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ABSTRACT

Meiotic recombination is an important biological
process. As a main driving force of evolution, re-
combination provides natural new combinations of
genetic variations. Rather than randomly occurring
across a genome, meiotic recombination takes
place in some genomic regions (the so-called
‘hotspots’) with higher frequencies, and in the
other regions (the so-called ‘coldspots’) with lower
frequencies. Therefore, the information of the
hotspots and coldspots would provide useful
insights for in-depth studying of the mechanism of
recombination and the genome evolution process
as well. So far, the recombination regions have
been mainly determined by experiments, which are
both expensive and time-consuming. With the ava-
lanche of genome sequences generated in the post-
genomic age, it is highly desired to develop
automated methods for rapidly and effectively iden-
tifying the recombination regions. In this study, a
predictor, called ‘iRSpot-PseDNC’, was developed
for identifying the recombination hotspots and
coldspots. In the new predictor, the samples of
DNA sequences are formulated by a novel feature
vector, the so-called ‘pseudo dinucleotide compos-
ition’ (PseDNC), into which six local DNA structural
properties, i.e. three angular parameters (twist, tilt
and roll) and three translational parameters (shift,
slide and rise), are incorporated. It was observed
by the rigorous jackknife test that the overall
success rate achieved by iRSpot-PseDNC was
>82% in identifying recombination spots in

Saccharomyces cerevisiae, indicating the new pre-
dictor is promising or at least may become a com-
plementary tool to the existing methods in this area.
Although the benchmark data set used to train and
test the current method was from S. cerevisiae, the
basic approaches can also be extended to deal with
all the other genomes. Particularly, it has not
escaped our notice that the PseDNC approach can
be also used to study many other DNA-related
problems. As a user-friendly web-server, iRSpot-
PseDNC is freely accessible at http://lin.uestc.edu.
cn/server/iRSpot-PseDNC.

INTRODUCTION

Genetic recombination describes the generation of new
combinations of alleles that occurs at each generation in
diploid organisms. It is an important biological process
and results from a physical exchange of chromosomal
material (1). As a main driving force of evolution, recom-
bination provides new combinations of genetic variations
and accelerates the evolution of sexual reproductive or-
ganisms. A schematic illustration to show the meiotic re-
combination pathways is given in Figure 1.
As recombination is crucial to genome evolution, iden-

tification and characterization of recombination spots are
substantially important. In the past decades, several global
mapping studies have been performed to map double-
strand breaks sites on chromosomes in yeast to determine
the distribution pattern of recombination regions across
genome (3–5). They found that meiotic recombination
events generally concentrate in 1 � 2:5 kilobase regions
and does not occur randomly across the genome.
Regions that exhibit elevated rates of recombination
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relative to a neutral expectation are called recombination
hotspots, whereas those with low rates of recombination
are recombination coldspots. Additionally, they also
found that recombination regions do not share a consen-
sus sequence. With the rapid increasing number of
sequenced genomes, it is highly desired to develop
reliable automated methods for timely identifying the re-
combination spots.
Although considerable progress has been made in this

regard, the computational predictive accuracy of recom-
bination spots still needs further improvements. The
existing computational algorithm for recombination
spots prediction was based on the nucleotide sequence
contents (6), in which little sequence-order effect was
taken into account. To improve the prediction quality, it
is necessary to take into account this kind of effect.
However, the number of possible patterns for DNA se-
quences is extremely large, and their lengths vary widely,
making it difficult to incorporate the sequence-order in-
formation into a statistical predictor. Facing such a diffi-
culty, how can we take into account the sequence-order
effect to improve the prediction quality? If it is not feasible
to count all the sequence-order information, can we find
an approximate way to partially take into account it?
Similar problems were also encountered in computational
proteomics. To cope with this kind of problems, the
concept of pseudo amino acid composition (PseAAC)
was proposed by Chou (7). Since then, the concept of
PseAAC has penetrated into almost all the fields of com-
putational proteomics, such as predicting protein

