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Abstract
The increased obstetric risks of maternal obesity have been well described. These include
increased risks of gestational diabetes mellitus, preeclampsia, stillbirth, and cesarean delivery. The
fetal/neonatal consequences of prenatal maternal obesity have received less attention. In addition
to an increased risk of stillbirth, the fetal/neonatal consequences include increased adiposity and a
metabolic status that increases the lifetime risk of obesity and diabetes. This review focuses on the
clinical obstetric consequences of maternal obesity and highlights recent mechanistic insights on
fetal programming as well as evidence suggesting that prenatal care provides a unique opportunity
to ameliorate these risks and decrease the cycle of childhood obesity.
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The Obesity Epidemic
Obesity is a worldwide health epidemic and a major contributor to the increased occurrence
of coronary heart disease, hypertension, and type 2 diabetes mellitus.1–3 An even more
disturbing trend is the dramatic increase in metabolic disease among children including
infants. According to recent studies, 12% of children are in the 97th percentile for weight,
17% are in the 95th percentile, and 32% are in the 85% percentile.4 Of greatest concern,
almost 10% of infants are above the 95th percentile of body weight.4 Unfortunately, being
obese in early childhood strongly predicts a lifetime of health problems in adults including
cardiovascular disease and diabetes.5–8 The converse is also true. Infants born small for
gestational age also increases the risk of lifelong metabolic complications including
coronary artery disease, diabetes, and obesity.9–13 Because the obese gravidae is at increased
risk for both small and large infants, the potential neonatal/childhood consequences in this
obstetric population are profound.14,15

The increased prevalence of obesity complicating pregnancy is a direct consequence of the
global obesity epidemic.16 Recent data from the Centers of Disease Control and Prevention
suggest that 20% of women are obese at the start of pregnancy and that the prevalence of
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obesity in reproductive-age women is 30%.16 Prepregnancy maternal obesity, defined as a
body mass index (BMI) of 30 kg/m2, confers an increased risk of fetal growth abnormalities,
intrauterine growth restriction and macrosomia, gestational diabetes mellitus, preeclampsia,
and fetal death.17–21 The mechanisms underlying these increased obstetric risks are not well
understood.

Maternal obesity and diabetes, and nutritional status during pregnancy and lactation have
profound long-term effects on the systems that regulate energy balance in offspring.22 The
dramatic increase in juvenile obesity and diabetes is often attributed to an increase in
calorically dense diets and reduced physical exercise in children. However, mounting
evidence in humans and animals models indicates that early programming events also
significantly contribute to this epidemic. Clinical and rodent studies have demonstrated that
both pregnancy (i.e., maternal nutrition or gestational diabetes mellitus (GDM)) and early
postnatal (i.e., diet and energy availability) environments significantly influence body
weight and energy homeostasis in adulthood.23–28 Specifically, there is a high rate of infant
morbidity and mortality associated with GDM, and infants from mothers with GDM are
frequently born with macrosomia, impaired glucose tolerance, and a much greater risk of
growing up to be obese and diabetic.29–32 The impaired glucose tolerance in the infants is
likely due to insulin resistance in target tissues as well as defects in the pancreas. The
maternal factors that cause the metabolic disorders in the offspring are unknown, but likely
ones include maternal hyperinsulinemia, excess nutrients (fatty acid/triglycerides and
glucose), and/or changes in placental function (blood flow and nutrient transport).
Considering the prevalence of obese and overweight adult women, maternal obesity and
poor nutrition may be the most common health concern experienced by the developing fetus.

Obesity and Inflammation
The search for a unifying mechanism in the spectrum of obesity-associated diseases such as
diabetes, hypertension, and hyperlipidemia links nutrient excess with abnormalities in the
mediators of inflammation.33 This chronic low-grade inflammatory response to obesity has
been termed meta-inflammation.34 This meta-inflammation negatively affects organs
systemically including the brain, pancreas, adipose tissue, and skeletal muscle resulting in
dysregulation of metabolic homeostasis, ultimately resulting in what is referred to as the
metabolic syndrome.33 The initiating trigger for this meta-inflammation and its link to
insulin resistance are areas of active investigation and beyond the scope of this review. In
the nonpregnant state, obesity is associated with increased production of proinflammatory
cytokines.35,36 Similarly, obese gravidae demonstrate increased inflammatory cytokines,
insulin, and lipids when compared with lean gravidae.29,37,38 The normal physiological
inflammation and insulin resistance of pregnancy exacerbates this chronic low-grade
inflammation.39 Furthermore, increased postprandial cytokines in response to high-fat meals
may further exacerbate the overall inflammatory state.33,40,41

