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Transplantation of bone marrow-derived mesenchymal 
stromal cells (MSCs) is an emerging treatment for heart 
failure based on their secretion-mediated “paracrine 
effects”. Feasibility of the scaffoldless cell sheet technique 
to enhance the outcome of cell transplantation has been 
reported using other cell types, though the mechanism 
underpinning the enhancement remains uncertain. We 
here investigated the role of this innovative technique to 
amplify the effects of MSC transplantation with a focus 
on the underlying factors. After coronary artery ligation 
in rats, syngeneic MSCs were grafted by either epicar-
dial placement of MSC sheets generated using temper-
ature-responsive dishes or intramyocardial (IM) injection. 
Markedly increased initial retention boosted the pres-
ence of donor MSCs persistently after MSC sheet place-
ment although the donor survival was not improved. 
Most of the MSCs grafted by the cell sheet technique 
remained resided on the epicardial surface, but the epi-
cardium quickly regressed and new vessels sprouted 
into the sheets, assuring the permeation of paracrine 
mediators from MSCs into the host myocardium. In fact, 
there was augmented upregulation of various paracrine 
effect-related genes and signaling pathways in the early 
phase after MSC sheet therapy. Correspondingly, more 
extensive paracrine effects and resultant cardiac function 
recovery were achieved by MSC sheet therapy. Further 
development of this approach towards clinical application 
is encouraged.
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Introduction
Recent research has shown that transplantation of bone marrow-
derived mesenchymal stromal cells (MSCs) is a promising new 
approach for the treatment of heart failure.1–4 Although differen-
tiation of MSCs to cardiomyocytes does not occur to a significant 
extent in vivo,3,4 the ability of MSCs to secrete beneficial growth fac-
tors, cytokines, and chemokines is thought to be substantial enough 
to achieve therapeutic effects by restoring damaged cardiac tissues 

(known as the paracrine effect).1,2,5 There is also evidence that MSCs 
stimulate endogenous progenitor/stem cells towards myocardial 
regeneration in a paracrine manner.6,7 Based on these findings, 
many clinical trials of MSC transplantation are ongoing.8

Intramyocardial (IM), intracoronary, or intravenous injection of 
MSC suspensions is currently used for MSC delivery in the trials, 
however, these may be suboptimal in achieving the maximum effect 
from MSC-based therapy. Most importantly, these methods result in 
poor retention and impeded survival of donor cells, leading to poor 
donor cell engraftment and consequently to limited therapeutic 
effects.2,9–11 Usually, enzymatic digestion (i.e., trypsinization) is used 
for harvesting MSCs from culture dishes, but this may cause damage 
to the cells.12,13 In addition, IM injection causes mechanical damage 
and inflammation, which will also hinder donor cell survival.9–11 On 
the other hand, intracoronary injection of MSCs, having a relatively 
large cell size, has a risk of coronary embolism,14 particularly when 
injected into diseased and narrowed coronary arteries.

Okano and his colleagues have recently developed a novel bio-
engineering technology to generate scaffold-free “cell sheets” using 
unique culture dishes, the surface of which is coated with a tem-
perature-responsive polymer (poly-N-isopropylacrylamide).12,13 
At 37 °C the dish surface is hydrophobic, and cells can adhere and 
grow. However, when the temperature is dropped to 25 °C, the poly-
mer becomes hydrophilic and swollen, causing the cells to detach 
from the dish as a free cell sheet. In contrast to trypsinization, cell 
surface proteins, cell–cell junctions, and the underpinning extracel-
lular matrix are well preserved in this method.12,13 As all polymer 
remains on the culture dishes throughout the process for cell sheet 
generation, the produced cell sheets are free of artificial scaffolds.

It has been reported that epicardial placement of cell sheets 
formed using various cell types improved cardiac function of the 
damaged heart.13,15–18 However, even though bone marrow-de-
rived MSCs are one of the most promising donors for cell therapy, 
the efficiency of cell sheets formed of this cell type has not been 
reported. Although adipose tissue-derived MSCs have been previ-
ously examined,15,17 the fundamental biological features of these 
cell types, such as differentiation, viability, proliferation, and stress 
response, are considerably different.19 Furthermore, whereas the 
augmented therapeutic effects by the cell sheet technique have been 
suggested when compared with other cell delivery methods,16,20 the 
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machinery underlying such superiority of this approach remains 
ill-identified. There were preliminary data showing that the cell 
sheet technique achieved greater donor cell presence,20 but these 
were not convincing enough to conclude whether this is because 
of increased initial retention, survival, or both of donor cells. In 
addition, regarding the paracrine effect, there is a concern that 
permeation of secreted factors from epicardially localized MSCs 
into the host myocardium might be blocked by the existing epi-
cardium. Thus, we investigated the precise role of the cell sheet 
technique to augment the effects of MSC transplantation with 
particular focus on donor cell dynamics and paracrine effects.