submitochondrial localization (8), predicting protein
structural class (9), predicting DNA-binding proteins
(10), identifying bacterial virulent proteins (11), predicting
metalloproteinase family (12), predicting protein folding
rate (13), predicting GABA(A) receptor proteins (14), pre-
dicting protein supersecondary structure (15), predicting
cyclin proteins (16), classifying amino acids (17), predict-
ing enzyme family class (18), identifying risk type of
human papillomaviruses (19), predicting allergenic
proteins (20), identifying G protein-coupled receptors
and their types (21) and discriminating outer membrane
proteins (22), among many others [see a long list of refer-
ences cited in a review (23)]. Because of its wide and
increasing usage, in 2012, a powerful software called
PseAAC-Builder (http://www.pseb.sf.net) (24) was estab-
lished for generating various special modes of PseAAC, in
addition to the earlier web-server PseAAC (http://www.
csbio.sjtu.edu.cn/bioinf/PseAAC) (25) built in 2008.

Encouraged by the successes of introducing the
PseAAC approach (7,26) into computational proteomics,
the present study was initiated in an attempt to propose a
novel feature vector, called ‘pseudo dinucleotide compos-
ition’ (PseDNC), to represent DNA sequence samples by
incorporating more sequence-order effects so as to
improve the quality of predicting the recombination spots.

As summarized in a review (23) and demonstrated by a
series of recent publications [see, e.g. (27–29)], to establish
a really useful statistical predictor for a biological system,
we need to consider the following procedures: (i) construct
or select a valid benchmark data set to train and test the

Figure 1. A schematic drawing to show the meiotic recombination pathways in a DNA system. Recombination is initiated by a double-strand break
(DSB) catalysed by the Spo11 protein (green ball), a relative of archaeal topoisomerase VI. After DSBs are formed, Spo11 is removed from the DNA
molecule (blue helix) and the single-stranded 30 ends are formed. These tails undergo strand invasion of intact homologous duplexes (red helix),
ultimately yielding mature recombinant products. The repair of meiotic DSB can result in either reciprocal exchange of the chromosome arms
flanking the break (a crossover) as shown in the left lower panel, or no exchange of flanking arms (a non-crossover or parental configuration) as
shown in the right lower panel. Adapted from (2).
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predictor; (ii) formulate the biological samples with an
effective mathematical expression that can truly reflect
their intrinsic correlation with the target to be predicted;
(iii) introduce or develop a powerful algorithm (or engine)
to operate the prediction; (iv) properly perform cross-
validation tests to objectively evaluate the anticipated
accuracy of the predictor; and (v) establish a user-friendly
web-server for the predictor that is accessible to the public.
Below, let us elaborate how to deal with these procedures
one by one.

MATERIALS AND METHODS

Benchmark data set

The benchmark data set S for the recombination hotspots
and coldspots was taken from Liu et al. (6). It contains
490 recombination hotspots and 591 recombination
coldspots, as can be formulated by

S ¼ S
+
[ S

�
ð1Þ

where [ represents the symbol for ‘union’ in the set
theory; the subset S

+ contains the recombination
hotspots only, whereas S

� recombination coldspots
only. For the convenience of readers, the 490 sequences
in S

+ and 591 sequences in S
� are given in the

Supplementary Information S1.

PseDNC

Suppose a DNA sequence D with L nucleic acid residues;
i.e.

