.  coli, the Salmonella lineage acquired several virulence fac-
tors through plasmid or phage-mediated horizontal gene trans-
fer  [70]. The genes encoding these virulence factors are located 
on Salmonella pathogenicity islands (SPIs), defined as horizon-
tally acquired DNA regions that are absent from the otherwise 
 colinear E. coli genome [71]. SPIs that are present in all members 
of the genus Salmonella include SPI1, which encodes the invasion- 
associated type III secretion system (T3SS-1; [72,73]), SPI4, which 
encodes a large non-fimbrial adhesin required for epithelial inva-
sion [74] and SPI5, which encodes proteins (known as effectors) 
that are injected into host cells by the T3SS-1 (Fig 3A;  [75]). The 
genus Salmonella can be divided into two species, S.  bongori 
(containing 23 serovars) and S. enterica (containing 2,587 sero-
vars;  [76]). All members of S. enterica encode a second type  III 
secretion system (T3SS-2) encoded by SPI2—which is absent from 
S. bongori and E.  coli [77,78]—and serves to prolong intestinal 
inflammation  [79]. The presence of these pathogenicity islands 
enables a fraction of the Salmonella population to invade the 
intestinal epithelium (SPI1, SPI4 and SPI5) and survive in macro-
phages (SPI2), thereby  triggering acute intestinal inflammation 
(gastroenteritis) [75,80–84].

Interestingly, by using their virulence factors to actively 
induce intestinal inflammation, Salmonella serovars can tip the 
balance in their favour in competition with the intestinal micro-
biota  [4,5]. For instance, when S. enterica serovar Typhimurium 
(S.e. sv typhimurium ) induces colitis in a mouse model, the patho-
gen edges out competing microbes in the gut lumen to become a 
prominent member of the microbiota. Inactivation of both type III 
secretion systems renders S.e. sv  typhimurium unable to trig-
ger intestinal inflammation, thereby markedly reducing its abil-
ity to colonize the lumen of the large intestine. However, when 
mice that develop colitis spontaneously—such as IL-10-deficient 
mice—are infected with a S.e. sv  typhimurium mutant lack-
ing both type III secretion systems, an enrichment for the patho-
gen and a concomitant depletion of Clostridia and Bacteroidia is 
observed [4]. Although virulence factors are necessary for induc-
ing intestinal inflammation, these data suggest that T3SS-1  and 
T3SS-2  are not required for securing the growth advantage  
S.e. sv typhimurium gains in the lumen of the inflamed gut.

Which factors confer a growth advantage on Salmonella 
serovars during gastroenteritis? Optimal growth in the environ-
ment of the inflamed gut requires resistance to antimicrobial 
proteins— such as lipocalin 2—which is conferred by the iroN 
iroBCDE gene cluster [41], a DNA region present in all mem-
bers of S. enterica but absent from S. bongori [85,86]. Lipocalin 2 
resistance might confer an advantage on S.  enterica during its 
competition with commensal Enterobacteriaceae, provided that 
the latter rely on enterobactin for iron acquisition. Rivalry with 

commensal Enterobacteriaceae probably arises because exo-
genous electron acceptors—such as nitrate—enhance their 
growth in the inflamed gut [63]. As S.e. sv  typhimurium can 
also use host-derived nitrate to boost its luminal growth [87], 
the pathogen and commensal Enterobacteriaceae have to com-
pete for this limited resource. However, Salmonella serovars 
have improved their ability to outgrow other gut microbes dur-
ing inflammation by acquiring additional fitness factors that are 
absent from E.  coli. Among these are gene clusters encoding 
putative DMSO reductases (STM2528-STM2530 and STM4305-
STM4308; [88]) and the ttrSR ttrBCA gene cluster, which confers 
the ability to use tetrathionate (S4O6

2–) as an electron accep-
tor for anaerobic respiration (Fig  3A; [89,90]). The ability to 
respire tetrathi onate has been used since 1923  to enrich for 
Salmonella serovars in biological samples containing competing 
microbes [91]. However, the fact that tetrathionate is a by-product 
of the host inflammatory response in the gut was only recently 
discovered [92]. Hydrogen sulphide (H2S) and methanethiol 
(CH3SH) are fermentation end-products of gut microbes that are 
converted to thiosulphate (S2O3

2–) by the colonic epithelium to 
avoid toxicity [93,94]. ROS generated during intestinal inflam-
mation oxidize thiosulphate (S2O3

2–) to tetrathionate (S4O6
2–),  

thereby boosting luminal growth of S.e. sv typhimurium through 
tetrathionate respiration whilst reducing the relative abundance 
of Clostridia and Bacteroidia [92]. Importantly, enhanced growth 
in the intestinal lumen promotes transmission of S.e. sv typhimu-
rium by the faecal–oral route [95]. Ultimately, the necessity to 
spread from an infected to a naive host places virulence factors 
and fitness factors under selection. Although taxonomists identi-
fied tetrathionate respiration empirically as a characteristic that 
helps distinguish Salmonella serovars from close relatives [91], the 
picture emerging from research is that this function is part of a 
 ‘business plan’ that defines the genus Salmonella.

