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Abstract
Current label fusion methods enhance multi-atlas segmentation by locally weighting the
contribution of the atlases according to their similarity to the target volume after registration.
However, these methods cannot handle voxel intensity inconsistencies between the atlases and the
target image, which limits their application across modalities or even across MRI datasets due to
differences in image contrast. Here we present a generative model for multi-atlas image
segmentation, which does not rely on the intensity of the training images. Instead, we exploit the
consistency of voxel intensities within regions in the target volume and their relation to the
propagated labels. This is formulated in a probabilistic framework, where the most likely
segmentation is obtained with variational expectation maximization (EM). The approach is
demonstrated in an experiment where T1-weighted MRI atlases are used to segment proton-
density (PD) weighted brain MRI scans, a scenario in which traditional weighting schemes cannot
be used. Our method significantly improves the results provided by majority voting and STAPLE.

Index Terms
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1. INTRODUCTION
In traditional atlas-based segmentation[1, 2], a template volume (henceforth “atlas”) is
registered (i.e. spatially aligned) to a target scan. The resulting deformation is then used to
propagate the associated manual labels (either deterministic or probabilistic) and obtain the
final segmentation. The main disadvantage of this technique is that a single deformation is
limited in representing the whole population of potential target cases. This issue can be
addressed by registering multiple atlases to the target volume. The question is then how to
combine the “opinions” of different atlases. This problem is known as label fusion.

Majority voting[3], in which the mode of the propagated labels is selected as the final
segmentation for each voxel, is widely used in medical imaging because it is straightforward
to implement and, thanks to the maturity of registration methods, often yields good results.
However, majority voting might not be able to correctly segment features that are present
but underrepresented in the training dataset. STAPLE[4] weighs the propagated labels
according to an estimated accuracy level, while incorporating consistency constraints.
Neither majority voting nor STAPLE consider image intensities after registration. Higher
segmentation accuracy can be achieved by considering the intensity of the images in label
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fusion, giving higher weights to the atlases which are more similar to the target volume,
locally or globally[5, 6].

Weighted label fusion relies on the consistency of voxel intensities across scans. This
represents a limitation in MRI, in which intensities depend heavily on the pulse sequence,
acquisition settings and hardware. Mutual information has successfully been used for
registration in such scenarios, but its inherent non-locality limits its application for local
label fusion. Intensity normalization can ameliorate this problem, but only if the atlases and
the target image are not acquired with different MRI contrast (e.g. T1- vs. T2-weighted).

Here we present a generative model for multi-atlas segmentation, which exploits the
intensities of the target volumes by modeling their consistency within the regions to be
segmented and their relation to the propagated labels. The intensities of the deformed
templates are not considered in label fusion, so the set of atlases can include different
modalities. As in [6], the registrations are assumed to be known (i.e. regarded as
preprocessing), and we define a latent field that assigns each target voxel to a training
volume. We assume that the image intensities for each label are samples from a Gaussian
mixture model (GMM), modulated by a low-frequency bias field. Segmentation is
formulated as finding the most likely labels in this framework. The algorithm is related to
classical single atlas models[7], with two major differences: 1. we use a subject-specific
prior probability for the labels computed in target space (as opposed to atlas space); and 2.
the probabilistic model for the labels has a different structure.

2. METHODS
2.1. Generative Model

The generative model is depicted in Figure 1, and the corresponding equations are listed in
Table 1. {Ln}, n = 1,…, N, represents the propagated labels from N available registered
atlases. For a given voxel x ∈ Ω (where Ω is the image domain), L(x) is the underlying
segmentation label we are trying to estimate, which takes discrete values between 1 and .
L(x) is generated by the M(x)th atlas through a logOdds model[8] (Equation 2 in Table 1).

The slope ρ of the model is assumed to be fixed and known.  represents the signed
distance transform for atlas n and label l.