D ¼ R1R2R3R4R5R6R7 . . .RL ð2Þ

where R1 represents the nucleic acid residue at the
sequence position 1, R2 the nucleic acid residue at
position 2 and so forth. If the feature vector of the
DNA sequence is formulated by its nucleic acid compos-
ition (NAC), we have

D ¼ fðAÞ fðCÞ fðGÞ fðTÞ
� �T

ð3Þ

where fðAÞ, fðCÞ, fðGÞ, and fðTÞ are the normalized occur-
rence frequencies of adenine (A), cytosine (C), guanine (G)
and thymine (T), respectively, in the DNA sequence; the
symbol T is the transpose operator. As we can see from
Equation 3, all the sequence-order information is missed if
using NAC to represent a DNA sequence. If using the
DNC to represent the DNA sequence, instead of the
four components as shown in Equation 3, the correspond-
ing feature vector will contain 4� 4 ¼ 16 components, as
given below

D ¼ fðAAÞ fðACÞ fðAGÞ fðATÞ � � � fðTTÞ
� �T

¼ f1 f2 f3 f4 � � � f16
� �T ð4Þ

where f1 ¼ fðAAÞ is the normalized occurrence frequency
of AA in the DNA sequence; f2 ¼ fðACÞ, that of AC;
f3 ¼ fðAGÞ, that of AG and so forth. Although the most
contiguous local sequence-order information is included in

Equation 4, none of the global sequence-order informa-
tion is reflected by the formulation. DNC is the most
simple pseudo NAC, or PseNAC, according to the termin-
ology similar to that used in (7).
To incorporate the global sequence-order information

into the feature vector for the DNA sequence, let us
consider the following approach. As shown in Equation
2, the first dinucleotide in the DNA sequence is R1R2, the
second dinucleotide is R2R3 and so forth; the last one is
RL-1RL. Thus, by following the similar procedures as
described in (7) to reflect the global sequence-order infor-
mation of a protein with a set of sequence-
order-correlated factors, for the DNA sequence of
Equation 2, we also have the corresponding factors as
defined below:

�1 ¼
1

L�2

PL�2
i¼1

�ðRiRi+1,Ri+1Ri+2Þ

�2 ¼
1

L�3

PL�3
i¼1

�ðRiRi+1,Ri+2Ri+3Þ

�3 ¼
1

L�4

PL�4
i¼1

�ðRiRi+1,Ri+3Ri+4Þ

� � � � � �

�� ¼
1

L�1��

PL�1��

i¼1

�ðRiRi+1,Ri+�Ri+�+1Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð� < LÞ ð5Þ

where �1 is called the first-tier correlation factor that
reflects the sequence-order correlation between all the
most contiguous dinucleotide along a DNA sequence
(Figure 2a); �2, the second-tier correlation factor
between all the second most contiguous dinucleotide
(Figure 2b); �3, the third-tier correlation factor between
all the third most contiguous dinucleotide (Figure 2c) and
so forth.
In Equation 5, the parameter � is an integer, represent-

ing the highest counted rank (or tier) of the correlation
along a DNA sequence, and the correlation function is
given by

� RiRi+1,RjRj+1

� �
¼

1

�

X�
u¼1

Pu RiRi+1ð Þ � Pu RjRj+1

� �� �2
ð6Þ

where � is the number of local DNA structural properties
considered that is equal to 6 in the current study as will be
explained later in the text; PuðRiRi+1Þ, the numerical value
of the u-th ðu ¼ 1, 2, � � �,�Þ DNA local property for the
dinucleotide RiRi+1 at position i and PuðRjRj+1Þ, the
corresponding value for the dinucleotide RjRj+1 at
position j.

DNA local structural properties

Multiple lines of evidences have indicated that some local
DNA structural properties, i.e. angular parameters (twist,
tilt and roll) and translational parameters (shift, slide and
rise), have important roles in biological processes, such as
protein–DNA interactions, formation of chromosomes
and higher-order organization of the genetic material
(30–32). Accordingly, these six structural properties
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might have impact on DNA binding of regulatory
proteins, either directly by hampering or favoring
complex formation or indirectly through the modulation
of the chromatin structures and hence the DNA
accessibility (33). Listed in Table 1 are their original
numerical values derived from (32) for twist P1ðRiRi+1Þ,
tilt P2ðRiRi+1Þ, roll P3ðRiRi+1Þ, shift P4ðRiRi+1Þ, slide
P5ðRiRi+1Þ, and rise P6ðRiRi+1Þ, respectively, where
RiRi+1 represents the 16 possible dinucleotides AA, AC,
AG, AT, . . ., TT. It was these six DNA local physical
structural properties that were to be used as correlation
functions to derive the PseDNC for the current study.
Meanwhile, it is also self-evident why � ¼ 6 in Equation
6 for the current case.
Before substituting into Equation 6, the original values