Sidebar A | In need of answers
(i) Although it seems clear that intestinal inflammation can result in 

changes in the microbial community structure, relatively little is 
known about possible consequences of the resulting dysbiosis. Does 
inflammation select for more harmful bacterial species that can 
further exacerbate host responses? If so, what are the properties that 
make them more potent irritants? This area needs to be explored 
further by using both metagenomic and mechanistic approaches.

(ii) Although an increased relative abundance of facultative anaerobic 
bacteria is common in individuals with inflammatory bowel 
disease, not all patients show these changes in their microbiota. 
Thus, it is tempting to speculate that other mechanisms—in 
addition to anaerobic respiration—can influence the microbial 
community structure during intestinal inflammation. These 
mechanisms remain to be identified. 

(iii) How does the quality of the host response alter the nutritional 
environment in the inflamed gut? This seems to be particularly 
relevant to understand the evolution of enteric pathogens that 
use their virulence factors to manipulate host responses. For 
example, acquisition of the sopE gene by horizontal gene transfer 
enhances the ability of Salmonella  enterica sv Typhimurium to elicit 
production of host-derived nitrate, thereby altering the nutritional 
environment in the intestinal lumen [87]. Deeper insights into 
how virulence factors change the nutrient availability in the gut 
are necessary to appreciate how the host response has shaped the 
evolution of enteric pathogens. 
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These findings suggest that an important initial event in the evo-
lution of the Salmonella lineage was the acquisition of virulence 
factors the deployment of which induces intestinal inflammation, 
thereby creating a new niche in the host (Fig 3B). At the same time, 
the Salmonella lineage acquired fitness factors that enabled these 
pathogens to occupy this new niche to ensure transmission (Fig 3A). 
Evolution is still at work to fine-tune this ‘business plan’ by incor-
porating new virulence factors to instigate subtle alterations in host 
responses that generate exogenous electron acceptors. These pro-
cesses probably contribute to the rise of new epidemic clones, as 
illustrated by an analysis of the prophage-encoded T3SS-1 effector 
protein SopE [87].

The T3SS-1 induces host responses by injecting effector pro-
teins into host cells [81]. SPI1 and SPI5 encode effector  proteins 
that are conserved among Salmonella serotypes, whereas other 
effector proteins are encoded by prophages and have a lim-
ited distribution. One of these prophage-encoded T3SS-1 effec-
tor proteins is SopE  [96]. On injection into host cells, SopE 
activates  small Rho GTPases to induce NF-κB-dependent gene 
expression [97], which leads to a modest increase in the sever-
ity of intestinal inflammation in animal models [98]. Remarkably, 
deployment of SopE significantly enhances the production 
of iNOS in the intestinal mucosa, thereby increasing luminal 
growth of S.e. sv typhimurium by nitrate respiration [87]. SopE is 
encoded by a prophage present in only a few S.e. sv typhimurium 

clones, which caused an epidemic among cattle and humans in 
Europe during the 1970s and ‘80s [99]. Collectively, these data 
suggest that phage-mediated horizontal transfer of the sopE 
gene confers a nitrate respiration-dependent fitness advantage 
that might have  contributed to the emergence of an epidemic  
S.e. sv typhimurium clone.

Side-stepping the competition
The findings reviewed above point to anaerobic respiration as 
one of the fundamental principles that governs the phylum-level 
changes in the composition of gut-associated microbial communi-
ties during inflammation. But how does anaerobic respiration ena-
ble Enterobacteriaceae to outcompete Clostridia and Bacteroidia, 
which can thrive on a limited quantity of carbohydrate? One pos-
sibility is that anaerobic respiration is more efficient for energy 
production than fermentation. Although this might be true for 
electron acceptors with a high standard redox potential, such as 
the nitrate–nitrite redox couple (E° = 433 mV;  [100]), this expla-
nation seems less convincing for the tetrathionate–thiosulphate 
redox couple, which has a relatively low standard redox potential 
(E° = 170 mV; [101]). A second possibility is that exogenous elec-
tron acceptors enable Enterobacteriaceae to use carbon sources 
that cannot be fermented. The removal of gut contents during diar-
rhoea limits nutrients to mucus-derived carbohydrate and nutri-
ents derived from the release of enterocytes from the tips of villi. 