Inflammation has detrimental effects on insulin secretion, insulin sensitivity, and lipid
metabolism. Inflammation decreases pancreatic islet cell mass and triggers beta cell
apoptosis, and it reduces insulin secretion.33,42,43 Obesity in both animals and adults is
associated with expansion of both adipocytes and adipocyte proinflammatory
macrophages.44 This adipose tissue inflammation is so robust that an excess 20 to 30 million
macrophages are estimated to accumulate with each kilogram of excess fat in humans.33 The
adipose tissue is metabolically active and secretes proinflammatory cytokines, such as tumor
necrosis factor (TNF)α and interleukin (IL)-8, which further contribute to peripheral insulin
resistance.34,45,46 Insulin typically stimulates storage of lipid into fat; however, the inflamed
adipose tissue is less responsive to insulin resulting in elevated levels of free fatty acids
(FFAs).44,47 The elevated circulating FFAs may directly stimulate the local and systemic
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inflammatory response by binding to innate immune receptors, such as toll-like receptor
(TLR)4, which in turn activates nuclear factor-κB, a robust proinflammatory transcription
factor.48–50 Skeletal muscle infiltration with activated macrophages and lipid accumulation
further contributes to the inflammation and insulin resistance in obesity.51,52

In addition to changes in insulin sensitivity, lipid metabolism in the obese gravidae differs
from her lean counterparts. In the first and early second trimester of pregnancy, lean women
increase their lipid stores more than obese women.53 This discrepancy may be secondary to
increased insulin resistance in obese gravidae resulting in decreased lipid uptake and
lipogenesis. An alternative explanation is an inability of obese women to expand their
hypertrophic adipocytes like their lean counterparts. On the surface, this may appear
beneficial because it might limit gestational weight gain, but adipose tissue is critical for
storing the excess intake of lipids. Otherwise this leads to increased lipolysis, increased
systemic FFAs, and ectopic fat deposition in other organs like the liver, skeletal muscle, and
the developing fetus that lead to other metabolic complications.53,54 The FFAs, in
combination with elevated triglycerides and cholesterol, contribute to the increased
oxidative stress seen in obesity.55 Furthermore, the hyperlipidemia may act both directly and
indirectly on the vasculature contributing to the vascular dysfunction seen in obesity.37,56,57

In summary, obesity is associated with a metabolic environment characterized by multiorgan
inflammation, insulin resistance, hyperlipidemia, and vascular dysfunction. All of these
factors, unfortunately, pose significant challenges to the developing fetoplacental unit.

Obesity, Placental Function, and Fetal Growth
In the metabolic environment of the obese gravidae, the fetoplacental unit develops under
conditions of both excess nutrients and inflammation. Because the placenta regulates
nutrient flow from mother to fetus, it likely occupies a central role in mediating the adverse
obstetric risks associated with pregnancy. The placenta is the primary organ for nutrient
exchange during pregnancy, and abnormal placental development has been associated with
virtually every adverse obstetric outcome including abnormalities in fetal growth,
preeclampsia, preterm labor, and stillbirth.58–61 Diseases associated with obesity that also
increase these risks include diabetes, hypertension, and preeclampsia. However, obese
human gravidae demonstrate metabolic, inflammatory, and vascular abnormalities even
when there are no associated medical conditions, suggesting that obesity by itself is a
contributor to these adverse obstetric outcomes.35 The mechanisms underlying these
increased risks are incompletely understood, but insights from both animal models and
humans suggest placental inflammation and placental dysfunction as possible contributing
factors.