Results
Augmented improvement of postinfarction cardiac 
function by MSC sheet therapy
At day 28 post-treatment in a rat coronary artery ligation model, 
echocardiography showed that left ventricular ejection fraction 
post-myocardial infarction (MI) was significantly improved in 
the IM injection of MSC suspensions (IM group) compared with 
the Control (sham-treatment) group, and more importantly this 
improvement was further enhanced by the epicardial placement of 
an MSC sheet (Sheet group) (Table 1). In addition, post-treatment 
left ventricular end-systolic dimensions in the Sheet group were 
smaller than those in the Control and IM groups. Consistently, 
catheterization showed improved cardiac function (increased 
maximum and minimum dP/dt, and contractility index) in the 
Sheet group compared with the other groups (Table  1). These 
results confirmed that the use of the cell sheet technique improved 
the therapeutic effects of transplantation of bone marrow-derived 
MSCs for the treatment of MI in comparison with IM injection.

Improved initial retention, but not survival, of donor 
cells by MSC sheet therapy
To elucidate the donor cell dynamics that should be related to the 
enhanced therapeutic outcome by the cell sheet technique, we 
carried out serial, quantitative assessments of the donor cell pres-
ence. Of note, the Sheet group showed 6.4-fold increased initial 
retention of donor MSCs at 1 hour of transplantation (Figure 1a). 

This led to the greater donor cell presence in the Sheet group both 
persistently (at least until day 28).

Histological observations uncovered distinct donor cell distri-
butions between the groups. In the IM group, donor cells formed 
localized clusters within the myocardium at 1 hour and 3 days 
(Figure  1b,c), which persisted up to day 28 with a reduced size 
(Figure 1d). In contrast, most of the donor cells remained on the 
epicardial surface in the Sheet group throughout the time studied 
(Figure 1e–g). It was noted that the thickness of the MSC sheets was 
enlarged between 1 hour and 3 days after placement (Figure 1e,f). 
However, this did not necessarily indicate that the donor cell pres-
ence was increased during this period, as donor MSCs in the sheets 
were more compacted and dense at 1 hour (Supplementary Figure 
S1a–c). It was speculated that compacted cells during the cell sheet 
generation had relaxed and become looser after epicardial place-
ment, making the sheets to appear thicker at day 3, even though 
the number of donor MSCs presence was actually decreased 
(Figure 1a). Picrosirius red and hematoxylin staining showed that 
there was accumulation of extracellular collagen within the sheets 
at day 3, with an increasing tendency by day 28 (Supplementary 
Figure S1d,e). However, there was no sign of constrictive heart fail-
ure (left ventricular end-diastolic pressure was actually reduced in 
the Sheet group, compared with the Control group; Table 1).

Unexpectedly, the survival rates of donor cells calculated 
from the serial changes in donor cell presence (Figure 1a) were 
not improved in the Sheet group (61.4/94.8 = 0.65 (Sheet) ver-
sus 10.1/14.9 = 0.68 (IM) between 1 hour and 3 days, P = 0.81; 
10.2/61.4 = 0.17 (Sheet) versus 2.9/10.1 = 0.29 (IM) between 3 and 
28 days; P = 0.18). Consistent with this, the frequency of donor 
cell apoptosis was similar between the groups at day 3 (Figure 2).

Differentiation of donor cells after MSC sheet 
therapy
Immunohistostaining for cardiac troponin-T (cTnT) after trans-
plantation of DiI-labeled MSCs did not detect clear evidence of 
cardiomyogenic differentiation of MSCs; there were no cells posi-
tive for both cTnT and DiI in the IM or Sheet group. Isolectin 
B4 staining detected a number of neovascular formations within 

Table 1 C ardiac function at day 28 after treatment

 HR (bpm) LVEF (%) LVDd (mm) LVDs (mm) AWTd (mm) PWTd (mm) MV E/A

Echocardiography

Control 418.8 ± 11.6 36.1 ± 1.4 9.0 ± 0.1 7.4 ± 0.1 0.8 ± 0.1 1.2 ± 0.0 1.4 ± 0.1

