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Abstract
Cancer metabolism and epigenetics are two relatively new areas of cancer research. Recent
years have seen an explosion of studies implicating either altered tumor metabolism or
epigenetic mechanisms in the pathogenesis or maintenance of brain tumors. A new para-
digm is emerging in cancer biology that represents a convergence of these themes, the
metabolic regulation of epigenetics. We discuss this interrelationship in the context of two
metabolic enzymes that can influence the pathogenesis of gliomas by altering the epigenetic
state. The first of these enzymes is isocitrate dehydrogenase 1 (IDH1), which is mutated in
secondary glioblastomas and ~70% of grade II/III astrocytomas and oligodendrogliomas.
Mutant IDH1 results in the production of a metabolite 2-hydroxyglutarate (2-HG) that can
inhibit DNA and histone demethylating enzymes resulting in the glioma-CpG island
phenotype (G-CIMP) and increased histone methylation marks. Pyruvate kinase M2
(PKM2), an enzyme that plays a critical role in the glycolytic pathway, is a second example
of a metabolic enzyme that can affect histone modifications. In epidermal growth factor
receptor (EGFR)-driven glioblastoma, PKM2 translocates to the nucleus and phosphor-
ylates histone 3 at threonine 11 (H3-T11). This causes dissociation of HDAC3 from the
CCND1 (Cyclin D1) and c-MYC promoters and subsequent histone acetylation, leading to
transcription of Cyclin-D1 and c-MYC, and subsequent cell proliferation. Modification of
the epigenetic state by alterations in metabolic enzymes is a novel phenomenon that
contributes to the pathogenesis of gliomas and may help in the identification of new
therapeutic targets.

INTRODUCTION
Gliomas are infiltrative brain tumors consisting primarily of astro-
cytomas and oligodendrogliomas classified into low-grade [World
Health Organization (WHO) grades I and II] and high-grade
(WHO grades III and IV) tumors. Glioblastomas (grade IV astro-
cytic tumors) are the most lethal and neurologically destructive of
gliomas. Despite several decades of intensive research, the prog-
nosis for glioblastomas and high-grade gliomas in general remains
dismal. This underscores the importance of elucidating the patho-
genesis of these tumors to effectively combat them. Recent years
have uncovered many aspects of glioma biology including novel
genetic and molecular alterations, leading to classification of
gliomas into various subgroups. It is becoming increasingly
evident that at least some of these genetic and molecular altera-
tions result in changes in cellular metabolism.

Glioblastomas frequently exhibit increased glucose con-
sumption and lactate production in the presence of oxygen, the
Warburg effect (43). Activation of PI3K/AKT in glioblastoma
cell lines leads to increased glucose uptake and glycolysis (5, 17,
43). Primary glioblastomas show various genetic alterations such
epidermal growth factor receptor (EGFR) amplification, phos-
phatase and tensin homolog (PTEN) loss and platelet-derived
growth factor receptor type A (PDGFRA) amplification resulting

in enhanced signaling of receptor tyrosine kinases and deregula-
tion of the PI3K/AKT pathway (1, 22), thus stimulating glucose
uptake and aerobic glycolysis (5, 17). More recently, the NADP+-
dependent enzyme isocitrate dehydrogenase 1 (IDH1) was
found to be mutated in ~70% of grade II and grade III astrocy-
tomas and oligodendrogliomas, and secondary glioblastomas
(4, 35, 50). IDH1 catalyzes oxidative decarboxylation of isoci-
trate to a-ketoglutarate (a-KG) in the cytosol. Mutant IDH1
alters cellular metabolism by generating the oncometabolite, 2-
hydroxyglutarate (2-HG), from a-KG that can accumulate to
millimolar concentrations (13, 45).

