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Abstract
The family of insulin receptor substrates (IRS) consists of four proteins (IRS-1 - IRS-4), which
were initially characterized as typical cytosolic adaptor proteins involved in insulin receptor (IR)
and insulin-like growth factor I receptor (IGF-IR) signaling. The first cloned and characterized
member of the IRS family, IRS-1, has predicted molecular weight of 132 kDa, however, as a
result of its extensive serine phosphorylation it separates on a SDS gel as a band of approximately
160–185 kDa. In addition to its metabolic and growth-promoting functions, IRS-1 is also
suspected to play a role in malignant transformation. The mechanism by which IRS-1 supports
tumor growth is not fully understood, and the argument that IRS-1 merely amplifies the signal
from the IGF-1R and/or IR requires further investigation. Almost a decade ago, we reported the
presence of nuclear IRS-1 in medulloblastoma clinical samples, which express viral oncoprotein,
large T-antigen of human polyomavirus JC (JCV T-antigen). This first demonstration of nuclear
IRS-1 was confirmed in several other laboratories. The nuclear IRS-1 was also detected by cells
expressing the SV40 T-antigen, v-Src, in immortalized fibroblasts stimulated with IGF-I, in
hepatocytes, 32D cells, and in an osteosarcoma cell line. More recently, nuclear IRS-1 was
detected in breast cancer cells in association with estrogen receptor alpha (ERα), and in JC virus
negative medulloblastoma cells expressing ERβ, further implicating nuclear IRS-1 in cellular
transformation. Here, we discuss how nuclear IRS-1 acting on DNA repair fidelity, transcriptional
activity, and cell growth can support tumor development and progression.

IRS-1 Structure and Function
IRS-1 was long considered an example of a typical cytosolic molecule involved in signal
transduction from two prominent membrane tyrosine kinases, insulin receptor (IR) and
insulin-like growth factor I receptor (IGF-IR) (Myers et al., 1993). The molecular structure
of IRS-1 has been well characterized revealing two conserved regions within N-terminal
portion of the protein (Myers and White, 1996) and (Fig.1). The first one is designated PH
due to its similarity to a pleckstrin homology (PH) domain; and the second, PTB, shows
similarities to a putative phosphotyrosine-binding (PTB) domain present in Shc and other
proteins (Sun et al., 1992). The PH domain contains a positively charged binding pocket that
mediates interaction with phospholipids and with proteins containing an acidic motif (Burks
et al., 1997; Burks et al., 1998; Myers et al., 1995). The PTB domain has the ability of
recognizing phosphorylated tyrosine residues within NPXY motives, providing a
mechanism of coupling IRS-1 with Tyr950 or Tyr960 in the juxtamembrane region of the
IGF-IR and IR, respectively (Craparo et al., 1995; Eck et al., 1996; Wolf et al., 1995). Over
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20 tyrosine phosphorylation sites on the IRS-1 docking molecule can recruit proteins
equipped with src-homology (SH2) domain, and several enzymes and adapter proteins have
been confirmed as partners in IRS-1 mediated signaling cascade (Fig.1). These include
Grb-2 (Myers et al., 1994; Valverde et al., 2001), PI-3 kinase (Myers et al., 1992), SHP2
phosphatase (Myers et al., 1996), Fyn (Sun et al., 1996), Nck (Lee et al., 1993), and Crk
(Beitner-Johnson et al., 1996). Other proteins such as polyomavirus large T-antigens (Fei et
al., 1995), 14-3-3 (Ogihara et al., 1997), integrins (Reiss et al., 2001; Vuori and Ruoslahti,
1994; Wang et al., 2007), and estrogen receptors (Morelli et al., 2004; Sisci et al., 2007a;
Surmacz and Bartucci, 2004; Urbanska et al., 2009) that may contribute to malignant
transformation, associate with IRS-1 through interaction/s that seem to be independent from
IRS-1 tyrosine phosphorylation. Interestingly, the binding and cytoplasmic retention of the
DNA repair protein, Rad51, by hypo-phosphorylated IRS-1 was inhibited in cells stimulated
with IGF-I, strongly implicating the IGF-IR/IRS-1 signaling axis in homologous
recombination directed DNA repair (Gualco et al., 2009b; Reiss et al., 2006; Trojanek et al.,
2006b; Trojanek et al., 2003).