IM 426.2 ± 8.5 47.6 ± 1.9* 8.5 ± 0.1* 6.3 ± 0.1* 0.8 ± 0.1 1.3 ± 0.0 1.6 ± 0.2

Sheet 434.7 ± 9.8 53.5 ± 1.3*,** 8.2 ± 0.2* 5.8 ± 0.1*,** 0.9 ± 0.1 1.3 ± 0.0 1.4 ± 0.1

HR  
(bpm)

LVEDP  
(mmHg)

LVDP  
(mmHg)

Max dP/dt 
(mmHg/s)

Min dP/dt 
(mmHg/s)

Contractility  
index

Tau  
(ms)

Catheterization

Control 367.2 ± 4.1 15.0 ± 1.5 80.2 ± 2.1 6,808.8 ± 128.9 −5,425.4 ± 379.9 110.7 ± 2.6 18.4 ± 2.5

IM 374.4 ± 10.6 8.7 ± 1.5* 97.9 ± 3.1* 7,296.5 ± 100.7* −6,658.3 ± 223.0* 115.2 ± 4.0 13.6 ± 0.4*

Sheet 388.2 ± 6.7 8.9 ± 0.6* 96.6 ± 2.3* 8,166.0 ± 185.9*,** −7,455.3 ± 194.2*,** 128.9 ± 2.9*,** 13.0 ± 0.7*

Abbreviations: AWTd, end-diastolic anterior wall thickness; HR, heart rate; IM, intramyocardial injection; LV, left ventricle; LVDd, LV end-diastolic dimension; LVDP, 
LV developed pressure; LVDs, LV end-systolic dimension; LVEDP, LV end-diastolic pressure; LVEF, LV ejection fraction; MV E/A, mitral valve early/atrial velocity ratio; 
PWTd, end-diastolic posterior wall thickness.
n = 11–13 in echocardiography and n = 8–9 in cardiac catheterization. Data represented as mean ± SEM.
*P < 0.05 versus the Control group; **P < 0.05 versus the IM group.
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the MSC sheets (Figure 3a–d). Most of these consisted of host-
derived (DiI−) endothelial cells, while the remaining contained 
donor-derived (DiI+) cells, suggesting endothelial differentiation 
(or fusion) of donor MSCs, consistent to the previous findings.21 
However, in the host myocardium, there were no donor (DiI+) 
MSC-containing vessels found.

Differentiation of donor MSCs to mesenchymal lineages, which 
was confirmed in our MSCs in vitro (Supplementary Figure S2), 
could be a concern if it occurs in the heart. However, our histo-
logical study showed that donor MSCs did not differentiate to adi-
pocytes or osteocytes in the heart in vivo (Supplementary Figure 
S3), assuring the safety of MSC sheet therapy.

Findings to support the permeation of paracrine 
factors from MSC sheets into the heart
Given that the majority of donor cells were retained at the epi-
cardial surface after MSC sheet therapy (Figure  1e–g), one 

concern might be that the presence of the epicardium may inhibit 
the permeation of paracrine mediators from MSC sheets to the 
host myocardial tissues. Our study here provided several find-
ings to ease it. First, after MSC sheet placement, the epicardium 
promptly regressed and disappeared. ICAM1 staining demon-
strated the presence of the epicardial layer in the Control group 
(Figure 3e), while these ICAM1+ epicardial cells were absent at 
both day 3 (Figure 3f) and day 28 (Supplementary Figure S4a) in 
the Sheet group. Second, isolectin B4 staining showed that many 
vasculatures formed within the MSC sheets were composed of 
host-derived (DiI−) cells (Figure 3a–d), indicating migration of 
vascular cells from the host myocardium into the sheets. Third, 
CD31 staining detected host-derived (DiI−) endothelial cells 
migrating into the MSC sheets by day 3, forming sprouting ves-
sels from the host myocardium into the MSC sheet (Figure 3g). 
Fourth, there were donor MSCs, though relatively few in num-
ber, occasionally migrating into the host myocardium (Figure 3h 
and Supplementary Figure S4b–e). These findings collectively 
indicate that the epicardium disappeared shortly after MSC sheet 
placement, enabling early exchange of cells between the myocar-
dium and MSC sheets, which could contribute to establishing vas-
cular networks to feed the cell sheets. Such early establishment 
of communication between MSC sheets and myocardium assures 
permeation of molecules secreted from donor MSCs into the 
myocardium to facilitate the paracrine effect.

