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Abstract

Introduction The treatment of spinal deformities has

rapidly changed during the past decade. The advent of new

surgical techniques, particularly thoracic pedicle screws

and spinal osteotomies, allow more aggressive deformity

correction, and require an increased focus on safety.

Materials and methods Review of the navigation systems

and neuromonitoring techniques currently available.

Conclusion Navigation systems today are where intra-

operative neuromonitoring was 20 years ago: new, under

investigation, not widely accepted, with concerns for cost,

safety and efficiency. Navigation enhances the accuracy of

pedicle screws placement in deformed spines, reducing the

rate of misplaced screws and potential complications. With

further use and investigation, navigation, like neuromoni-

toring, will soon become standard at major spine centers

throughout the world.

Keywords Scoliosis � Spine surgery � Navigation �
O-arm � Neuromonitoring

Introduction

Over the past two decades, rapid advances in instrumen-

tation and techniques have given spine surgeons the tools

to achieve correction of spinal deformities to a far greater

extent than was possible in the past. Pedicle screw fixation,

vertebral column resection, direct vertebral rotation, and a

host of sophisticated implants and correction tools have

been mastered at many centers. Increasingly, attention is

now turned towards making these powerful techniques and

implants are safer. Multimodal neurologic monitoring was

in its infancy 20 years ago, but has now been standardized,

and been shown to be reliable, safe, and effective. Image

guided navigation holds similar great promise for

improving accuracy of pedicle screw placement, but nav-

igation technology is in its infancy, where neurologic

monitoring was in 1990. This manuscript will highlight

recent advances in image guided navigation and neurologic

monitoring.

Pedicle screw fixation

Thoracic pedicle screws (TPS) have been used for the

treatment of idiopathic scoliosis for more than 15 years.

The first report by Suk et al. started a new era in the

treatment of spinal deformities. The advantages of TPS

were widely reported in the literature and include: better

multidimensional correction compared to hooks, shorter

operative time, less blood loss and implant dislodgement

rates, improved postoperative pulmonary function, and

shorter fusions. The techniques also obviate the need for a

combined anterior approach or bracing after surgery,

including curves measuring up to 100� [1–9].

As the evidence accumulated that pedicle screws aided a

powerful spine deformity correction, an increase in com-

plications was reported, with neurologic deficits (0.69 to

0.84 %) [2, 10, 11], dural tears (0.1 to 12.1 %) [2, 12, 13],

pleural effusion [12], pedicle fractures (0.24 to 13 %)
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[2, 12] and vascular injury [14–17], all related to misplaced

pedicle screws.

Studies published to date suggest that pedicle screws are

more commonly misplaced in adults compared to children,

[7, 18]. This may seem counterintuitive: however, imma-

ture pedicles have more plasticity, supporting pedicle

screws of 115 % of its diameter without decreasing the

pullout strength or increasing the risk of neurologic inju-

ries, unlike adult pedicles, for which the best screw

diameter is estimated to be about 65 to 80 % of the pedicle

diameter [19, 20]. Studies show that even experienced

surgeons have misplaced screws and that the rate of medial

wall breaches decrease over time [21–25]. Other intraop-

erative methods to assess pedicle screw position were

attempted such as plain radiography, pedicle wall palpa-

tion, intraoperative fluoroscopy, laminotomy with direct

visualization of the pedicle, but have not shown any ben-

efit. Instead, intraoperative fluoroscopy has shown to

increase surgical time, the risk of contamination and radi-

ation exposure for the surgeon and the patient [12].

Navigation system

Over the last two decades, the advent of pedicle screw

fixation and corrective osteotomies have given pediatric

spinal surgeons the tools necessary to attain far superior

correction of spinal deformity. With these advances have

also come many increased risks. Several studies have shown

a relatively high rate of misplaced pedicle screws. Lehman

and Lenke’s study [25] showed that 107 of 1,023 screws

(10.5 %) had ‘‘significant medial or lateral pedicle wall

violations’’. Smorgick et al. [26] found 12.5 % of screws

were misplaced, and two were on the aorta. Sarlak et al. [27]

showed a 10 % rate of thoracic screws misplaced. In their

presentation at the Scoliosis Research Society in 2011,

Amaral et al. [28] presented even more concerning findings.