Another important aspect of IRS-1 regulation is its phosphorylation of serine residues,
which in contrast to IRS-1 tyrosine phosphorylation is thought to inactivate some of the
most relevant functions of this docking molecule (Myers and White, 1996; Sun et al., 1992),
including TNFα–mediated development of insulin resistance (Hotamisligil et al., 1996;
Peraldi et al., 1996). The best characterized serine residues of IRS-1 are: Ser307 (murine)/
Ser312 (humans), which become phosphorylated as a result of PI3K, PKC, JNK and TNFα
activation; Ser612, phosphorylated by MAPK; the cluster of serines Ser632, 662, and 731,
which upon phosphorylation by Akt/mTOR pathway may lead to IRS-1 degradation; and
Ser789 which following AMPK mediated phosphorylation, may result in enhanced
association of IRS-1 with IR during exercise and starvation (Schmitz-Peiffer and Whitehead,
2003; Shaw, 2006; White, 2002). Interestingly, elevated serine phosphorylation of IRS-1 has
been found to facilitate its interaction with integrins (Reiss et al., 2001; Wang et al., 2006;
Wang et al., 2007), however, the same serine phosphorylation strongly inhibited the binding
between IRS-1 and JCV T-antigen (Lassak et al., 2002).

Nuclear Localization of IRS-1
Although the mechanism by which IRS-1 translocates to the nucleus is not fully understood,
IRS-1 could employ its own putative nuclear localization signals (NLS) (Fig.1). One such a
possibility was discussed in the report describing nuclear translocation of IRS-1 following
ectopic expression of IGF-IR and IRS-1 in 32D cells, which resulted in IL-3 independence
and tumor formation by these mouse hematopoietic cells (Prisco et al., 2002). One putative
NLS site stretches between amino acids 14–28 within the PH domain of the IRS-1, where 8
out of 15 amino acids are basic (Prisco et al., 2002), and the other (KKWRHK) proposed in
the original paper of Keller et al. describing isolation of mouse IRS-1 cDNA, also resides
within the PH domain (Keller et al., 1993). The presence of these sequences may explain
translocation of IRS-1 to the nucleus following IGF-1-induced activation of IGF-IR (Tu et
al., 2002), or insulin/IGF-2 - induced activation of IR, but only isoform A (IR-A) (Wu et al.,
2003). Interestingly, IR-A lacks 12 amino acids from the C-terminus and is expressed
preferentially in fetal and transformed tissues, where it is suspected to activate growth-
promoting signals via IGF-2-mediated activation (Lawrence et al., 2007).

In addition to the described putative NLS sequences, PH domains of IRS-1 and IRS-2
interact with a nuclear acidic protein, nucleolin (Burks et al., 1998), which could imply that
chaperon proteins are involved in the nuclear translocation of IRS proteins. Indeed,
detection of nuclear IRS-1 in cells expressing JCV T-antigen (Lassak et al., 2002), SV40 T-
antigen (Prisco et al., 2002), ERα (Morelli et al., 2004) and ERβ (Urbanska et al., 2009)

Reiss et al. Page 2

J Cell Physiol. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



indicates that IRS-1 may require other proteins equipped with NLS for its effective shuttling
to the nucleus. The first characterization of the interaction between IRS-1 and JCV T-
antigen, using a GST pull-down assay and a collection of the overlapping IRS-1 truncation
mutants, revealed that this viral oncoprotein binds to the stretch of amino acids 212–300
within the N-terminal fragment of IRS-1 (Lassak et al., 2002), which includes a portion of
PTB domain, and represents an overlap between two N-terminal fragments of IRS-1, which
both are capable of pulling down JCV T-antigen. In addition, the IRS-1-JCV T-antigen
interaction is independent from IRS-1 tyrosine phosphorylation and is strongly inhibited by
IRS-1 serine phosphorylation (Lassak et al., 2002).