Improved paracrine effects: recovery of post-MI 
failing cardiac tissues by MSC sheet therapy
We then looked at histological evidence for the paracrine effects. 
At day 28, our picrosirius red staining showed that the infarct size 
in the Sheet group was the smallest among the three groups at 
day 28 (Figure 4a and Supplementary Figure S5a–c). This was 
associated with increase in the capillary density and reduction of 
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Figure 1  Improved donor cell retention and distribution by MSC 
sheet therapy. (a) Quantitative assessments by using the detection of the 
male-specific sry gene in the female heart showed that the initial retention 
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the cardiomyocyte hypertrophy in both border and remote areas 
in the Sheet group compared with other groups (Figure 4b,c and 
Supplementary Figure S5d–i). Extracellular collagen deposition 
in the Control group was markedly and widely attenuated in the 
Sheet and IM groups, with a slight tendency of further attenuation 
in the Sheet group (Figure 4d and Supplementary Figure S5j–l). 
These data suggest that both cell delivery methods achieved a sim-
ilar pattern of paracrine effects to recover the failing myocardium 
post-MI, but the degree of the effects was more substantial after 
MSC sheet therapy compared with IM injection.

Improved paracrine effects: increased endogenous 
regeneration activity by MSC sheet therapy
Another target of the MSC-mediated paracrine effects is an acti-
vation of endogenous progenitor cells to regenerate cardiomyo-
cytes and vasculature,6,7 but this ability remains controversial.22,23 
Our in vivo studies added new information. The number of Ki67+ 
proliferating cells markedly increased in both border and remote 
areas in the Sheet group at day 28, compared with the Control and 
IM groups (Table 2, Figure 5a–c, Supplementary Figure S6a–d). 
Ki67+ cells were negative for CD45. In addition, the number of 
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lature in MSC sheets contained both host-derived (DiI−) and donor MSC-derived (DiI+) endothelial cells at day 28 after transplantation of DiI+ sheets. 
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Sca-1+/DiI− cells, which are reported to be cardiac progenitor 
cells,24 as well as the number of Ki67+/Sca-1+/DiI− cells, were 
increased in the Sheet group.

It was found that most of Ki67+ proliferating cells were also 
positive for isolectin B4 and/or CD34 (Table  2, Figure  5d,e, 
Supplementary Figure S6e–h), suggesting an acceleration of 
endogenous vascular regeneration. Ki67+/isolectin B4+ cells 
were found in capillaries (Figure  5d) as well as in larger vessels 
(Figure  5e). This enhanced vasculogenesis might contribute to 
the enhanced capillary density observed after MSC sheet ther-
apy (Figure 4b). In addition, there were a small, but significantly 
increased, number of Ki67+/cTnT+ cells in the Sheet group, repre-
senting proliferating cardiomyocytes, compared with the Control 
group (Table 2 and Figure 5f–i). These cells were not donor (DiI+)-
derived and thus could be stemmed from differentiation of endog-
enous progenitor cells or from re-entry of host cardiomyocytes to 

the cell cycle. However, the number of these Ki67+/cTnT+ cells was 
not large enough to expect that they had contributed significantly 
to the improvement of cardiac function after MSC sheet therapy.

Amplified upregulation of paracrine mediators and 
signaling pathways by MSC sheet therapy
To gain a further insight into the augmented paracrine effects 
by MSC sheet therapy, we performed quantitative reverse tran-
scription-PCR screening for genes presumed to be relevant to the 
MSC-mediated paracrine effects.2,3,21,24–29 As a result, we observed 
that myocardial expression of IL-10, VCAM-1, TIMP-1, IGF-1, 
MMP-2, HIF1-α, SDF-1, MMP-9, and bFGF was upregulated in the 
Sheet group at day 3 compared with the Control group (Figure 6). 
These data corresponded well with the above-discussed histologi-
cal changes in neovascular formation, fibrosis, and endogenous 
myocardial regeneration (Figures 4 and 5). Of note, upregulation 

Figure 5  Improved endogenous regenerative activity by MSC sheet therapy. The number of Ki67+ cells was increased in the Sheet group compared 
with the IM and Control groups. Representative images of Ki67+ cells in the border areas of the (a) Control, (b) IM, and (c) Sheet groups at day 28 are 
shown (Table 2). Ki67+/isolectin B4+ cells were found in (d) capillaries as well as in (e) larger vessels after MSC sheet therapy. There were an increased 
number of Ki67+/cTnT+ proliferating cardiomyocytes in the Sheet group. (f–i) A representative image of Ki67+/cTnT+ cells after MSC sheet therapy is 
presented for each marker and merged. Green signal for isolectin B4 in d,e, cTnT in f,i; orange for Ki67; blue for nuclei (DAPI). Bar =100 μm in a–c and 
30 μm in d–f. cTnT, cardiac troponin-T; DAPI, 4′,6-diamidino-2-phenylindole; IM, intramyocardial injection; MSC, mesenchymal stromal cell.