They used postoperative CT (considered the gold standard

in identifying pedicle screw breeches) to evaluate the

postoperative position of the 2,229 pedicle screws they

placed in 106 patients. They found that 25 % of their

patients had pedicle screws that put viscera at risk. They

found 13 screws in 6 patients were impinging or distorting

the aortic wall, and screws were also impinging on the

trachea and esophagus and diaphragm. This study is the

latest to show that although many surgeons have completed

the learning curve for placing pedicle screws in the

deformed pediatric spine, misplaced screws are still putting

patients at risk. It remains unclear whether these screws

impinging viscera will cause a problem in the future.

Image guided navigation allows the most accurate pos-

sible placement of pedicle screws in the deformed pedicles

and vertebral bodies of the young spine. The technology is

in its infancy, providing several concerns and obstacles to

use. First and foremost, the technology is expensive.

Companies that have pioneered image guided navigation

systems understandably are commanding a premium for

the technology, putting these devices out of reach for many

healthcare systems and hospitals. Secondly, surgeons who

been placing implants using a freehand technique, or

freehand with fluoroscopic or radiographic confirmation,

report that they have not had problems with paralysis or

aortic rupture, and are concerned that the technique will

slow the pace of their surgery. Finally, any technique that

employs a CT scan has radiation concerns. Surgeons and

health systems are making every effort to reduce the

radiation that their patients receive; checking screw

placement with CT scans is one more source of radiation.

We have extensive experience using a CT-based image

guided navigation system (O arm, Medtronic Corporation).

After an initial learning curve of 5 to 10 cases, we have

found that this image guided navigation system is extre-

mely accurate, reproducible, and efficient to use. In 2011,

Ughwanogho et al. compared navigated and non-navigated

pedicle screws using the Oarm system. They found that

4.9 % of the non-navigated screws were removed intra-

operatively whereas only 0.6 % of the navigated screws

had to be removed (p = 0.003). They also reported that a

significant medial breach, defined as [50 % of the screw

diameter, was 7.6 times more likely to occur wthout nav-

igation (95 % CI 2.3–25.1 %; p \ 0.001) [29, 30]. Image

guidance leads to more accurate placement of the pedicle

screws, fewer dangerous screws, and less screw removal.

Navigation technique

After standard spine exposure, we drape the O arm and use

the fluoroscopic feature to confirm levels. We then attach

one or two of the arrays to the spinous processes (one mid-

spine, at the apex the deformity, and one at the most

proximal spinous process that is exposed), and obtain one

or two CT scans (Fig. 1). The radiation from these scans

can be markedly diminished by using the lowest possible

settings, thus limiting to the radiation to a fraction of a

normal diagnostic CT scan. Our preliminary data published

in 2011 in spine showed that intra-operative thoracic CT

scan with the O-arm exposes an adolescent patient to

2.86 mSv of radiation, which is approximately the equiv-

alent of 20–40 fluoroscopy images. A posterior spinal

fusion for idiopathic scoliosis with the freehand technique

utilizes from 4 to 6 C-arm images per screw in average,

resulting in a total of 40 to 70 images for all thoracic

screws in each case. During the CT scan the only the O arm

technician stays in the radiation zone—and he/she always

wears protection gears. The entire staff stays protect behind
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a window shield. We then use anatomic landmarks to

determine our starting point, confirming the axial trajectory

with the registered probe (Figs. 2 and 3). Although most

systems allow the surgeon to navigate with all tools, we do

the awl and tapping and screw placement freehand (Fig. 4).