Rodent studies of a high-fat diet (HFD) during pregnancy have reported variable results on
fetal birthweight including no effect, decreased birthweight, and increased birthweight.62–69

A recent rat study of chronic administration of a HFD both before and during pregnancy
resulted in decreased fetal birthweight, which suggests some degree of placental
insufficiency.66 Another recent rat study demonstrated that a maternal HFD reduced both
fetal growth and growth of the placental junctional zone, again suggesting that abnormalities
in placental development secondary to a HFD may contribute to aberrant fetal growth.70

Direct comparisons among these studies are limited by the varying compositions of the HFD
and the duration of exposure. The rodent studies are also limited by their short gestation
relative to primates and the structural differences in their placentas when compared with
primate placentas.71,72 However, these rodent studies are consistent with sheep studies of
excess nutrition. In a well-characterized sheep model of acute excess nutrition during
pregnancy, overnourished ewes had a significant reduction of uterine blood flow at
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midgestation compared with controls.73 By late gestation in this sheep model, both uterine
and umbilical blood flows were reduced.74 The placentas in this adolescent sheep model
demonstrate reduced capillary density and decreased placental mass that may explain the
reductions in uterine and umbilical blood flow.75 Although the fetuses of the overnourished
ewes weighed more in midgestation, they were reduced by 20% compared with controls by
late gestation, suggesting that the consequences of decreased uteroplacental perfusion may
not be seen until later in gestation when the fetal nutrient demands exceed the placental
capabilities.75 The sheep placenta is markedly different in structure from the primate
placenta, so direct comparisons with humans is not possible.71,76

Despite these species differences, the variation in fetal weight, both large and small, in the
animal studies of excess nutrition is consistent with the observed human data. Obese women
have increased rates of both fetal macrosomia and growth-restricted infants.14,15 Although
both these fetal conditions are associated with risks of childhood metabolic disease, neonatal
fat mass and insulin resistance may be more important mediators of childhood obesity and
metabolic dysfunction.

Obesity in pregnancy is associated with an increase in proinflammatory mediators and
nitrosative stress in the human placenta.77,78 Although the data are limited, evidence
suggests that inflammatory cytokines can alter maternal nutrient transport. IL-6 and TNF-α
stimulate system A amino acid transport in cytotrophoblasts; IL-1β inhibits this same
system.79,80 A murine study also demonstrated that a HFD both before and during
pregnancy upregulated placental nutrient transport suggesting alterations in placental
nutrient transport may contribute to fetal overgrowth.81 The mechanisms whereby the
placenta senses maternal nutrient availability and the mediators of alterations in placental
nutritional transport is an understudied area that merits significant investigation.

The Role of Nutrition on the Risk of Childhood Obesity and Metabolic
Disease: Insights from the Nonhuman Primate

In humans, maternal obesity is often associated with consumption of a HFD, and a HFD is
used to promote maternal obesity in most animal models. Therefore, a major challenge faced
by the obstetric field is the ability to separate the effects of the HFD from the maternal
metabolic phenotype. The nonhuman primate (NHP) shares developmental ontogeny similar
to human fetuses including placental function, brain development, and the full spectrum of
metabolic disease when placed on a HFD. Recent work from our NHP model of excess
nutrition in pregnancy provides insight into the contributions of nutrition, independent of
obesity, on placental function, pregnancy complications, and fetal metabolic disorders.

Briefly, in our model of obesity, young adult female macaques are maintained on chow or a
HFD (up to 6 years).82 The HFD is high in saturated and monounsaturated fatty acids;
however, polyunsaturated fatty acid levels are comparable between the two diets. The adults
on the HFD segregate into either a diet sensitive (obese and insulin resistant) or diet resistant
(normal adiposity and insulin sensitivity).82,83 Thus this model allows us to distinguish the
relative impact of maternal diet versus the maternal metabolic phenotype.

During pregnancy in HFD animals, in the maternal and fetal circulation, fasting levels of n3
fatty acids are low while there is a significant increase in the proinflammatory n6:n3 ratio.84

Fasting saturated fatty acid levels are not different; however, maternal postprandial levels
are significantly elevated in HFD females.84 The excess systemic lipids may increase
substrate availability of FFAs for placental transport resulting in a fetal lipid profile that
mirrors the maternal lipid profile.84
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Our published studies using this model have demonstrated that consumption of a high-fat/
calorie (Western-style) diet during pregnancy, in the absence of obesity or diabetes, causes
damage and reprogramming in the liver, brain, pancreas, and placenta.82,83,85,86 We have
demonstrated that maternal HFD consumption results in increased liver triglycerides and
oxidative damage in the fetal offspring and that this effect persists into the postnatal
period.82 These same fetal offspring have increased cytokine expression in the
hypothalamus along with abnormal development of the melanocortin and serotonin systems,
which are important for the regulation of food intake and glucose homeostasis.85,86