Table 2 E ndogenous regeneration by MSC sheet therapy

Cell number  
(/mm2)

Border Remote

Control IM Sheet Control IM Sheet

Total Ki67+ cells 10.2 ± 1.6 17.7 ± 2.7 37.4 ± 4.0*,** 5.9 ± 1.3 10.9 ± 2.1 19.1 ± 3.0*,**

+ Isolectin B4+ 1.9 ± 0.8 4.7 ± 2.7 12.3 ± 2.7*,** 0.1 ± 0.1 2.6 ± 1.0 5.0 ± 2.1*

+ CD34+ 4.2 ± 1.1 10.7 ± 1.0* 23.0 ± 3.3*,** 4.2 ± 1.5 6.1 ± 1.2 16.4 ± 2.7*,**

+ Sca1+ 0.3 ± 0.3 0.5 ± 0.2 2.4 ± 0.2*,** 0.1 ± 0.1 0.2 ± 0.2 0.5 ± 0.2

+ cTnT+ 0.3 ± 0.2 0.3 ± 0.3 1.6 ± 0.7* 0 0 0

+ CD45+ 0.3 ± 0.2 0.2 ± 0.2* 0 0.1 ± 0.1 0 0.3 ± 0.2

Total Sca1+ cells 1.8 ± 0.8 5.7 ± 1.0* 8.6 ± 1.5* 0.6 ± 0.3 1.0 ± 0.7 3.6 ± 1.1*,**

Abbreviations: cTnT, cardiac troponin-T; IM, intramyocardial injection; MSC, mesenchymal stromal cell.
The numbers of Ki67+ proliferating cells, together with other relevant markers, and Sca-1+ cells in border and infarct areas were assessed by immunohistolabeling at 
day 28. n = 4–5 in each point. Data represented as mean ± SEM.
*P < 0.05 versus the Control group; **P < 0.05 versus the IM group.
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of these genes was also observed in the IM group, but to a lesser 
extent compared with the Sheet group. Major signaling path-
ways relevant to the observed histological changes22,23 have also 
shown the same trend; JNK and p38 MAPK were both activated 
at day 3 in the Sheet and IM groups, with more substantial acti-
vation in the Sheet group, as compared with the Control group 
(Supplementary Figure S7). Of note, this amplified upregula-
tion of paracrine-related genes and signaling pathways after 
MSC sheet therapy matched with both the above-mentioned 
increase in donor cell presence and augmented paracrine benefits. 
Upregulation of most of these genes was, however, reduced to the 
baseline (values in the Control group) by day 28 after MSC sheet 
therapy (Supplementary Figure S8), corresponding with the 
largely reduced donor cell presence by this time (Figure 1a).

Discussion
This translational study has, for the first time, validated that the epi-
cardial placement of bone marrow-derived MSC-sheets is feasible, 
safe, and more effective in treating heart failure, compared with IM 
MSC injection. As a primary factor responsible for the superior-
ity of the cell sheet technique, we identified the improved initial 
retention of donor MSCs. Soon after epicardial placement, MSC 
sheets were found to firmly adhere to the heart probably due to the 
preserved extracellular matrix underlying the cell sheets, achiev-
ing 6.4-fold higher initial retention of MSCs, compared with IM 
injection of MSC suspensions. Even though the successive donor 
cell survival rate was not increased, this improved initial retention 
was substantial enough to achieve the significant increase of donor 

cell presence for at least 28 days. Importantly, this effect was robust 
enough to amplify the paracrine effects to recover the post-MI fail-
ing myocardium and to augment functional recovery of the hearts. 
Observed paracrine effects included the increase in neovascu-
lar formation, decrease in fibrosis, attenuation of cardiomyocyte 
hypertrophy, and improvement of endogenous myocardial regener-
ation. Underpinning these changes, there was amplified myocardial 
upregulation of a group of relevant molecules and related signaling 
pathways after MSC sheet therapy compared with IM injection.

