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Abstract
The opportunistic human fungal pathogen Candida albicans encounters diverse environmental
stresses when it is in contact with its host. When colonising and invading human tissues C.
albicans is exposed to reactive oxygen (ROS) and reactive nitrogen intermediates (RNI). ROS and
RNI are generated in the first line of host defence by phagocytic cells such as macrophages and
neutrophils. In order to escape these host-induced oxidative and nitrosative stresses C. albicans has
developed various detoxification mechanisms. One such mechanism is the detoxification of nitric
oxide (NO) to nitrate by the flavohaemoglobin enzyme, CaYhb1. Members of the haemoglobin
superfamily are highly conserved and are found in archaea, eukaryotes, and bacteria.
Flavohemoglobins have a dioxygenase activity (NOD) and contain three domains: a globin
domain, an FAD-binding domain, and an NAD(P)-binding domain. Here we examine the
nitrosative stress response in three fungal models: the pathogenic yeast C. albicans, the benign
budding yeast Saccharomyces cerevisiae, and the benign fission yeast Schizosaccharomyces
pombe. We compare their enzymatic and non-enzymatic NO and RNI detoxification mechanisms
and summarise fungal responses to nitrosative stress.
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Why study nitrosative stress responses in yeasts?
The evolutionarily divergent yeasts Candida albicans, Saccharomyces cerevisiae and
Schizosaccharomyces pombe provide ideal model systems in which to compare nitrosative
stress responses. These three yeasts, which diverged about 500 million years ago [1], exist in
different environmental niches and therefore have been exposed to different evolutionary
pressures. As a major fungal pathogen of humans, C. albicans has evolved robust stress
responses that facilitate adaptation to environmental challenges such as changes in ambient
pH, osmolartity and nutrient availability, as well as exposure to ROS and RNI [2] (the latter
challenges being of particular interest in our laboratory). These unicellular yeasts have short
life cycles, they can be grown on defined experimental conditions, their genomes have been
sequenced [3]. Furthermore extensive molecular toolboxes that have facilitated the
dissection of fundamental cellular processes such as the cell cycle, signal transduction and
stress responses [4-6]. The ability to survive these stresses contributes to the pathogenicity
of C. albicans as well as virulence factors such as adhesins, extracellular hydrolytic enzymes
and phenotypic switching [7-9]. In contrast, the benign yeasts, S. cerevisiae and S. pombe,
which are associated with environmental niches, tend to be more sensitive to stresses than C.
albicans [10].
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Nitric oxide, RNI and their impact within the cell
Nitric oxide is an ‘ancient’ molecule and nitric oxide and its derivates were oxidizing
substrates in the archaeal world, driving the evolution of a pathway related to modern
dissimilatory-denitrification [1], It has been suggested that aerobic respiration has emerged
from this pathway by adaptation of the enzyme NO reductase to its new substrate, oxygen
[11]. Nitric oxide is a gaseous radical that can have beneficial or unfavourable effects within
cells depending on the concentration. At low concentrations NO can act as a second
messenger controlling numerous physiological processes in animal cells [12]. At high
concentrations NO is cytotoxic and is exploited as a weapon in host-pathogen defences [12].
As mentioned above, fungal pathogens are relatively resistant to such stresses, and it is
likely that the ability of pathogenic fungi to combat host-pathogen defences evolved through
ancient interactions between fungi and phagocytic amoeba [13].

Nitrosative stress is mainly caused by three forms of NO: the nitric oxide radical, the
nitrosonium cation and the nitroxyl anion. The NO radical is a signalling molecule that plays
a regulatory role in cell proliferation, antimicrobial defence and inflammatory responses
[14-17]. Within the cell NO reacts with oxygen species, with thiol-containing proteins and
with metalloproteins [18]. The NO radical also reacts with oxygen to generate nitrogen
dioxide which is converted to the nitrite anion and further to the nitrate anion. Intermediates
of this oxidation include dinitrogen trioxide and the nitrite anion which contributes to the
nitric oxide toxicity by oxidising thiols and amines within the cell. Due to its stability the
nitrate anion is thought to be the end metabolite of this NO pathway [19]. The nitrosonium
cation is generated when one electron of NO is released. In this reaction, the iron atom of
Fe3+ containing metalloproteins acts as the electron acceptor. The Fe2+-NO+ complex serves
as a NO carrier which releases NO at specific target sites. Additionally the nitrosonium
cation reacts with nucleophilic centres and is responsible for nitrosation generating nitroso-
compounds including nitrosamines, alkyl or aryl nitrite and S-nitrosothiols [20]. It has been
proposed that NO is stored and carried as S-nitrosoglutathione (GSNO), and that GNSO is
used as an NO pool within cells [21]. The nitroxyl anion is generated when one electron is
added to NO. This reduction is supported by the Fe2+ ion and by Fe2+ containing
metalloproteins which act as electron donors. The nitroxyl anion is believed to mediate
sulfhydryl oxidation of target proteins. This process leads to the formation of nitrous oxide
which is also the result of nitroxyl anion dimerisation [20].