Epigenetics encompasses heritable changes in DNA and DNA-
associated proteins that are often accompanied by changes in
gene expression. DNA methylation represents the most exten-
sively studied epigenetic phenomenon in glioblastomas [recently
reviewed in (15, 26, 33)]. In contrast, very little is known about
histone modifications in gliomas. Histones are proteins around
which DNA is organized into nucleosomes. Each nucleosome con-
sists of ~147 DNA base pairs wrapped around a histone octomer
composed of H2A, H2B, H3 and H4. Histones have amino acid
tails that can undergo a variety of post-translational modifications
such as acetylation, methylation, phosphorylation, ubiquitination
and SUMOylation of arginine (R) and lysine (K) residues (38).
This results in changes in DNA function and transcription by
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regulating accessibility to cellular transcriptional machinery
[reviewed in (3)]. To date, the most widely studied histone modi-
fications are acetylation and methylation, which affect transcrip-
tion differently. Histone acetylation of lysine residues usually
activates transcription, while methylation can be an activator or
repressor of transcription, depending on the histone residue that is
methylated (3). For instance, methylation of H3K9, H3K27 and
H4K20 is thought to be associated with silencing of transcription,
and methylation of H3K4, H3K36 and H3K79 seems to be
associated with activation of transcription [reviewed in (3, 9)].
Methylation of histone lysine residues is a complex phenomenon
and is regulated by a variety of histone lysine methyltransferases
(KMTs) and demethylases (KDMs) (3).

Recent studies have emerged implicating histone modifications
in adult glioblastomas (16, 32, 51) and mutations in genes encod-
ing histone proteins in pediatric glioblastomas (25, 36, 40, 48).
This article focuses on the molecular connections between
metabolism and epigenetics in gliomas using the two examples of
IDH1 mutations in intermediate-grade gliomas and secondary
glioblastomas, and PKM2 alterations in EGFR-driven primary
glioblastomas to illustrate this phenomenon.

MUTATIONS IN IDH1 RESULT IN THE
GLIOMA-CpG ISLAND METHYLATOR
PHENOTYPE (G-CIMP)
Profiling of DNA promoter methylation in glioblastomas reveals a
unique subset of cases collectively referred to as G-CIMP within
the proneuronal subtype of glioblastomas that exhibit hyper-
methylation at a large number of loci (34). Glioblastomas and
intermediate-grade gliomas (grade II and grade III) with G-CIMP
are strongly associated with mutations in IDH1 (11, 16, 27, 34,
42). IDH1 mutations are the most common (specifically IDH1
R132H) of the IDH mutations in gliomas and account for more
than 95% of cases (2, 6, 21). Astrocytic cell lines transfected with
mutant IDH1 R132H and colon cancer cell lines with knock-in
mutant IDH1 R132H show G-CIMP phenotypes very similar to
IDH1 mutant gliomas (16, 42).

How mutations in IDH1 result in DNA methylation in gliomas
is not entirely known. One hypothesis is that 2-HG inhibits a-KG-
dependent enzymes as 2-HG is structurally similar to a-KG
(10, 49). a-KG-dependent dioxygenases form a large family of
enzymes influencing various functions in the cell such as carnitine
synthesis, hypoxic sensing, collagen modifications and histone and
DNA demethylation [reviewed in (29)]. Profiling experiments in
samples from patients with acute myeloid leukemia showed mutual
exclusivity between IDH1/2 and TET2 mutations (19). TET2
belongs to the TET family of enzymes that is dependent on a-KG
to catalyze cytosine 5-hydroxymethylation (5hmC) and subse-
quent DNA demethylation (23, 41). Further astrocytic cell lines
expressing mutant IDH1 R132H inhibit TET2-dependent 5hmC
(42). However, no mutations in the TET family of proteins are
reported in gliomas. Another factor to be considered is that histone
methylation can promote DNA methylation and vice versa (18). In
astrocytic cell lines expressing mutant IDH1 R132H, trimethyla-
tion of H3K9 occurs prior to DNA methylation, suggesting that
histone methylation may contribute to DNA methylation and may
provide an additional mechanism by which mutant IDH can con-
tribute to G-CIMP (31).