as listed in Table 1 for PuðRiRi+1Þ ðu ¼ 1, 2, � � �, 6Þ, they
were all subjected to a standard conversion (26), as
described by the following equation

PuðRiRi+1Þ ¼
PuðRiRi+1Þ� < Pu >

SDðPuÞ
ð7Þ

where the symbol < > means taking the average of the
quantity therein for 16 different dinucleotides (cf.
Equation 4), and SD means the corresponding standard
deviation. The converted values obtained by Equation 7
will have a zero mean value for the 16 different
dinucleotides and will remain unchanged if going
through the same conversion procedure again. Listed in
Table 2 are the values of PuðRiRi+1Þ ðu ¼ 1,2, � � � ,6Þ
obtained via the standard conversion of Equation 7
from those of Table 1.

Now we can see from Figure 2 that the sequence-order
effect of a DNA sequence can be, to some extent, reflected
through a set of sequence-correlation factors �1 �2, �3, � � �,
��, as clearly defined by Equations 5 and 6. Similar to the
procedure as described in (7) for converting the amino
acid composition to the PseACC, let us augment the
DNC of Equation 4 to the PseDNC as given later in the
text

D ¼ d1 d2 � � � d16 d16+1 � � � d16+�
� �T

ð8Þ

where

dk ¼

fkP16

i¼1
fi +w

P�

j¼1
�j
ð1 � k � 16Þ

w�k�16P16

i¼1
fi+w

P�

j¼1
�j
ð17 � k � 16+�Þ

8><
>: ð9Þ

where fk ðk ¼ 1,2, � � � ,16Þ are the same as those in
Equation 4, �j ðj ¼ 1,2, � � � ,�Þ are given by Equation 5, �
is the number of the total counted ranks (or tiers) of the
correlations along a DNA sequence and w is the weight
factor. The concrete values for � and w will be discussed
further. Thus, instead of a 16-D (dimensional) vector (cf.
Equation 4), the DNA sequence is now formulated by a
ð16+�Þ�D vector as shown in Equation 8. It is through the
additional � correlation factors (Figure 2) that not only
considerable global sequence-order effects can be
incorporated but the DNA sequences with extreme
difference in length can also be converted into a set of
feature vectors with a same dimension. The latter is an
important pre-requisite for formulating the statistical
samples because many powerful classification engines,
such as Covariant Discriminant (34,35), Support Vector
Machine (SVM) (36) and K-Nearest Neighbor (37–39)
algorithms, require the input to be a set of digital
vectors with a fixed number of components.

SVM

SVM is an effective method for supervised pattern
recognition and has been widely used in the realm of
bioinformatics [see, e.g. (14,40–45)]. The basic idea of
SVM is to transform the data into a high dimensional
feature space and then determine the optimal separating
hyperplane. A brief introduction about the formulation of
SVM was given in (46). In this study, the SVM
implementation was based on the freely available
package LIBSVM 2.84 written by Chang and Lin (47).
Because of its effectiveness and speed in training
process, the radial basis kernel function was used to
obtain the best classification hyperplane. The

Figure 2. A schematic illustration to show the correlations of dinucleo-
tides along a DNA sequence. (a) The first-tier correlation reflects the
sequence-order mode between all the most contiguous dinucleotide.
(b) The second-tier correlation reflects the sequence-order mode
between all the second-most contiguous dinucleotide. (c) The third-tier
correlation reflects the sequence-order mode between all the third-most
contiguous dinucleotide.
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regularization parameter C and the kernel width
parameter � were determined via an optimization
procedure using a grid search approach, and their actual
values thus obtained for the current study were C ¼ 32
and � ¼ 0:5.