We then use the registered probe in line with the shank of

the screw to confirm anatomic screw placement. Image

guided navigation allows a very precise selection of indi-

vidual screw diameter and length. After using this tech-

nique to play screws in thousands of scoliotic vertebra, we

have learned the dramatic differences in pedicle diameter,

shape and length, as well is the vertebral body deformities

Fig. 1 a A pair of 3D arrays are attached to the spinous process. The

most caudal rays should be placed at or near the apical vertebra, so

that the infrared signal from the head of the OR table is not blocked

by the most cephalad array. The most cephalad array is placed on the

most cephalad spinous process exposed. b After sterile draping the

O-arm�, a low radiation CT scan of the intended instrumented

vertebrae is performed. Typically, between five and seven vertebrae

can be captured successfully on the CT, depending on the size of the

patient. Since most spine fusions for scoliosis include between 5 to 14

vertebrae, 2 CT scans are typically required. The information is then

fed into the StealthStation�. With experience, the scanning and image

preparation typically takes 5–10 minutes

Fig. 2 a Prior to navigating, the surgeon registers the probe by

touching the previously located arrays. There is no need to register on

anatomic landmarks as in older navigation systems. b The identifi-

cation and preparation of the pedicle screw entry point is

accomplished using a standard free hand technique. We place screws

caudad to cephalad. After preparing the pedicle entry point, we

confirm axial trajectory with the probe
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that are commonly present. Because of the patient to

patient and even vertebra to vertebral variation, image

guidance offers a great margin of safety for pediatric spine

deformity. After all the screws are placed, we obtain a few

fluoroscopic images to confirm the cascade and accurate

screw placement. Although some surgeons obtain a CT

scan with the O arm after screw placement, or even again

after correction, we do not recommend this approach. The

additional CT scans with the screws in place are difficult to

interpret (due to scatter) and add excessive radiation. Early

in our experience, we found such great consistency

between the registered probe and the post-implant CT, that

we abandoned the latter.

Image guided navigation is an extremely valuable safety

tool in pediatric spine deformity, but as a technology, it is

in its infancy. Further advancement is necessary to make

the machines easier to use and less expensive. Considerable

attention must be directed towards minimizing the amount

Fig. 3 The system provides real-time information about the precise

length and diameter of the screw that will best fill the pedicle—a

crucial feature for instrumenting the variably deformed scoliotic

vertebrae. a A sagittal plane image, confirming the optimal cephalad–

caudad starting point and sagittal trajectory. b An axial image,

confirming the optimal medial–lateral starting point and the largest

diameter screw that fits in this pedicle

Fig. 4 After establishing optimal trajectory, we proceed with the free

hand technique for pedicle screw placement. a Freehand awl,

following the trajectory predicted by the navigation system. b The

navigation probe is then placed in the awl track, confirming proper

trajectory. c After tapping, manual palpation with the ball-tipped

probe assures there is no breech. d The screw is then placed. e The

final screw position can be confirmed by placing the navigation probe

in line with the shank of the screw. The actual screw position that will

be projected forward into the vertebral body, as shown on this image.

A few fluoroscopic images are then taken of all the screws to confirm

proper position and a smooth cascade through the deformity
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of radiation. Image guided navigation is currently where

spinal cord monitoring was 15 years ago, and it is not

surprising that the surgeon responses are the same. Skeptics

are concerned that the safety afforded by this new tech-

nology is not worth the inconvenience, and that there may

be safety concerns. Just as neural monitoring has advanced

and become standard, image guided navigation will likely

follow the same path over the next decade.

Intraoperative neuromonitoring

For many years, the wake-up test was a standard of care to

assess spinal cord integrity following spine deformity sur-

gery. The wake-up test was sensitive but not specific, as it

did not allow the surgeon to determine the exact cause of the

neurologic deficit. In addition, the wake-up test was per-

formed sometime after potential neurologic injury. The

wake-up test required great cooperation between the anes-

thesia and surgical teams, and even at its best, could be a

harrowing intraoperative experience with a mobile patient

and wildly fluctuating blood pressures. For these reasons

and others, there is always been great interest in real time,

accurate monitoring of the spinal cord and nerve roots.

Recording cerebral evoked potentials through the human

scalp was first described by Dawson in 1947 [31] and

increasing interest arouse since then for studying estab-

lished spinal cord injuries [32]. Somatosensory evoked

potentials (SEP) was introduced in the 1970’s for func-

tional neurophysiological assessment during spine and

spinal cord surgery have improved rapidly [32, 33]. The

advent of corticospinal motor pathway monitoring through

the use of motor evoked potentials (MEPs) elicited by

transcranial electrical stimulation added more information

for the surgeon. Such achievements during the last 15 years

turned neuromonitoring into the standard of care to assess

proper hardware position in the spine [34–40] and also

making more aggressive corrections in spinal deformities

possible [41–46].