We have also identified that the region between amino acids 412–628 within the C-terminal
portion of JCV T-antigen pulls down IRS-1 (Khalili et al., 2003). Although this region is far
from the site where T-antigens interact with pRB proteins, it could overlap with the sites
responsible for the p53 binding (Sullivan and Pipas, 2002). Therefore, in view of a potential
role of nuclear IRS-1 in cellular transformation, it will be critically important to know if
indeed IRS-1 interaction with T-antigens interferes with T-antigen –mediated p53
inactivation. Interestingly, Merkel cell polyomavirus, which is most firmly established as an
etiological agent in Merkel cell carcinoma (Feng et al., 2008; Kassem et al., 2008; Viscidi
and Shah, 2008), viral DNA is chromosomally integrated in the manner that T-antigen is
disrupted. The resulting truncated T-antigen loses the ability to support viral replication, but
it retains the ability of bind pRb (Harrison et al., 2011; Houben et al., 2011; Shuda et al.,
2008). Further experiments are required to determine if such a truncated large T-antigen
found in Merkel cell carcinoma can mediate IRS-1 nuclear translocation.

Two additional proteins with a strong nuclear affinity and with the ability of binding IRS-1
are estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). The first indication of a
possible functional interplay between IRS-1 and ERα was demonstrated in the course of
vitro breast cancer studies, which provide initial evidence that estrogens could regulate
IRS-1 expression and stability (Morelli et al., 2003; Oesterreich et al., 2001). More recently,
a direct nuclear binding between IRS-1 and ERα has been demonstrated (Morelli et al.,
2004) and characterized (Sisci et al., 2007a) in breast cancer cells. In addition, molecular
evaluation of the interaction revealed that ERα has two putative binding sites on the IRS-1
molecule. The first is located within the first 200 amino acids spanning entire PH and part of
PTB domain, and the second is located within the C-terminal portion of IRS-1 (Sisci et al.,
2007a).

In medulloblastomas, which develop in the cerebellum, and are considered the most
common intracranial tumors of the childhood (Reiss, 2002), nuclear IRS-1 was found first in
association with JCV T-antigen (Lassak et al., 2002), and later with ERβ (Urbanska et al.,
2009). Our recent studies demonstrate that ERβ-IRS-1 interaction involves exclusively the
C-terminal domain of IRS-1 between amino acids 931 and 1233 (Urbanska et al., 2009).
However, in contrast to ERα-IRS-1 complex, we did not observe ERβ binding to the N-
terminal portion of IRS-1, which on the other hand, represents the prominent binding site for
JCV T-antigen (Lassak et al., 2002).

Nuclear Localization of IRS-2 and IRS-3
IRS-3 is a shorter version of IRS-1, and is expressed in rodents but not in humans
(Bjornholm et al., 2002). The nuclear presence of IRS-3 was demonstrated in the Takahashi
lab (Kabuta et al., 2002) about the same time when nuclear IRS-1 was discovered (Lassak et
al., 2002). The region of IRS-3 necessary for its nuclear localization was cloned between
amino acids 192 and 223, the region that represents the fragment of the PTB domain that is
unique for IRS-3 (Kabuta et al., 2002). In the same experimental setting the authors did not
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observe nuclear IRS-1, IRS-2 or IRS-4 despite the fact that COS-7 cells used in this study
are expected to express SV40 T-antigen. Recent analysis of nuclear IRS-3, by the same
group, revealed that importin-β binds IRS-3, which was sufficient for nuclear translocation
of the complex (Kabuta et al., 2008). Since IRS-1 and IRS-2 failed to bind importin-β, the
IRS-3 - importin-β interaction seems to represent a unique mechanism of nuclear
translocation within the IRS family.