iRSpot-PseDNC and its parameters

The predictor obtained via the aforementioned procedures
is called iRSpot-PseDNC. The PseDNC as formulated in
Equations 8 and 9 contains two uncertain parameters �
and w. The former represents the total number of
correlation ranks counted (cf. Equation 5 and Figure 2),
which is an integer and should be smaller than the length
of any of the DNA sequences involved in this study,
whereas the latter is the weight factor ranged from 0 to
1 (26). Generally speaking, the greater the value of �, the

more sequence-order effects will be incorporated.
However, if the value of � is too large, it might cause
the overfitting problem (48) or ‘high dimension
disaster’ (49). Preliminary tests indicated that in using
the iRSpot-PseDNC predictor on the benchmark data
set S (Supplementary Information S1), a peak was
observed for the overall accuracy � (cf. Equation 11) or
Acc (cf. Equation 12) when � ¼ 3 and w ¼ 0:05.
Accordingly, the two numerical values were
respectively used for the two uncertain parameters in
iRSpot-PseDNC.

RESULTS AND DISCUSSIONS

One of the important procedures in developing a useful
statistical predictor (23) is to objectively evaluate its

Table 1. The original numerical values for the six DNA dinucleotide physical structures

Dinucleotide Physical structuresa

P1ðRiRi+1Þ P2ðRiRi+1Þ P3ðRiRi+1Þ P4ðRiRi+1Þ P5ðRiRi+1Þ P6ðRiRi+1Þ

AA 0.026 0.038 0.020 1.69 2.26 7.65
AC 0.036 0.038 0.023 1.32 3.03 8.93
AG 0.031 0.037 0.019 1.46 2.03 7.08
AT 0.033 0.036 0.022 1.03 3.83 9.07
CA 0.016 0.025 0.017 1.07 1.78 6.38
CC 0.026 0.042 0.019 1.43 1.65 8.04
CG 0.014 0.026 0.016 1.08 2.00 6.23
CT 0.031 0.037 0.019 1.46 2.03 7.08
GA 0.025 0.038 0.020 1.32 1.93 8.56
GC 0.025 0.036 0.026 1.20 2.61 9.53
GG 0.026 0.042 0.019 1.43 1.65 8.04
GT 0.036 0.038 0.023 1.32 3.03 8.93
TA 0.017 0.018 0.016 0.72 1.20 6.23
TC 0.025 0.038 0.020 1.32 1.93 8.56
TG 0.016 0.025 0.017 1.07 1.78 6.38
TT 0.026 0.038 0.020 1.69 2.26 7.65

aIn this table, the following symbols were used to represent the six physical structures of dinucleotide (32): P1 for ‘twist, P2 for ‘tilt’, P3 for ‘roll’, P4

for ‘shift’, P5 for ‘slide’ and P6 for ‘rise’.