Different protocols might combine evoked potentials

(SEPs and MEPs) [33, 47–51], transcranial electric motor

evoked potentials (tcMEP) [52] and triggered or free-run-

ning electromyography [35, 36, 53, 54] and it is crucial to

understand their differences to prompt proper communi-

cation between surgeons, anesthetists and the neuromoni-

toring team.

Selective modalities include SEPs and MEPs that

monitor respectively the dorsal somatosensory and the

corticospinal motor systems [55]. Somatosensory evoked

potentials assess the integrity of sensory pathways that

traverse the spinal cord in areas at risk and can be recorded

repeatedly and reproducibly. The stimulation of peripheral

nerves (typically the posterior tibial nerve or the median

nerve) is recorded at multiple sites depending on the level

of surgery [56]. The importance of SEPs was highlighted

by Dawson in 1991 who reported a decrease in the rate of

intraoperative injury from 4 % pre-SEP to less than 0.55 %

using SEPs [57].

Although the significant contribution to safety, a large

multi-center survey by the Scoliosis Research Society

showed a 0.127 % false-negative rate for SEPs [58] and its

pathophysiology may be related to vascular injury to the

spinal cord. Because SEP checks primarily the conduction

of the dorsal columns and the blood supply differs from

that of the anterior two-thirds of the spinal cord, which

derives from the anterior spinal artery, loss of adequate

blood flow through the anterior spinal artery would put the

anterior portion of the spinal cord at risk but would not

trigger SEP changes. Motor evoked potentials (MEPs) help

identifying the SEPs false-negatives by assessing the

descending motor pathways that run primarily in the lateral

columns of the spinal cord. Stimulating these pathways

intraoperatively supplements the SEPs by checking the

blood supply in the anterior portion of the spinal cord [56].

Different techniques for MEPs eliciting exist but the most

commonly used is the transcranial electrical stimulation

with recordings made from subcutaneous or intramuscular

needle electrodes placed in multiple muscles such as the

tibialis anterior and the abductor hallucis longis for the

lower extremities and the intrinsic muscles for the upper

extremities [56, 59, 60]. MEPs require less than a minute to

give a response allowing it to be used multiple times and

without interrupting the surgical flow during critical parts

of the procedure. MEPs disadvantages include avoidance

of neuromuscular blockade, movements of the limbs and

axial muscles during stimulations, forceful contractions of

the masseter muscles with possible tongue laceration,

mandible and tooth fractures. Although the very low

complication rates, MEPs are contraindicated in patients

with epilepsy, cortical lesions, skull defects, increased

intracranial pressure, intracranial devices, cardiac pace-

makers or other pumps [56].

Multimodal intraoperative monitoring (MIOM) combine

different neuromonitoring techniques increasing its sensi-

tivity and specificity [34, 57, 61–63]. In 2007, after ana-

lyzing 1.017 MIOM using total intravenous anesthesia

(TIVA), Sutter et al. [64] reported 89 % of sensitivity

(95 % CI 79.3–94.9 %) and 99 % of specificity (95 % CI

98.2–99.6 %). The development and research towards the

safety enhancement is a major concern and is supported by

several Societies such as the Spine Society of Europe

(SSE), the Scoliosis Research Society (SRS) and the

International Society of Intraoperative Neurophysiology

(ISIN) and MIOM is strongly recommended as a routine

procedure in spine centers dealing with severe spinal dis-

orders [54, 55].
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Summary

Powerful spine deformity techniques and implants require

the surgeon to take every possible safety precaution.

Neurologic monitoring has become a standard, allowing

real-time alerts when the spinal cord or nerve roots are at

risk. Although image guided navigation is relatively new

and requires further enhancements and study, it offers very

important safety features that will likely become standard

at major spine centers throughout the world. Advances in

image guided navigation should focus on reducing radia-

tion and cost, and improving ease-of-use. The generation of

pediatric spine surgeons who are being trained now will

demand the widespread availability of image guided nav-

igation, just as the previous generation demanded wide-

spread availability of high-quality neurologic monitoring.

Conflict of interest None.
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