In addition, we observed that the epicardium disappeared 
shortly after MSC sheet placement with establishment of early com-
munication between the sheets and host myocardium, suggesting 
that the pre-existing epicardium did not hinder the permeation 
of molecules secreted from donor MSCs into the myocardium to 
facilitate the paracrine effect. As regards differentiation of donor 
MSCs, we observed donor cell-derived endothelial cells within the 
sheets (but not in the host myocardium), while there was no find-
ing suggesting myogenic differentiation.

Recent research has shed light on the ability of MSCs to stim-
ulate endogenous progenitor cells towards cardiomyocyte regen-
eration in a paracrine manner.6,7 However, this effect after IM 
MSC injection remains debated.22,23 Here, our study provided new 
evidence to understand this event. MSC sheet therapy enhanced 
cardiomyogenic regeneration via an endogenous route, compared 
with the sham control, in association with upregulation of IGF-1 
and SDF-1, both of which are known to increase recruitment and/
or activation of endogenous stem/progenitor cells.27–29 In con-
trast, the regenerative activity was much less extensive after IM 
MSC injection, corresponding to lower upregulation of SDF-1. 
These data collectively suggest that MSCs do have a capability to 
stimulate endogenous cardiomyogenic regeneration, and that the 
extent of MSC presence after IM injection may not be sufficient 
to activate this pathway. While on the other hand, the cell sheet 
technique achieved the markedly increased presence of MSCs, 
which would enable the production of a necessary magnitude of 
paracrine stimuli for regeneration. Having said this, cardiomyo-
cyte regeneration even after MSC sheet therapy was not extensive 
enough to influence the global cardiac function. Further refine-
ment is needed to realize therapeutic myocardial regeneration 
based on MSC-mediated paracrine effects.

Our quantitative data of donor cell presence demonstrated 
that the survival rate of grafted MSCs after the cell sheet technique 
was so low that ~90% of the initially retained MSCs were dead 
or disappeared by day 28. Corresponding to this, the myocardial 
upregulation of paracrine effect-related genes after MSC sheet 
therapy diminished by day 28. However, despite these, cardiac 
function and structure were improved for at least 28 days. This let 
us speculate that the contribution of the paracrine factors would 
take place mainly during the early phase after MSC sheet therapy, 
and this is sufficient to initiate long-lasting changes in the cardiac 
tissue components (i.e., neovascular formation, reduced fibro-
sis, attenuation of cardiomyocyte hypertrophy, and endogenous 
myocardial regeneration) and resultant recovery of global cardiac 
function. Then, once established, the improved cardiac function 
could last for a longer time.

It was unexpected that donor cell survival was not improved 
by the cell sheet technique compared with IM injection. There was 
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Figure 6  Amplified upregulation of paracrine effect-relevant genes 
by MSC sheet therapy. Quantitative RT-PCR screening detected upreg-
ulation of a group of genes likely to be relevant to the MSC-derived 
paracrine effects in the Sheet group, and in the IM group to a lesser 
extent, at day 3. All expression levels were normalized to that in the 
Control group, which was assigned a value of 1.0. *P < 0.05, mean ± 
SEM for n   = 5–6 in each group. IM, intramyocardial injection; MSC, 
mesenchymal stromal cell; RT-PCR, reverse transcription-PCR.
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apoptosis in donor cells in the sheet to the same ratio to IM injec-
tion. We speculate that cell death in the sheet could be caused by 
relative hypoxia and/or insufficient nutrition. There was increased 
neovascular formation within the host myocardium and vessel 
formation within the sheets. However, the donor cells are likely 
to die before the neovascular formation is functionally complete 
enough for supply to the sheet. In addition, there were sprout-
ing vessels from the myocardium to the sheets (Figure 3g); how-
ever, the extent of these connecting vessels did not appear to be 
sufficient. These would collectively result in inadequate oxygen/
nutrition delivery to donor cells and inhibiting long-term survival 
of donor cells. In order to improve donor cell survival after cell 
sheet technique, we believe it is important to further improve vas-
cular formation in the sheets and vascular connections between 
the host myocardium and sheets for enhancing perfusion of the 
sheets. This might be achieved by co-treatment with angiogenesis 
factors such as HGF30 or cotransplantation with endothelial cells 
or endothelial progenitor cells.31,32

A limitation of the present study may be that IM cell injection 
was carried out into two sites in a heart. Although this is one of the 
most frequently used, standard protocols for IM cell injection in 
rat,11,33,34 we cannot deny a possibility that an increase in the num-
ber of IM injections might enhance the therapeutic efficacy.