In mammalian cells NO biosynthesis is catalysed by three isoforms of NO synthase (NOS):
the inducible (iNOS), the constitutive neuronal (nNOS) and endothelial isoforms (eNOS).
All nitric oxide synthases use L-arginine and NADPH to generate NO and citrulline [22]. As
mentioned above, macrophages that have taken up microbial cells release RNS and RNI into
the phagolysosome. Macrophages can produce up to 57 μM nitric oxide and up to 14 mM of
hydrogen peroxide [23]. ROS such as superoxide anions (O2

.-) and hydrogen peroxide
(H2O2) are generated with the help of NADPH oxidase as by-products of the respiratory
chain [24]. Furthermore the superoxide anion can also be converted with the help of the
myeloperoxidase to hypochlorous acid (HClO). Parallel to the production of ROS,
macrophages generate nitric oxide and nitrite with the help of iNOS. Furthermore NO reacts
with the superoxide anion to create the strong oxidant peroxynitrite (ONOO-) which has
fungicidal activity and is more stable and a stronger oxidant than NO [12]. Due to the
physical and chemical properties of NO it is more accurate to imagine dynamic, temporary
and local NO gradients within the cells. Hence NO has a short-half life which varies
depending on the intracellular and extracellular redox state [25], the NO concentration, the
partial oxygen pressure, the presence of bivalent metals and thiol groups [12].
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Nitrosative stress responses in the model yeasts
C. albicans is exposed to NO and RNI, which are generated during host-defence by
phagocytic cells, and to non-enzymatically generated NO from nitrates and nitrites of dietary
products in the digestive system [26]. Alternatively, NO can be generated by bacteria in the
oral cavity or gut [27-28]. On the other hand S. cerevisiae is exposed to endogenous NO
under hypoxic conditions, since the mitochondrial respiratory chain of S. cerevisiae can use
endogenous nitrite instead of oxygen as an electron acceptor, thereby generating NO within
the cell [29]. Several mechanisms exist to counteract these nitrosative stresses: (1) the active
detoxification of NO via flavohemoglobins; (2) the antioxidant system for scavenging NO
via GSH or trehalose; and (3) the up-regulation of repair systems to counteract the caused
damage. The systems that repair RNI damage are poorly understood in yeasts [30].

A number of antioxidant systems contribute to nitrosative stress resistance, one of which is
S-nitrosoglutathione reductase (GSNO reductase). Interestingly, compared with S.
cerevisiae, S. pombe is particularly sensitive to low concentrations of GSNO [31]. This
might be due to the inactivation of S. pombe GSNO reductase by peroxynitrite since GSNO
reductase activity is essentially required for the growth of S. pombe, unlike in S. cerevisiae
[32-33]. This observation emphasises the importance of repair functions such as GSNO
reductase that are capable of reducing GSNO to ammonia and glutathione disulfide (GSSG)
[34]. However, other enzymes such as thioredoxin peroxidase (Tsa1) contribute to resistance
to endogenous RNI, and Tsa1 has also been shown to contribute to fungal virulence [30]. In
addition, several non-enzymatic antioxidants help to counteract the effects of RNI in yeasts,
such as GSH and metalloporphyrins. For C. albicans the antioxidant trehalose is essentially
linked to stress adaptation [35]. The non-enzymatic antioxidant systems and NO scavenger
mechanisms are thought to have evolved a long time ago when cells first were exposed to an
aerobic environment. Since then gene duplication events and the redundancy of stress
resistance pathways and antioxidant systems have facilitated the environmental adaptation
of different yeast species.

Flavohemoglobins are characterised by an NO dioxygenase domain (NOD) which is highly
conserved in bacteria and yeast and converts nitric oxide to nitrate [36]. As the name
suggests, flavohemoglobins contain a N-terminal heme group followed by the C-terminal
FAD (flavin adenine dinucleotide) domain and a NAD(P) domain [37]. S. cerevisiae and S.
pombe each have a single flavohemoglobin gene: ScYHB1 and the predicted SPAC869.02c
respectively (see Figure 1) [38]. In contrast, the C. albicans genome contains three
flavohemoglobin-like genes, namely CaYHB1, CaYHB4 and CaYHB5 [39]. The sequence
identity between ScYhb1 and the three C. albicans flavohemoglobins ranges from 31% to
25% [40].

The flavohemoglobins in S. cerevisiae and S. pombe are fully functional and the deletion of
ScYHB1 leads to growth inhibition and the loss of the NOD function in S. cerevisiae [40].
In S. cerevisiae the ScYhb1 protein is translocated to the mitochondria under hypoxic
conditions where it detoxifies NO [41]. This suggests that flavohemoglobins are able to both
protect yeasts against external as well as internal sources of NO and RNI. In C. albicans
only the deletion of CaYHB1 deletion attenuates virulence slightly [39, 42]. Inactivation of
CaYHB4 or CaYHB5 did not inhibit NO consumption under the experimental conditions
tested or attenuate virulence in the mouse model of systemic candidiasis [39], but this does
not exclude the possibility that these gene products are important under other conditions or
at specific stages of infection.