IRS-2 can also translocate to the nucleus. IRS-1 was found in the nuclei of mouse embryo
fibroblasts stimulated with IGF-I, however in contrast to IRS-1, IRS-2 translocation was not
mediated by SV40 T-antigen, and required instead the presence of a functionally active IGF-
IR (Sun et al., 2003). Inactivating mutations in the tyrosine kinase domain of the IGF-IR
prevented nuclear translocation of IRS-2, which implicated tyrosine kinase activity of the
IGF-IR in this process (Sun et al., 2003). In addition, nuclear IRS-2 has been shown to form
nucleolar complexes with the upstream binding factor (UBF-1), a key regulator of RNA
polymerase I activity involved in biosynthesis of ribosomal RNAs (Sun et al., 2003). In a
different study, nuclear IRS-2 was found in association with NFκB in breast cancer cells,
which supported the recruitment of IRS-2 to the cyclin D1 promoter (Wu et al., 2010).
Interestingly, antisense against IRS-2 inhibited IGF-I-induced PI3K and NFkB activities and
repressed proliferation of both BT20 (IRS-1 negative) and MCF-7 (IRS-1 positive) breast
cancer cells (Wu et al., 2010). Since MCF-7 cells have been previously shown to possess
nuclear IRS-1 in association with ERα, and nuclear IRS-1 also binds cyclin D1 promoter
(Chen et al., 2005), further experiments are required to clarify a possible distinct role for
nuclear IRS-1 and nuclear IRS-2 in this cellular model. In this respect, a different role for
IRS-1 and IRS-2 has been already proposed by Nagle et al. (Nagle et al., 2004) who
demonstrated that breast cancer cells which are IRS-1 negative but express IRS-2 are highly
metastatic, however, their invasive potential is lost when IRS-2 is downregulated. In a
different scenario, reintroduction of IRS-1 to IRS-1-negative prostate cancer cells, LNCaP,
triggered cell aggregation and inhibited their invasiveness (Reiss et al., 2000; Reiss et al.,
2001). Therefore, at least in breast and prostate cancer cells, the expression of IRS-2 seems
to associate with higher, and IRS-1 with lower tumor cell invasiveness. Further studies are
required to determine if nuclear translocation of IRS-1 and/or IRS-2 can contribute to the
process of malignant transformation in general, and to tumor invasiveness in particular.

Nuclear IRS-1 and DNA Repair
Nuclear IRS-1 was initially detected in association with polyomavirus JC (Lassak et al.,
2002; Reiss et al., 2006) and SV40 T-antigens (Tu et al., 2002), which are viral oncoproteins
known to trigger abnormal cell proliferation and cause genomic instability. Polyomaviruses,
including human JCV and BKV, and their simian counterpart, SV40, are small non-
enveloped viruses with a single copy of double-stranded DNA. Their oncogenic potential is
closely associated with the activation of so-called “early genome” of the virus, which forces
infected cells to re-enter the S phase of the cell cycle, providing cellular DNA replication
machinery for viral replication. The early genome of SV40 and JCV transcribes a common
precursor RNA, which is differentially spliced yielding several viral products among which
large tumor antigen (T-antigen), and small tumor antigen (t-antigen), predominate (Corallini
et al., 1987; Khalili et al., 1999; Khalili and Stoner, 2001; Reiss and Khalili, 2003; Reiss
Krzysztof, 2010; Wang et al., 2004; White et al., 2005). Polyomaviruses infect humans,
monkeys, rodents, and birds with a restricted host and tissue specificity, and the infection of
cells in which the virus does not fully replicate may lead to a partial expression of the viral
genome (Imperiale, 2000; Imperiale, 2001). When SV40 or JCV T-antigen is expressed in
the cells, it binds and inactivates two major negative regulators of the cell cycle, p53 and
pRb (Kao et al., 1993; Krynska et al., 1997; Saenz-Robles et al., 2001). Although these
canonical interactions with host proteins initiate DNA replication, they do not explain why

Reiss et al. Page 4

J Cell Physiol. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



cells expressing T-antigen are often characterized by genomic instability and undergo
malignant transformation. Multiple studies have already demonstrated chromosomal
instability with no consistent patterns and with many new karyotypes emerging at each
consecutive passage of the T-antigen expressing cells (Hunter and Gurney, 1994; Kappler et
al., 1999; Ramel et al., 1995; Ricciardiello et al., 2003; Woods et al., 1994). A large variety
of chromosomal defects suggest that T-antigens may affect stability of the genome at a very
basic level. For instance, one explanation could be unfaithful DNA repair of double strand
breaks (DSBs) in cells that are actively replicating DNA. To ensure uninterrupted DNA
replication and to avoid apoptosis, at least one of the two prominent DNA repair
mechanisms: homologous recombination directed DNA repair (HRR) or non-homologous
end joining (NHEJ), has to be activated (Hoeijmakers, 2001).