Table 2. The normalized values for the six DNA dinucleotide physical structures

Dinucleotide Physical structuresa

P1ðRiRi+1Þ P2ðRiRi+1Þ P3ðRiRi+1Þ P4ðRiRi+1Þ P5ðRiRi+1Þ P6ðRiRi+1Þ

AA 0.06 0.5 0.27 1.59 0.11 �0.11
AC 1.50 0.50 0.80 0.13 1.29 1.04
AG 0.78 0.36 0.09 0.68 �0.24 �0.62
AT 1.07 0.22 0.62 �1.02 2.51 1.17
CA �1.38 �1.36 �0.27 �0.86 �0.62 �1.25
CC 0.06 1.08 0.09 0.56 �0.82 0.24
CG �1.66 �1.22 �0.44 �0.82 �0.29 �1.39
CT 0.78 0.36 0.09 0.68 �0.24 �0.62
GA �0.08 0.5 0.27 0.13 �0.39 0.71
GC �0.08 0.22 1.33 �0.35 0.65 1.59
GG 0.06 1.08 0.09 0.56 �0.82 0.24
GT 1.50 0.50 0.80 0.13 1.29 1.04
TA �1.23 �2.37 �0.44 �2.24 �1.51 �1.39
TC �0.08 0.5 0.27 0.13 �0.39 0.71
TG �1.38 �1.36 �0.27 �0.86 �0.62 �1.25
TT 0.06 0.5 0.27 1.59 0.11 �0.11

aSee footnote a of Table 1 for further explanation.
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performance or anticipated success rate. Now let us
address this problem.

Criteria for performance evaluation

To provide a more intuitive and easier-to-understand
method to measure the prediction quality, the criteria
proposed in (50) was adopted here. According to that
criteria, the rates of correct predictions for the
recombination hotspots in data set S

+ and the
recombination coldspots in data set S

� are respectively
defined by (cf. Equation 1)

�+¼
N+�N+

�

N+ , for the recombination hotspots

�� ¼
N��N�+

N� , for the recombination coldspots

(
ð10Þ

where N+ is the total number of the recombination
hotspots investigated, whereas N+

� the number of the
recombination hotspots incorrectly predicted as
the coldspots; N� the total number of the recombination
coldspots investigated, whereas N�+ the number of
the recombination coldspots incorrectly predicted as the
hotspots. The overall success prediction rate is given by
(51)

� ¼
�+N++��N�

N++N�
¼ 1�

N+
�+N�+

N++N�
ð11Þ

It is obvious from Equations 10 and 11 that, if and only
if none of the recombination hotspots and the
recombination coldspots are mispredicted, i.e.
N+
� ¼ N�+ ¼ 0 and �+¼ �� ¼ 1, we have the overall

success rate � ¼ 1. Otherwise, the overall success rate
would be <1.
On the other hand, it is instructive to point out

that the following equation set is often used in
literatures for examining the performance quality of a
predictor

Sn ¼ TP
TP+FN

Sp ¼ TN
TN+FP

Acc ¼ TP+TN
TP+TN+FP+FN

MCC ¼ ðTP�TNÞ�ðFP�FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP+FPÞðTP+FNÞðTN+FPÞðTN+FNÞ
p

8>>>>><
>>>>>:

ð12Þ

where TP represents the true positive; TN, the true
negative; FP, the false positive; FN, the false negative;
Sn, the sensitivity; Sp, the specificity; Acc, the accuracy;
MCC, the Mathew’s correlation coefficient.
The relations between the symbols in Equation 11 and

those in Equation 12 are given by

TP ¼ N+�N+
�

TN ¼ N� �N�+
FP ¼ N�+
FN ¼ N+

�

8>><
>>: ð13Þ

Substituting Equation 13 into Equation 12 and also
noting Equation 11, we obtain

Sn ¼ 1�
N+
�

N+

Sp ¼ 1�
N�+
N�

Acc ¼ �¼1�
N+
�+N�+

N++N�

MCC ¼
1�

N+�
N+
+

N�
+

N�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

N�
+
�N+�

N+

� �
1+

N+��N
�
+

N�

� �r

8>>>>>>>>><
>>>>>>>>>:

ð14Þ

Obviously, when N+
� ¼ 0, meaning none of the

recombination hotspots was mispredicted to be a
coldspots, we have the sensitivity Sn ¼ 1, whereas
N+
� ¼ N+, meaning that all the recombination hotspots

were mispredicted to be the coldspots, we have the
sensitivity Sn ¼ 0. Likewise, when N�+ ¼ 0 , meaning
none of the recombination coldspots was mispredicted,
we have the specificity Sp ¼ 1, whereas N�+ ¼ N�

meaning all the recombination coldspots were incorrectly
predicted as recombination hotspots, we have the
specificity Sp ¼ 0. When N+