The indices M(x) are not independent across voxels, but distributed according to a Markov
Random Field (MRF) with smoothness parameter β (see Equation 1 in Table 1, where δ
represents Kronecker’s delta and  is the 6-neighborhood of voxel x). Now, given the labels
L(x), the “true”, underlying intensities I* (x) are assumed to be samples of a GMM with 

components and parameters  (Equation 3 in Table 1). These
underlying intensities are corrupted by a multiplicative bias field to yield the observed
intensities I(x) (Equation 4 in the table, where {ψp(x)} is a set of spatially smooth basis
functions). We use Θ to summarize all these image intensity parameters i.e., Θ = {{Γl},
{cp}}. The bias field basis functions {ψp(x)}, as well as the parameters β and { } are
assumed to be fixed and known. Note that the bias field is explicitly modeled as an
exponential, which guarantees that it is greater than zero.

Some popular segmentation frameworks are particular cases of the proposed method. If β =
0, the model becomes very similar to a classical atlas-based segmentation method, e.g. [7],
with the difference that here the label priors are built in subject space. Also, if β = ∞, the
labels are generated only by the atlas that is closest to the target volume, which is close to

best template selection. Another particular case of interest would be β = 0, , ∀l, k, in
which case the algorithm simplifies to majority voting.
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2.2. Segmentation
We formulate the segmentation as an optimization problem:

where we assume p(Θ) ∝ 1. We solve this problem using coordinate ascent, iteratively
optimizing for L and Θ until convergence (often after 5–10 iterations).

2.2.1. Optimizing Θ for fixed L—The problem simplifies to Θ̂ = arg maxΘ log p(I|L, Θ).
Again, we use coordinate ascent within this step, alternatively optimizing for the parameters
of the GMMs {Γl} and the bias field {cp}. Updating {Γl} is closed-form and amounts to
computing sample means and variances (if  = 1) or a simple 1-D EM algorithm if  > 1
(we use  = 1 for all labels except the background). To update {cp}, setting the derivatives
equal to zero leads to a nonlinear system of equations that has no closed-form solution.
Instead we use a numerical gradient ascent scheme with line search.

2.2.2. Optimizing L for fixed Θ—Here the problem is:

which is intractable because M(x) includes interdependencies between neighboring voxels.
Instead, we use variational EM to maximize a lower bound. Given that the Kullback- Leibler
divergence KL(A,B) ≥ 0, we define:

where H(A) represents the entropy and q(M) is an arbitrary distribution on M. To maximize
J, we use the standard computational trick that q is constrained to have the structure: q(M) =
Πx∈Ω qx(M(x)). Then, variational EM maximizes J by iterating between an expectation (E)
step which updates q(M) and a maximization (M) step which optimizes L.

E step: in the E step, we look for the q(M) which maximizes J, which happens when the KL
divergence between q(M) and the posterior p(M|I,Θ, {Ln}, L) is minimized:

where p(L, I|Θ, {Ln}) is omitted because it does not depend on M or q. Now, given the
structure of q(M) and also:
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it can be shown that the problem becomes:

with the constraint that qx(m) lies on the probability simplex. Writing the Lagrangian, taking
derivatives with respect to qx and setting them to zero yields:

where λ(x) is the multiplier that ensures Σm qx(m) = 1.

The equation can be solved with fixed point iterations.

M step: the goal of the M step is to maximize J with respect to L assuming q(M) constant.
Since we can discard the term H(q), and because of the structure of q(M), the maximization
can be carried out voxel by voxel using exhaustive search over labels:

As in most label fusion methods, the resulting label map is not guaranteed to preserve the
topology of the different structures. However, this seldom happens in practice and can
always be corrected with post-processing.

3. EXPERIMENTS AND RESULTS
3.1. Data

Two datasets (training and test) were used in this study. The test dataset consists of FLASH
PD-weighted brain scans from eight healthy subjects (1.5T, TR=20ms, TE=min, α = 3°, 1
mm. isotropic voxels). A total of 36 structures were manually labeled using the protocol
described in [9]. The human raters took advantage of higher contrast, co-registered T1-
weighted data that we did not use in this study. As in [6], we only used a representative
subset of the 36 structures for evaluation in this study: white matter (WM), cerebral cortex
(CT), lateral ventricle (LV), hippocampus (HP), thalamus (TH), caudate (CA), putamen
(PU), pallidum (PA), and amygdala (AM).