We have demonstrated that cells expressing JCV T-antigen are characterized by impaired
HRR, which resulted in the accumulation of mutations in cells replicating DNA (Trojanek et
al., 2006a; Trojanek et al., 2006b). In this process, JCV T-antigen did not interact directly
with the HRR complex, but instead it utilized IRS-1 (Fig.2). Following T-antigen-mediated
nuclear translocation (Lassak et al., 2002), IRS-1 has been found in complex with Rad51,
which is the main enzymatic component of HRR (Thacker, 1999). Importantly, this T-
antigen-induced inhibition of HRR did not function in cells lacking IRS-1, and was
reproduced in the absence of T-antigen by the mutant IRS-1 equipped with an artificial
nuclear localization signal. As a result of this interaction between nuclear IRS-1 and Rad51
HRR was significantly repressed, however, enzymatically-induced DNA strand breaks were
still repaired most likely by NHEJ (Trojanek et al., 2006a). This compensatory action of
NHEJ was however associated with the accumulation of spontaneous mutations detected at
the sites of damaged DNA (Trojanek et al., 2006a) (Fig.2). Other examples of T-antigen-
mediated interference with DNA repair include SV40 T-antigen interference with MRE11
nuclear foci formation (Digweed et al., 2002), and T-antigen binding to another DNA repair
protein, Nbs1, which forms an early DNA repair complex with MRE11 and Rad50 (Wu et
al., 2004). In these studies however the involvement of nuclear IRS-1 was not evaluated.

Recently, we have reported the presence of nuclear IRS-1 in medulloblastoma cells negative
for JCV T-antigen in which nuclear IRS-1 was found in complex with ERβ (Urbanska et al.,
2009) and (Fig.3). Following cisplatin-induced DNA damage, nuclear IRS-1 localized at the
sites of damaged DNA where it interacted again with Rad51. In medulloblastoma cells,
engineered to express reporter plasmid for homologous recombination (Pierce et al., 1999;
Trojanek et al., 2003), the ER antagonist, ICI 182,780, and an IRS-1 mutant (931–1233)
lacking the ERβ binding site, both decreased the content of nuclear IRS-1 and stimulated
DNA repair by homologous recombination (Urbanska et al., 2009). These encouraging
results brought however one unexpected side effect, which should be seriously considered in
view of estrogen receptor-related anticancer strategies. Although our further experiments
with ICI182,780 confirmed the expected decrease in the accumulation of nuclear IRS-1, the
accompanied increase in DNA repair by HRR resulted in the development of cisplatin
resistance in medulloblastoma cells. This could be clinically relevant since the use of
ICI182,780 has already been suggested as a supplementary treatment for medulloblastoma
(Belcher et al., 2009).

Nuclear IRS-1 and Cell Growth
The involvement of the IGF-IR-IRS-1 signaling axis in controlling cell size has been well
documented in a wide variety of organisms including Drosophila (Bohni et al., 1999) and
mice (Pete et al., 1999), and was confirmed in cell culture (Valentinis et al., 2000). For
example, transgenic mice knockouts for the IGF-IR gene (Baker et al., 1993; Gualco et al.,
2009a), or IRS-1 knockouts (Araki et al., 1994) are characterized by severe growth
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retardation. In a similar manner, deletion of a Drosophila homolog of IRS-1, a protein
referred as Chico, decreased size of the fly about 50% by affecting both cell size and cell
number (Bohni et al., 1999). Conversely, targeted disruption of the IGF-2 receptor
(IGF-2R), which is thought to sequester IGF-2 during fetal development, increased overall
IGF-2 availability, which led to over-stimulation of the IGF-IR/IRS-1 signaling axis, and
resulted in the development of abnormally large embryos (Ludwig et al., 1996). Despite of
these multiple examples, we still do not fully understand how IGF-I or insulin-activated IRS
proteins contribute to the increase in size. One explanation has been provided by the
observation that nuclear/nucleolar IRS-1 and IRS-2 interact with the upstream binding factor
1 (UBF-1), which is a key regulator of RNA polymerase-I involved in biosynthesis of
ribosomal RNA (rRNA) (Drakas et al., 2004; Tu et al., 2002). There are several important
observations, which emerged from this finding: (i) IGF-1 stimulation induces
phosphorylation of the C-terminal portion of UBF, and the presence of IRS-1 increases
markedly this phosphorylation; (ii) antibody against IRS-1 precipitates UBF-1 exclusively
from the nuclear fraction; (iii) both IRS-1 and IRS-2 are capable of binding UBF-1 (ref); (iv)
nuclear translocation of IRS-1 in 32D cells correlated well with a marked increase in rRNA
synthesis; (v) in the nucleus, IRS-1 co-precipitated with PI3-K; and (vi) IRS-1 bound PI-3K
directly phosphorylated UBF-1. Collectively, these data strongly indicate that the IGF-I-
mediated determination of cell size depends, at least partially, on the activation of PI3-K by
nuclear IRS-1, which results in the phosphorylation-dependent activation of UBF-1 and
subsequent activation of rRNA synthesis. Since the increase in cell size is also important
during cell proliferation when cells must double in size between the G1 and G2 phase of the
cell cycle, this could represent a new function for nuclear IRS-1 in supporting abnormal cell
proliferation.