� ¼ N�+ ¼ 0, meaning that
none of the recombination hotspots in the data set S+

and none of the recombination coldspots in S� was
incorrectly predicted, we have the overall accuracy
Acc ¼ � ¼ 1, whereas N+

� ¼ N+ and N�+ ¼ N�, meaning
that all the recombination hotspots in the data set S+and
all the recombination coldspots in S� were mispredicted,
we have the overall accuracy Acc ¼ � ¼ 0. The MCC
correlation coefficient is usually used for measuring the
quality of binary (two-class) classifications. When
N+
� ¼ N�+ ¼ 0, meaning that none of the recombination

hotspots in the data set S+and none of the recombination
coldspots in S� was mispredicted, we have Mcc ¼ 1; when
N+
� ¼ N+=2 and N�+ ¼ N�=2, we have Mcc ¼ 0, meaning

no better than random prediction; when N+
� ¼ N+ and

N�+ ¼ N� we have MCC ¼ �1, meaning total disagree-
ment between prediction and observation. As we can see
from the aforementioned discussion, it is much more
intuitive and easier to understand when using Equation
14 to examine a predictor for its sensitivity, specificity,
overall accuracy and Mathew’s correlation coefficient.

Cross-validation

In literatures, the following three cross-validation
methods are often used to evaluate the quality of a
predictor: independent data set test, subsampling (K-fold
cross-validation) test and jackknife test. However, as
elaborated by an analysis in (52) and demonstrated by
Equations 28–32 of (23), among the three cross-validation
methods, the jackknife test is deemed the least arbitrary
and most objective because it can always yield a unique
result for a given benchmark data set, and hence has been
widely recognized and increasingly used by investigators
to examine the quality of various predictors [see, e.g.
(11,16,21,22,29,53–57)]. Accordingly, the jackknife test
was also adopted in this study to examine the anticipated
success rates of the current predictor. In the jackknife test,
all the samples in the benchmark data set S will be singled
out one by one and tested by the predictor trained by the
remaining samples. During the jackknifing process, both
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the training data set and testing data set are actually open,
and each sample will be in turn moved between the two.

The results obtained with iRSpot-PseDNC on the
benchmark data set S of Supplementary Information S1
by the jackknife test are given in Table 3, where for
facilitating comparison, the corresponding results by the
IDQD predictor (6) on the same benchmark data set are
also given. As indicated in Table 3, the results reported by
Liu et al. (6) were derived by the 5-fold cross-validation
test. As elucidated in (23), this would make their test
without a unique result as demonstrated later in the text.
For the current case, the benchmark data set S consists of
S
+ and S

�, where S
+ contains 490 recombination

hotspots, and S
� contains 591 recombination coldspots.

Substituting these data into Equations 28 and 29 of (23)
with M ¼ 2 (number of groups for classification) and
� ¼ 5 (number of folds for cross-validation), we obtain

� ¼
490!

490� Int 490=5ð Þ½ �!Int 490=5ð Þ!

�
591!

591� Int 591=5ð Þ½ �!Int 591=5ð Þ!

¼
490!

ð490� 98Þ!98!
�

591!

ð591� 118Þ!118!
> 1:17� 10232

ð15Þ

where the symbol Int is the integer-truncating operator
meaning to take the integer part for the number in the
bracket right after it. The result of Equation 15 indicates
that the number of possible combinations of taking one-
fifth samples from each of the two subsets, S

+ and S
�, for

conducting the 5-fold cross-validation will be >10232,
which is an astronomical figure, too large to be practical.
Therefore, in their study (6), Liu et al. only randomly
picked one of �1:17� 10232 possible combinations (cf.
Equation 15) to perform the 5-fold cross-validation. To
make the comparison between iRspot-PseNDC and
IDQD (6) with the same test method, we also randomly
picked one of the possible combinations from the same
benchmark data set to perform the 5-fold cross-validation
test with iRspot-PseNDC, and the corresponding results
thus obtained are given in Table 3 as well.