In conclusion, the cell sheet technique enhanced initial reten-
tion and following presence of bone marrow-derived MSCs, 
amplified subsequent paracrine effects to recover/regenerate the 
damaged heart, and improved therapeutic outcomes, compared 
with IM injection. This timely information will provide important 
clinical implication to refine MSC-based therapy that has recently 
entered clinical trials. As the cell sheet placement requires open 
chest procedures, it would be a reasonable idea to carry out MSC 
sheet therapy in conjunction with routine cardiac surgery, like cor-
onary artery bypass grafting, left ventricular assist device implan-
tation, and so on. Further preclinical investigations on the safety 
and efficiency of MSC sheet therapy are warrantied for enabling 
early clinical application of this promising approach.

Materials and Methods
All studies were performed with the approval of the institutional ethics 
committee and the Home Office, UK. The investigation conforms to the 
Principles of Laboratory Animal Care formulated by the National Society 
for Medical Research and the Guide for the Care and Use of Laboratory 
Animals (US National Institutes of Health Publication, 1996). All in vivo 
and in vitro assessments were carried out in a blinded manner. Please see 
the Supplementary Materials and Methods for additional details.

Generation of MSC suspensions and MSC sheets. MSCs were isolated from 
the bone marrow from the tibias and femurs of male Lewis rats (100–150 g; 
Charles River Laboratories, Margate, UK) as described previously35 and 
characterized (Supplementary Figure S2). To generate an MSC sheet, 4 × 
106 MSCs were seeded at passages 3–5 on a 35 mm temperature-responsive 
culture dish (UpCell; CellSeed, Tokyo, Japan). Following incubation for 
12 hours at 37 °C under 5% CO2, the culture temperature was lowered to 
20–22 °C enabling the MSC sheet to detach from the dish.15 The collected 
MSC sheets were 12–15 mm in diameter. For injection, 4 × 106 MSCs were 
collected using trypsinization and suspended in 200 μl phosphate-buffered 
saline. Cell number counting by digesting a sheet with trypsin demon-
strated that a freshly generated MSC sheet contained 4.1 ± 0.2 × 106 cells 
(n = 5), assuring that there was no difference in the MSC number between 

cell sheet and IM injection groups. For graft tracking studies, MSCs were 
labeled with CM-DiI (DiI; Molecular Probes, Paisley, UK) according to the 
manufacturer’s protocol.

Animal models. Female Lewis rats (150–200 g; Charles River Laboratories) 
underwent left coronary artery ligation to generate MI as described previ-
ously.11 The animals were randomly assigned to undergo transplantation of 
4 × 106 MSCs from syngeneic male rats by either Sheet group or IM group. 
For the Sheet group, an MSC sheet was placed to cover the infarct and sur-
rounding border areas. After epicardial placement, MSC sheets were found 
to stably adhere to the heart within 20–30 minutes. For the IM group, 
MSCs suspended in 200 μl phosphate-buffered saline were intramyocar-
dially injected with a 31G needle into two sites (100 μl each), targeting 
the border and infracted areas. Sham-treated (MI only) rats served as the 
Control group.

Cardiac performance measurement. Cardiac function and dimensions, 
and hemodynamic parameters were measured by using echocardiography 
(Vevo-770; VisualSonics, Amsterdam, The Netherlands) and catheteriza-
tion (SPR-320 and PVAN3.2; Millar Instruments, Houston, TX) under 
general anesthesia using isoflurane inhalation in a blinded manner by well-
experienced staff as previously described.11,36,37 All data were collected from 
at least three different measurements and averaged.