Nuclear IRS-1 and Gene Expression
Although a direct interaction between nuclear IRS-1 and double stranded DNA has not been
reported, several recent publications suggest that nuclear IRS-1 could participate in
modulating transcriptional activity of genes involved in cell growth and cell proliferation
(Chen et al., 2005; Wu et al., 2008). The first study suggesting nuclear IRS-1 as a
transcriptional modulator demonstrated its’ interaction with the upstream binding factor 1
(UBF-1), a key regulator of RNA polymerase-I involved in biosynthesis of rRNA (Tu et al.,
2002). Importantly, the IRS-1/UBF-1 complex localizes preferentially in the nucleolus,
which is known to contain multiple tandem copies of the ribosomal DNA (rDNA).
Importantly, the UBF-1/IRS-1 nucleolar complex activated the expression from rDNA
promoters, which resulted in elevated rRNA biosynthesis, leading to overall increase in
protein synthesis (Chen et al., 2005; Drakas et al., 2004; Wu et al., 2005). Another example
of nuclear IRS-1 working as a transcriptional modulator is its cytosolic and nuclear binding
to β-catenin (Chen et al., 2005). The IRS-1/β-catenin complex has been found to interact
with the c-myc and cyclin D1 promoters, and the binding was associated with elevated
transcriptional activity from these two growth-control genes (Chen et al., 2005). IRS-1 has
been also found to form complexes with ERα (Morelli et al., 2004) and with androgen
receptor (AR) (Lanzino et al., 2009). Both complexes translocate to the nucleus, and have
been shown to interact with the promoter regions containing ER and AR responsive
elements, respectively. In case of ERα the binding of IRS-1 was associated with a
significant decrease in transcriptional activity (Morelli et al., 2004), and the IRS-1/AR
complex was found to be stimulatory (Lanzino et al., 2009). Collectively, these findings
suggest a new role for nuclear IRS-1 in IGF-IR/IRS-1 signaling axis, which in addition to its
canonical signaling effects on cell growth and cell proliferation, propose nuclear IRS-1 as a
transcriptional modulator. In particular, the findings that nuclear IRS-1 can function as AR
and ER transcriptional modulator could indicate its involvement in the development and
progression of breast and prostate cancer.
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Nuclear IRS-1 in Cancer Clinical Samples
Nuclear IRS-1 was detected for the first time in archival clinical samples of
medulloblastoma (Lassak et al., 2002). The original study of 17 medulloblastoma biopsies
revealed the presence of IRS-1 in the cytoplasm of 6 cases, while another 6 cases showed
both cytosolic and prominently nuclear IRS-1. Interestingly, all cases of cytoplasmic IRS-1
were negative for T-antigen expression, while all cases in which IRS-1 was located in the
nucleus were T-antigen positive. Furthermore, T-antigen and IRS-1 seem to colocalize the
nuclei of tumor cells (Lassak et al., 2002). Subsequent immunohistochemical studies
performed on an additional 20 cases of medulloblastoma, corroborated the nuclear
localization of IRS-1 in 3 T-antigen positive cases, however 6 samples exhibiting nuclear
IRS-1 were T-antigen negative. In these 8 samples, the nuclear IRS-1 was found in complex
with another nuclear protein, estrogen receptor beta (ERβ), which was later confirmed in
vitro (Urbanska et al., 2009) and (Fig. 3). Since nuclear IRS-1 was detected in classic,
neuroblastic, and desmoplastic medulloblastomas, which differ in respect to their
invasiveness and behavior (Kim et al., 2011; Rossi et al., 2008), we were not able to assign
any prognostic values associated with nuclear IRS-1, ERβ or with JCV T-antigen (Lassak et
al., 2002; Urbanska et al., 2009). In addition, to medulloblastoma clinical samples our
preliminary observations from Glioblastomas also indicate the presence of nuclear IRS- in
association with JCV T-antigen and/or with ERβ, (Fig. 4). However, more intensive studies
are required to determine if nuclear IRS-1 could have any prognostic or diagnostic values
for these malignant Glial tumors.