IDH1 MUTATIONS ARE ASSOCIATED
WITH INCREASED HISTONE
METHYLATION MARKS IN GLIOMAS
Immortalized human astrocytic cell lines or murine neurosphere
cultures transfected with mutant IDH1 R132H show increases in
H3K27me3, H3K9me3 (32, 42) and H3K36me3 (42) compared
with cells overexpressing wild-type IDH1. Similarly, U87MG cells
transfected with mutant IDH1 R132H show increased H3K9me2,
H3K4me3, H3K27me2 and H3K79me2 compared with wild-type
controls (49). In addition, heterozygous knock-in of IDH1 R132H
in HCT116 colon cancer cell lines results in increased H3K9me3,
H3K27me3 and H3K4me3 compared with the controls (16). The
structural analogy between 2-HG and a-KG also comes into play
in regulating histone methylation. The Jumonji C family of KDMs
uses a-KG, Fe (II) and oxygen as cofactors to demethylate histone
lysine residues [reviewed in (29)]. 2-HG inhibits these enzymes
(10, 49) and inhibition of KDM4C by 2-HG decreases histone
demethylation, resulting in increased methylation marks on H3K9
and H3K27 (32).

H3K9me3 is one of the methylation marks that showed a
striking increase in cells expressing mutant IDH1 R132H (32).
Methylation of H3K9 is thought to influence cell differentiation (8).
Conditional deletion of the H3K9-specific KMT Setdb1 causes
lowered H3K9me3 and results in upregulation of lineage-specific
differentiation markers (30). Conversely, increased H3K9me3
after knockdown of the KDM JmjD2A prevents neuronal crest
cell induction (39). Cells with mutant IDH1 show suppressed
glial differentiation. Neurospheres transfected with mutant IDH1
R132H show increased H3K9me3 accompanied by a decrease in
glial fibrillary acidic protein (GFAP) and an increase in nestin
expression compared with their IDH1 wild-type expressing coun-
terparts (32, 42). Interestingly, in human glioma samples, the rela-
tionship between H3K9me3 and IDH1 R132H mutations varied
between glioma subtypes and grades as assessed by immunohisto-
chemistry (44). A robust relationship was observed between
H3K9me3 staining and IDH1 mutations in all grades of oligoden-
drogliomas. However, grade III astrocytomas and glioblastomas
showed positivity for H3K9me3 but did not show a significant
relationship with IDH1 mutations (44). These data suggest that the
roles played by IDH1 mutations and IDH1 mutant-derived 2-HG
in H3K9 trimethylation may be context dependent and can
vary between oligodendrogliomas and astrocytomas. While future
experiments will address differences in the role played by IDH1
mutations in oligodendrogliomas vs. astrocytomas, the current
working model of how IDH1 mutations and 2-HG can affect both
DNA and histone methylation is presented in Figure 1.

PYRUVATE KINASE M2 REGULATES
HISTONE MODIFICATIONS IN GLIOMAS
Pyruvate kinase is a key enzyme in the glycolytic pathway that
catalyzes the conversion of phosphoenolpyruvate (PEP) to pyru-
vate. Four isoforms of pyruvate kinase exist (PKM1, PKM2, L and
R). PKM2 is the main splice variant during brain development,
while the major isoform in the adult brain is PKM1 (47). Cancer
cells including glioblastoma cell lines show upregulated PKM2
(12, 24). Replacing PKM2 with PKM1 in lung cancer cell
lines results in decreased lactate production and increased
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oxygen consumption, essentially reversing the Warburg effect and
decreased xenograft proliferation in nude mice (12). Furthermore,
PKM2 was identified as essential for survival of glioma stem-like
cells using an unbiased RNAi screen (20). Knockdown of PKM2
in glioblastoma cell lines decreases survival and proliferation
while lowering ATP levels (24). The effects of PKM2 on metabolic
reprogramming in cancer cells are manifold and have been dis-

cussed elsewhere (7). More relevant to this review is the effect of
PKM2 on histone modifications in EGFR-driven glioblastomas
(51).

Upon EGFR activation, PKM2 translocates to the nucleus and
phosphorylates histone 3 at threonine 11 (H3-T11) (51). This, in
turn, leads to removal of the histone deacetylase 3 (HDAC3) from
the CCND1 (Cyclin D1) and c-MYC promoter regions (51).

α-Ketoglutarate

2-Hydroxyglutarate

Mutant IDH

Jumonji C
KDMs

CpGCpG

TET family
proteins ?