The training dataset consists of 39 T1-weighted brain MRI scans (MP-RAGE, 1.5T,
TR=9.7ms, TE=4.ms, TI=20ms, α = 10°, 1 mm. isotropic resolution) and corresponding
manual delineations of the same brain structures (same labeling protocol). We note that
these are the same subjects that were used to construct the probabilistic segmentation atlas in
FreeSurfer[10]. These scans were bias-field corrected and skull-stripped using FreeSurfer,
and then ITK (www.itk.org) was used to register them to the PD-weighted data with a
nonrigid transform (a grid of control points and b-splines) and mutual information as metric.

3.2. Experimental setup
We segmented the eight target volumes using majority voting, STAPLE, and the proposed
method with β = 0 (local fusion) and β = 0.75, which represents the general case. We
arbitrarily chose this value for β to match that from Sabuncu et al[6]. The same motivation
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was used to set ρ = 1. Three mixture components were used for the background class, and a
single Gaussian for all other classes. The basis functions {ψp} were set to a third order
polynomial, which in 3D yields 20 coefficients. We set the number of atlases to N = 15; the
presented results are an average over five runs with different, randomly selected atlases from
the pool of 38. The accuracy of the segmentation is evaluated using Dice scores
( ), and statistical significance is assessed with one-tailed, paired t-tests.

3.3. Results
Figure 2 shows the Dice scores for the different methods and structures of interest, whereas
Table 2 shows the averages across all structures. STAPLE and majority voting provide
comparable results. The proposed method (for β = 0.75) significantly outperforms STAPLE
for all brain structures except for the putamen. Compared with majority voting, the scores
when β = 0.75 are significantly higher for WM, CT, LV, HP and CA, though not
significantly different for TH, PU, PA and AM. The hippocampus, pallidum and especially
the amygdala seem particularly difficult to segment in the PD-weighted dataset, since there
is very little image contrast around them. When we compare the results from our method for
β = 0 and β = 0.75, the difference is not large in absolute terms (approximately 0.6%), but it
is statistically very significant; the higher β seems to fix some consistent mistakes that are
made when the voxels are considered independently. Finally, Figure 3 shows a sample
coronal slice of a target scan, illustrating the segmentations given by majority voting and the
proposed method, as well as the estimated bias field.

4. CONCLUSION
A method to perform inter-modality label fusion has been presented in this paper. The
method exploits the intensities of the target image and, despite the low number of test
subjects, achieves statistical significance when compared with majority voting and STAPLE
in a challeging PD-weighted dataset. The MRF prior has a positive effect on the peformance
of the method, significantly improving the Dice scores. We hypothesize that, as the number
of available atlases grows, increasing β would be beneficial. As N → ∞, there would
always be a training volume (almost) identical to the target case, and β = ∞ would provide a
perfect segmentation.

The proposed inference method for the model can be improved by marginalizing over the
labels when optimizing for the parameters, at the cost of introducing another level of
complexity in the model. This will be addressed in future work, which will also include
incorporating the registration in the optimization process, sweeping the parameters to assess
their impact on segmentation accuracy, explicitly optimizing for ρ and testing the model on
T1 and multi-spectral data.
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Fig. 1.
Proposed graphical model. Plates indicate replication, shaded variables are observed.

Iglesias et al. Page 7

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2013 April 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Box plot of Dice scores for majority voting (black), STAPLE (red), β = 0 (green) and β =
0.75 (blue). The box has lines at the three quartile values. Whiskers extend to the most
extreme values within 1.5 times the interquartile range from the ends of the box. Samples
beyond those points are marked with circles. The purple S denotes that the scores are
significantly lower than for our method at p=0.025.
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Fig. 3.
Coronal slice of a test subject. a) Original. b) Ground truth segmentation. c) Majority voting.
d) Proposed method (β = 0.75). e) Bias field estimated by the proposed method (green=1.0,
red=1.25). f) Bias-field corrected.
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Table 1

Equations corresponding to the model in Figure 1.

1

2

3

4
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Table 2

Average Dice score across all structures for each method. The p-values correspond to a paired t-test which
assesses whether the proposed method (at β = 0.75) produces a higher Dice score than each of the other
algorithms.

Method Maj.Vot. STAPLE β = 0 β = 0.75

Dice 0.766 0.762 0.796 0.802

p 2e-13 9e-22 3e-8 N/A
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