Quantitative assessment of donor cell presence. DNA was extracted from 
the whole left ventricular walls and the presence of male cells in the female 
hearts was quantitatively assessed to define donor cell presence/survival 
using real-time PCR (Prism 7900HT; Applied Biosystems, Paisley, UK) for 
the Y-chromosome-specific sry gene as previously described.36

Histological analysis. At chosen time points, the hearts were excised, fixed 
with 4% paraformaldehyde, and frozen. Cryosections were cut and incu-
bated with polyclonal anti-cTnT antibody (1:200 dilution; HyTest, Turku, 
Finland), polyclonal anti-cleaved caspase-3 antibody (1:250; Cell Signaling 
Technology, Danvers, MA), biotin-conjugated Griffonia simplicifolia lectin 
I-isolectin B4 (1:100; Vector Laboratories, Peterborough, UK), monoclo-
nal anti-CD45 antibody (1:50; BD, Oxford, UK), monoclonal anti-CD11b 
antibody (1:50; Chemicon, Watford, UK), monoclonal anti-granulocyte 
antigen antibody (1:20; AbD Serotec, Kidlington, UK), monoclonal anti-
OX62 antibody (1:25; AbD Serotec), polyclonal anti-CD3 antibody (1:100; 
Abcam, Cambridge, UK), polyclonal anti-CD34 antibody (1:700; R&D, 
Abingdon, UK), monoclonal anti-CD31 antibody (1:50; AbD Serotec), 
monoclonal anti-ICAM1 antibody (1:50; Abcam), monoclonal anti-Ki67 
antibody (1:50; Dako, Cambridgeshire, UK), or polyclonal anti-Sca-1 
antibody (1:25; Abnova, Heidelberg, Germany) followed by visualization 
using fluorophore-conjugated secondary antibodies (Molecular Probes). 
Sections were analyzed by fluorescence microscopy (BZ8000; Keyence, 
Milton Keynes, UK) with or without nuclear counterstaining using 4′,6-
diamidino-2-phenylindole (DAPI). Ten different fields from each of the 
border and remote areas per heart were randomly selected and assessed. 
Another set of sections were stained with 0.1% picrosirius red for assessing 
infarct size (% of scar length to total left ventricular circumference) and 
for detecting collagen deposition using NIH image-analysis software.11,36 
To evaluate the cardiomyocyte size, the cross-sectional area of appropri-
ately detected cardiomyocytes (transversely cut; having central nuclei and 
surrounded by circle-shaped capillaries)37 was measured for 50 cardio-
myocytes per area. In addition, for detecting adipogenic and osteogenic 
differentiation, staining with Oil red O and Alizarin red was performed 
as above.38–40

Analysis of myocardial gene expression and signaling pathway activa-
tion. Total RNA was extracted from the whole left ventricular walls and 
assessed for myocardial gene expression by quantitative reverse transcrip-
tion-PCR (Prism 7900HT) as previously described.36 TaqMan primers 
and probes were purchased from Applied Biosystems. Expression was 
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normalized using Ubiquitin C. In addition, protein was extracted and 
assessed by western blotting. Primary antibodies were obtained from Cell 
Signaling Technology; anti-phosphorylated ERK1/2 (#4377), phospho-
rylated JNK (#9251), phosphorylated p38 (#9216), phosphorylated Akt 
(#4051), and phosphorylated PI3K (#4228). The labeled membrane was 
stripped, and then re-probed with anti-ERK1/2 (#9102), JNK (#9252), p38 
(#9212), Akt (#9272), PI3K (#4292) antibodies. Blots were imaged and 
quantitative analysis was performed using Alpha view software (Alpha 
Innotech, Santa Clara, CA).36

Statistical analysis. All values are expressed as mean ± SEM. Statistical 
comparison of the data was performed using the Student’s unpaired t-test 
for the analysis of donor cell apoptosis. All other data were statistically 
analyzed with one-way analysis of variance followed by Fisher’s post-hoc 
analysis to compare groups. A value of P < 0.05 was considered statistically 
significant.

SUPPLEMENTARY MATERIAL
Figure  S1.  Supplementary histological findings to Figure  1 
(Less densely packed donor cells in the MSC sheets after epicardial 
placement).
Figure  S2.  In vitro characterization of rat bone marrow-derived MSCs.
Figure  S3.  Adipogenic and osteogenic differentiation of MSCs in vivo.
Figure  S4.  Supplementary histological findings to Figure  3 (Donor 
cell behaviors and changes in the epicardium after MSC sheet therapy).
Figure  S5.  Supplementary histological findings to Figure  4 
(Histological recovery of post-MI failing cardiac tissues by MSC sheet 
therapy).
Figure  S6.  Supplementary histological findings to Figure  5 and 
Table 2 (Improved endogenous regeneration activity by MSC sheet 
therapy).
Figure  S7.  Elevated activation of paracrine effect-related signal path-
ways by MSC sheet therapy.
Figure  S8.  Supplementary data to Figure  6 (Myocardial gene 
expression at day 28 after MSC sheet therapy).
Materials and Methods.
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