Histone 
methylation

G-CIMP

Figure 1. Isocitrate dehydrogenase (IDH)
mutations result in glioma-CpG methylation
phenotype (G-CIMP) and histone methylation
in gliomas. Mutant IDH1 catalyzes the
production of 2-hydroxyglutarate (2-HG) from
a-ketoglutarate (a-KG). 2-HG is thought to
inhibit a-KG-dependent dioxygenase
enzymes as 2-HG is structurally similar to
a-KG. The Jumonji C family of histone lysine
demethylases (KDMs) and the TET group of
DNA hydroxylases are a-KG-dependent
dioxygenases. Inhibition of these enzymes
may result in increased histone methylation
marks and DNA methylation contributing to
G-CIMP.
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Figure 2. Pyruvate kinase M2 (PKM2)
regulates histone modifications in epidermal
growth factor receptor (EGFR)-driven
glioblastomas. PKM2 catalyzes the
conversion of phosphoenolpyruvate (PEP) to
pyruvate in the glycolytic pathway. EGFR
activation results in PKM2 translocation to
the nucleus and phosphorylation of histone 3
at the threonine 11 residue (H3-T11). This
leads to removal of the histone deacetylase
3 (HDAC3) from the CCND1 (Cyclin D1) and
c-MYC promoter regions, acetylation of
H3K9 and activation of transcription of Cyclin
D1 and c-MYC.
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PKM2 then forms a complex with b-catenin, which binds to the
CCND1 and c-MYC promoter regions, leading to acetylation of
H3K9 and activation of transcription (51, 52) (Figure 2). Recon-
stitution of cells with a mutant form of H3 [where threonine is
replaced with an alanine residue (H3-T11A) that cannot be phos-
phorylated] in place of wild-type H3 prevented HDAC3 removal
from the CCND1 and c-MYC promoters. Cells expressing mutant
H3-T11A implanted into the mouse brains fail to form xenografts
compared with their wild-type controls. Furthermore, phosphor-
ylated EGFR correlated with both nuclear PKM2 and phosphor-
ylated H3T11 levels in human glioma samples. Phosphorylated
H3T11 levels were higher in 45 grade IV glioblastomas when
compared to 30 diffused astrocytoma cases (51). These data
suggest that PKM2 may play an important role as a regulator of
histone phosphorylation and acetylation in EGFR-driven gliomas.

SUMMARY
The complex interplay between the metabolic state of a cancerous
cell and its epigenetic machinery represents a novel mechanism by
which the normal control of cell proliferation/differentiation can
be disrupted. Epigenetic marks can integrate metabolism with
nuclear transcription to allow cancer cells to coordinate their
response to intrinsic and extracellular signals. Recent studies of
IDH1 mutations in intermediate-grade gliomas and secondary
glioblastomas, and PKM2 in EGFR-driven glioblastomas illustrate
disruptions of this process. These tumorigenic events are not
restricted to gliomas and other metabolic pathways likely contrib-
ute to the regulation of the epigenetic machinery. For example, the
enzyme ATP-citrate lyase (ACL) drives nuclear/cytosolic acetyl-
CoA synthesis and a significant defect in histone acetylation is
seen when ACL is knocked down in cell lines (46). Sir2 belonging
to the NAD+-dependent sirtuin family of histone deacetylases
extends lifespan in yeast on calorie restriction (28). Deacetylation
of histone 4 at the K14 residue contributes to this effect on yeast
lifespan (14). In mouse embryonic stem cells, threonine contrib-
utes to the synthesis of s-adenosylmethionine, which functions as
a substrate for histone methylation reactions. Depletion of threo-
nine or threonine dehydrogenase reduced trimethylation of H3K4
(37). While it remains to be determined if these pathways contrib-
ute to glioma pathology, these examples underscore the variety and
complexity of mechanisms that link metabolism to epigenetics.
Unraveling the dynamics and intricacies of these processes may
help us develop a better understanding of gliomas to enable the
development of novel therapeutic targets to effectively combat
these highly aggressive tumors.
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