These differences in YHB gene copy number and flavohemoglobin functionality might
relate to the different environmental niches of these yeasts and thus their individual
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adaptation requirements. In vivo, CaYHB1 is expressed in C. albicans cells on epithelial
surfaces during oral infection [43] and in cells infecting the mouse gastrointestinal tract [44].
However, CaYHB1 is not up-regulated in deep tissue infections of liver, for example [45].

It is not clear how yeasts detect NO and which signalling pathways mediate NO and RNI
responses. In contrast to mammalian cells, yeasts do not express an obvious NO receptor.
However Chiranand et al. [46] recently found that in C. albicans, CaYHB1 expression is
activated by the regulator CaCta4. By mutating the regulatory region of CaYHB1 they
identified a nitric oxide-responsive element (NORE) which is crucial for CaYHB1 gene
regulation in response to NO. Once this NORE promoter element was identified, CaCta4 (a
Zn(II)2-Cys6 transcription factor) was then shown to bind directly to NORE. Furthermore,
Chiranand and coworkers demonstrated that inactivation of CaCTA4 inhibits CaYHB1
induction in response to NO [47]. Moreover C. albicans Δcta4 null mutant display
attenuated virulence in the mouse model of systemic candidiasis, reinforcing the idea that
robust nitrosative stress responses contribute to the pathogenicity of C. albicans. CaCTA
also up-regulates a putative sulphite transporter gene (CaSSU1) in response to RNI.
Interestingly C. albicans Δssu1 cells are not sensitive to NO, unlike the situation in S.
cerevisiae where SSU1 mediates NO resistance under certain environmental conditions [47].

Comparisons of NO-induced genes in S. cerevisiae and C. albicans are intriguing [42, 48].
For instance catalase and iron acquisition genes are up-regulated in both species. However,
as illustrated by the case of SSU1, even where apparent orthologues are highly expressed in
both S. cerevisiae and C. albicans, the molecular activities and responses appear to be
specific for each yeast species and might only be explainable by their evolutionary
adaptation to their environmental requirements [46]. Furthermore, the transcription factors
that regulate the nitrosative stress responses in these yeasts are even more divergent. The
closest homologue to CaCTA4 in S. cerevisiae is ScOAF1 [49], an oleate receptor. The next
closest homologue of CaCTA4 in S. cerevisiae is ScHAP1 [50], a heme-responsive
transcription factor. Neither ScOAF1 nor ScHAP1 appears to be involved in nitrosative
stress response in S. cerevisiae. Instead, Sarver and DeRisi have shown that the C2H2 zinc
finger transcription factor ScFZF1 is involved in NO sensing in S. cerevisiae [46]. In S.
pombe, the AP-1-like bZIP transcription factor, SpPap1, regulates nitrosative as well as
oxidative and nutritional stress responses [51]. The orthologue of SpPap1, ScYap1, regulates
the oxidative stress response in S. cerevisiae. These observations illustrate the functional
reassignment of transcription factors across these evolutionarily divergent yeasts, an
observation that also holds between S. cerevisiae and C. albicans [52-53].

Conclusions and future perspectives
Our understanding of nitrosative stress pathways in most organisms is rudimentary at best,
and much work remains to be done to elucidate fungal nitrosative stress response
mechanisms. This cannot be simply done by genome sequence comparisons because fungi
lack obvious homologues of many nitrosative stress functions that are present in other
organisms. Also there has been rewiring of nitrosative stress regulators across the
ascomycetes [54]. Nevertheless it is important to study NO and RNI defence mechanisms in
yeasts because they contribute to fungal pathogenicity and presumably to the survival of
yeasts in other environmental niches. Understanding the crosstalk between nitrosative and
oxidative stress responses is likely to lead to a better understanding of host-pathogen
interactions and fungal virulence because pathogenic yeasts are exposed to both ROS and
RNI during contact with host immune defences. Finally new antifungal drug targets might
be revealed by a more complete understanding of the biochemical detoxification pathways
of pathogenic fungi.
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Figure 1.
Simplified RNI response network in yeasts.
Yeasts cope with RNI stresses in different ways: they can enzymatically detoxify NO via
flavohemoglobins, they can scavenge NO through antioxidant systems or they can repair the
caused damage.
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Figure 2.
Flavohemoglobins of S. cerevisiae (ScYHB1), C. albicans (CaYHB1) and S. pombe
(SPAC869.02c).
Flavohemoglobins consist of three highly conserved domains an N-terminal globin domain
(HEME), followed by a FAD-binding domain (FAD) and an C-terminal NAD(P)-binding
domain (NAD).
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