In contrast to observations made with medulloblastoma, nuclear IRS-1 detected in breast
cancer biopsies correlated well with more differentiated and less metastatic phenotype (Sisci
et al., 2007b). In the breast cancer cells and in biopsies nuclear IRS-1 was found in
association with ERα (Morelli et al., 2003; Morelli et al., 2004; Sisci et al., 2007a; Sisci et
al., 2007b). Nuclear IRS-1 was detected in 1.6% of control normal mammary epithelium and
in 20% of benign tumors. In ductal carcinoma, both nuclear IRS-1 and ERα negatively
correlated with tumor grade, size, mitotic index and lymph node involvement (Sisci et al.,
2007b). Recently, nuclear IRS-1 has been shown to be a good predictor for tamoxifen-
response in patients with early breast cancer (Migliaccio et al., 2010). In this study, tissue
array from over thousand patients diagnosed with stage 1 and 2 breast cancer reviled
positive correlation between nuclear IRS-1 and ERα, and between nuclear IRS-1 and
progesterone receptor, and nuclear IRS-1 per se showed negative correlation with lymph
node involvement. On the other hand, cytosolic IRS-1 did not correlate with ERα, but
showed positive correlation with tumor size and S-phase fraction. Importantly, tamoxifen-
treated patients with the tumor cells showing nuclear IRS-1 had both better recurrence–free
survival and overall survival (Migliaccio et al., 2010).