Induction of intestinal
in�ammation (niche creation)

Anaerobic respiration 
(niche colonization)

Prolonging in�ammation 
(niche optimization)

Lipocalin 2 resistance 
(optimal growth in niche)

Horizontal gene transfer of virulence factors and fitness factors
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Escherichia coli

Natural habitat

Normal intestine

In�amed intestine

Salmonella bongori
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SPI4
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iroN iroBCDE

ttrSR ttrBCA

STM2528-2530

STM4305-4308

Evolution of an enteric pathogen that induces gastroenteritis to transmit within its host reservoir

BA

Fig 3 | Selective forces driving the evolution of pathogenic Enterobacteriaceae species. (A) The genus Salmonella comprises enteric pathogens that are closely 
related to commensal Escherichia coli, with whom they have a common ancestor as indicated by the schematic drawing of their phylogenetic tree (not to scale). 
The timing of horizontal gene transfer events introducing virulence factors or fitness factors is indicated. Acquisition of the indicated DNA regions conferred 
the ability to induce inflammation, benefit from the resulting host response and enhance their transmission. (B) The images show the natural habitat of 
commensal E. coli (normal intestine, top panel) and of pathogenic Salmonella species (inflamed intestine, bottom panel). The images of calf intestine were 
reproduced from [112] with permission. SPI1/2/4/5; Salmonella pathogenicity island 1/2/4/5.
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Membranes of enterocytes contain phosphatidylethanolamine as 
their most abundant phospholipid [102]. Ethanolamine—a non- 
fermentable substrate present in the intestinal contents of calves at a 
concentration of approximately 2 mM [103]—is a nutrient derived 
from phosphatidylethanolamine. S.e. sv  typhimurium requires 
tetrathionate for anaerobic growth on ethanolamine as a sole car-
bon source in vitro [104]. In the lumen of the inflamed intestine, 
the ability to consume ethanolamine bestows a marked growth 
advantage on S.e. sv typhimurium, which depends on the ability of 
the pathogen to perform tetrathionate respiration [105]. These data 
suggest that anaerobic respiration enables S.e. sv typhimurium  to 
consume an abundant simple substrate, ethanolamine, which is 
provided by the host but cannot be readily fermented by competing 
obligate anaerobic bacteria. Thus, a significant benefit of anaero-
bic respiration is the ability of S.e.  sv  typhimurium to side-step 
nutritional competition with Clostridia and Bacteroidia, thereby  
fostering its own growth in the gut.

Mechanistic insights guide future research efforts
The mechanistic insights discussed above suggest that the phylum-
level changes in gut-associated microbial communities are a con-
sequence rather than a cause of intestinal inflammation. However, 
one possible consequence of this dysbiosis is an exacerbation of 
pre-existing inflammatory conditions (Sidebar A). The presence 
of gut microbes is a prerequisite for the development of chronic 
intestinal inflammation in genetically predisposed mice [106,107], 
and studies suggest that a bloom of Enterobacteriaceae can be 
associated with enhanced intestinal inflammation. For example, 
in a mouse model of inflammatory bowel disease, changes in the 
microbial community structure characterized by an increased 
luminal abundance of Enterobacteriaceae can be transferred to 
other animals, resulting in an exacerbation of intestinal inflam-
mation [14,108]. Adherent-invasive E.  coli (AIEC) are isolated 
more commonly from the intestinal mucosa of individuals with 
Crohn’s disease than from healthy controls [109,110]. AIEC colo-
nize and exacerbate gut inflammation in mice with DSS-injured 
colon [111]. Thus, the mechanisms leading to dysbiosis might 
also select for intestinal colonization with more harmful members 
of the Enterobacteriaceae—such as AIEC—thereby exacerbating 
 inflammation and interfering with its resolution.

Anaerobic respiration emerges as a potential target for new 
intervention strategies aimed at restoring a normal microbial com-
munity structure. A formal proof of principle for this intervention 
strategy is the fact that the iNOS-inhibitor aminoguanidine hydro-
chloride can blunt nitrate respiration-dependent growth of E. coli 
in mice with DSS-induced colitis [63]. This approach would have 
to be broadened to block the use of multiple respiratory electron 
acceptors, thereby ending the bloom of Enterobacteriaceae in 
the distal gut by essentially suffocating these facultative anaero-
bic bacteria. Exploring this approach for the treatment of intesti-
nal inflammatory disorders represents an exciting direction for 
future research.
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