Furthermore, our studies suggest that a HFD diminishes uterine blood flow and that obesity
with a HFD causes placental ischemia and decreases placental blood flow resulting in an
increased risk of stillbirth.83 The inflammation in the fetal brain, liver, and placenta is
secondary to a HFD and independent of maternal obesity. During the postnatal period the
HFD offspring, independent of maternal obesity, have accelerated weight gain and increased
adiposity and glucose intolerance; again suggesting that diet alone may cause lipotoxicity in
the developing fetus and may be a major contributor to adverse obstetric and childhood
outcomes.82 Finally, juvenile offspring of HFD mothers, both lean and obese, display
increased intimal thickening in the vasculature and demonstrate impaired endothelial
function, manifesting as depressed endothelium-dependent vasorelaxation (Grove,
unpublished data). In summary, maternal HFD consumption, independent of obesity,
impacts both placental function and the developing fetus, resulting in offspring that are
predisposed to abnormalities in metabolic homeostasis and cardiovascular dysfunction
destined to repeat the cycle (Fig. 1).

Nutrition and the Transgenerational Problem: How Do We Break the Cycle?
One of the goals of prenatal care is to optimize maternal health so that we can ensure a
healthy pregnancy and newborn. Because approximately two thirds of pregnant women in
the United States are currently overweight or obese at the time of conception, how can we
modify the adverse obstetric outcomes associated with obesity?16 As a result of the
prevalence of obesity in reproductive-age women, obesity may be a greater contributor to
perpetuating the obesity epidemic than diabetes.44,87 How can we break the cycle?

Recent studies on nutrition converge on a powerful solution: better prenatal nutrition. A
murine study recently demonstrated that maternal diet-induced obesity increased
mitochondrial oxidative stress in both mouse oocytes and zygotes suggesting prenatal
mitochondrial injury.88 Our own NHP studies provide evidence of multiple metabolic
perturbations to the placenta, fetus, and neonate directly related to a high-fat diet,
independent of obesity.82–86 A recent rat study implicated chronic high-fat diet in fathers
with pancreatic β-cell dysfunction of female offspring.89 While we await determination of
the optimal nutritional strategy to ensure fetal health, a worthy interim solution is to actively
promote lifestyle changes prior to and during pregnancy that include a nutrient-dense diet
low in saturated fats. If the pregnancy is used as a commitment device to alter diet, perhaps
we can impact not only fetal but childhood health. Fostering better nutrition during
pregnancy may modify postnatal nutritional choices. Ongoing experiments in our laboratory
and others will seek to determine whether additional nutritional supplements can mitigate
some of the deleterious effects of a HFD on the placenta and developing fetus.

Future areas of investigation require research innovation in both the basic and clinical
sciences. First, improved methods to stratify obese patients at risk for adverse obstetric and
neonatal/childhood complications need to be developed.

Such a strategy will require significant improvement in diagnostic methods including both
physiological biomarkers of disease as well as improved imaging modalities of placental
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function. A lack of data is present in terms of assessing placental function in the obese
gravidae. The improved diagnostic tools will require implementation of better strategies than
the deficient BMI to define maternal body composition. Second, investigation of placental
lipid transport and how both uteroplacental perfusion and the obesogenic maternal
environment modify it is necessary. Again, such a strategy will require the development of
improved imaging methods to connect in vivo function with transport. Third, resource
development is needed to identify strategies and provide infrastructure so that prenatal
nutrition education is available to all pregnant women as well as access to better food
choices.
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Figure 1.
Maternal obesity and high-fat diet (HFD) consumption have an impact on the developing
placenta and fetus. The fetus and placenta from a HFD-consuming mother experiences an
environment characterized by elevated levels of glucose, insulin, fatty acids, triglycerides,
and inflammatory cytokines. This environment leads to changes in placenta function/
transport that result in systemic fetal inflammation, hyperinsulinemia, hyperlipidemia, and
lipotoxicity, resulting in offspring at increased risk for obesity, diabetes, and vascular
dysfunction.
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