Conclusions
In this review, we have presented the experimental work from multiple laboratories, which
indicate that IRS proteins, in addition to their canonical function as cytosolic signal
transduction molecules, can be shuttled to the nucleus, and that nuclear presence of IRS-1,
may contribute to the process of malignant transformation. As illustrated in Fig.5, several
nuclear proteins have been implicated in the process of IRS-1 translocation. They include:
JC virus T-antigen; SV40 T-antigen; v-Src; Estrogen receptor α; and Estrogen receptor β. A
different mechanism has been also proposed, which involves nuclear acidic protein,
nucleolin, ant its’ binding to the PH domain of IRS-1 and IRS-2. Also within the PH-domain
of IRS-1 there are two putative nuclear localization signals (NLS), which possibly
contributed to nuclear translocation of IRS-1 in cells stimulated with IGF-I. Finally, nuclear
translocation of IRS-3 was mediated by importin-β, which has been shown binding to the
unique sequence found exclusively on the PTB domain of IRS-3.
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In the nucleus, IRS-1 affects several basic control mechanisms, which when dysregulated,
may support malignant transformation (Fig.5). In particular, nuclear IRS-1 was found to
inhibited homologous recombination directed DNA repair (HRR) via its direct binding with
Rad51, which resulted in the accumulation of spontaneous mutations. Another potential
cancer related function of nuclear IRS-1 is its’ association with UBF1, which activated
ribosomal RNA biosynthesis, stimulated overall protein synthesis, and contributed to the
increase in cell size during G1 – G2/M progression. Also by modulating gene transcription,
nuclear IRS-1 stimulated cyclin D1 and c-myc promoter activities, in this case however
nuclear IRS-1 was found in complex with β-catenin. Collectively, presented data indicate
that nuclear IRS-1, by limiting DNA repair fidelity and by forcing cell growth and DNA
replication, could link this signaling molecule to malignant transformation.
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Figure 1. Schematic diagram of mouse IRS-1 protein
There are two major functional domains within the N-terminus portion of IRS-1: pleckstrin
homology domain (PH), spanning between amino acids 0–155, and phosphotyrozine binding
domain (PTB) located between amino acids 155–302. Black arrows indicate exact binding
sites for PI3 kinase, Grab2 and SHP2 at indicated tyrosine residues (Y). Functionally
relevant serine residues (S) and their corresponding amino acid positions are also indicated.
Blue arrows indicate putative binding regions for proteins, which are suspected to
translocate IRS-1 to the nucleus, including nucleolin, polyomavirus T-antigens (JCV and
SV40), estrogen receptor α (ERα) and estrogen receptor β (ERβ). Other indicated sites
include the binding between IRS-1 and DNA repair protein, Rad51, and positions of putative
nuclear localization signals (NLS).
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Figure 2. The IGF-IR-IRS-1-JCV T-antigen signaling interplay: effects on cell proliferation cell
survival and DNA repair fidelity
Here we propose a sequence of events in which ligand activated IGF-IR triggers multiple
signaling responses leading to synchronized activation of cell proliferation (SHC or IRS-1-
mediated activation of Ras-MAP kinase pathways); protection from apoptosis (IRS-1
induced activation of Akt); and DNA repair by homologous recombination. The IGF-I-
mediated phosphorylation of IRS-1 seems to play a critical role in this model. In the absence
of IGF-I a fraction of hypo-phosphorylated IRS-1 accumulates in the perinuclear region in
complex with Rad51 (Trojanek et al., 2003). Following IGF-I stimulation, activated IGF-IR
phosphorylates IRS-1 on multiple tyrosine residues, decreasing the affinity of IRS-1 to
Rad51, and engages IRS-1 in multiple signaling events supporting IGF-I-induced cell
proliferation and cell survival (Reiss et al., 1998; Trojanek et al., 2006b; Trojanek et al.,
2003). If at the same time DNA double strands (DSBs) are formed (either naturally or by
genotoxic treatment), the cell can repair them in a faithful manner, by Rad51-supported
homologous recombination directed DNA repair (HRR), or less faithfully, by non-
homologous end joining (NHEJ). In the presence of JCV T-antigen cells can proliferation
because of p53, pRb inactivation. In parallel, JCV T-antigen translocates IRS-1 to the
nucleus (Lassak et al., 2002), thus creating a condition in which IRS-1 can bind Rad51 in the
subcellular compartment in which Rad51 is expected to support HRR. Therefore, if JCV T-
antigen expressing cells experience extensive DNA damage, the resulting DNA double
strand breaks (DSBs) can either trigger apoptosis, or if NHEJ will compensate for the
impaired HRR, spontaneous mutations can accumulate in the surviving cells. These
mutations when accumulate may provide the cells with growth and survival advantage,
which could result in the selection of clone/s initiating tumor development and progression.
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Figure 3. Nuclear translocation of IRS-1 in Medulloblastomas
Immunohistochemistry for the IGF-IR/IR docking molecule, IRS-1, shows a prominent
nuclear localization in clinical samples of medulloblastomas that express the JCV early
oncoprotein, large T-antigen (upper panels). In T-antigen negative samples, IRS-1 remains
in the cytoplasm of neoplastic cells (middle panels). In some tumors that lack T-antigen
expression IRS-1 is still located to the nucleus in association with Estrogen Receptor beta
(lower panels). Original magnification for all panels 600x.
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Figure 4. Nuclear translocation of IRS-1 in Glioblastomas
In a similar patter of expression, IRS-1 is detected by immunohistochemistry in the
cytoplasm and nuclei of neoplastic cells in cases of Glioblastoma multiforme that are
positive for JCV T-Antigen (upper panels). However, tumors that lack T-antigen
demonstrate exclusive cytoplasmic IRS-1 (middle panels). Finally, IRS-1 can be
translocated to the nucleus in the presence of Estrogen Receptor beta (lower panels). All
panels original magnification 600x.
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Figure 5.
Schematic illustration summarizing mechanisms involved in IRS-1 nuclear translocation and
basic cellular processes affected by nuclear IRS-1.
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