As we can see from the table, not only the overall
accuracy (Acc) achieved by iRSpot-PseDNC using the
5-fold cross validation test is remarkably higher
than that by the IDQD (6) but the overall accuracy
achieved by iRSpot-PseDNC using the rigorous jackknife
test is also higher than that by the IDQD. Besides the
overall accuracy, the MCC rates achieved by the
iRSpot-PseDNC predictor derived from both 5-fold

cross-validation and jackknife tests are also higher than
those by the IDQD predictor.
To further demonstrate its performance, we used iRSpot-

PseDNC to identify the 452 experimentally annotated
recombination hotspots by Pan et al. (58) for the
S. cerevisiae chromosome IV. The results are given in the
Supplementary Information S2, from which we can see that
347 outcomes by the predictor were consistent with the
experimental observations. The overall success rate was
76.77%, indicating that the method as proposed in this
article is promising in identifying recombination hot/cold
spots, or can at the very least play a complementary role to
the existing method in this area.

Web-server guide

For the convenience of the vast majority of experimental
scientists, let us give a step-by-step guide on how to use the
iRSpot-PseDNC web-server to get their desired results
without the need to follow the complicated mathematic
equations that were presented just for the integrity in
developing the predictor. The detailed steps are as follows.

Step 1
Open the web server at http://lin.uestc.edu.cn/server/
iRSpot-PseDNC and you will see the top page of
iRSpot-PseDNC on your computer screen, as shown in
Figure 3. Click on the Read Me button to see a brief
introduction about the predictor and the caveat when
using it.

Figure 3. A semi-screenshot to show the top page of the iRSpot-
PseDNC web-server. Its website address is at http://lin.uestc.edu.cn/
server/iRSpot-PseDNC.

Table 3. A comparison of between iRSpot-PseDNC with the existing method

Predictor Test method Sn (%) Sp (%) Acc (%) MCC

iRSpot-PseDNCa Jackknife 73.06 89.49 82.04 0.638
5-fold cross 81.63 88.14 85.19 0.692

IDQDb 5-fold cross 79.40 81.00 80.30 0.603

aThe parameters used: � ¼ 3 and w ¼ 0:05 for Equation 9; C ¼ 32 and � ¼ 0:5 for the LIBSVM operation engine (47).
bFrom Liu et al. (6).
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Step 2
Either type or copy/paste the query DNA sequence into
the input box at the center of Figure 3. The input sequence
should be in the FASTA format. A sequence in FASTA
format consists of a single initial line beginning with a
greater-than symbol (‘>’) in the first column, followed
by lines of sequence data. The words right after the ‘>’
symbol in the single initial line are optional and only used
for the purpose of identification and description. All lines
should not be longer than 120 characters and usually do
not exceed 80 characters. The sequence ends if another line
starting with a ‘>’ appears; this indicates the start of
another sequence. Example sequences in FASTA format
can be seen by clicking on the Example button right above
the input box.

Step 3
Click on the Submit button to see the predicted result. For
example, if you use the query DNA sequences in the
Example window as the input, after clicking the Submit
button, you will see the following shown on the screen of
your computer: the outcome for the first query sample is
‘recombination hotspot’; the outcome for the second
query sample is ‘recombination coldspot’. All these
results are fully consistent with the experimental
observations as summarized in the Supplementary
Information S1. It takes a few seconds for the
aforementioned computation before the predicted result
appears on your computer screen; the more number of
query sequences and longer of each sequence, the more
time it is usually needed.

Step 4
Click on the Citation button to find the relevant papers
that document the detailed development and algorithm of
iRSpot-PseDNC.

Step 5
Click on the Data button to download the benchmark
data sets used to train and test the iRSpot-PseDNC
predictor.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Data sets 1 and 2.
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