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Abstract

In humans and many other mammals, the cortex (the outer layer of the brain) folds during
development. The mechanics of folding are not well understood; leading explanations are either
incomplete or at odds with physical measurements. We propose a mathematical model in which (i)
folding is driven by tangential expansion of the cortex and (ii) deeper layers grow in response to
the resulting stress. In this model the wavelength of cortical folds depends predictably on the rate
of cortical growth relative to the rate of stress-induced growth. We show analytically and in
simulations that faster cortical expansion leads to shorter gyral wavelengths; slower cortical
expansion leads to long wavelengths or even smooth (lissencephalic) surfaces. No inner or outer
(skull) constraint is needed to produce folding, but initial shape and mechanical heterogeneity
influence the final shape. The proposed model predicts patterns of stress in the tissue that are
consistent with experimental observations.

INTRODUCTION

Cortical folding is a critical process in brain development. In the human fetus, cortical
folding normally occurs between the 25™ and 40t weeks of gestation. Many other mammals
also have folded (gyrencephalic) brains. In the ferret, cortical folding occurs post-natally
(Fig. 1), roughly between the 51 and 30t days after birth. Folding in the ferret has been
thoroughly documented in seminal papers by Smart and McSherry (1, 2) and in more recent
work based on MR imaging (3-5) and detailed histology (6). Abnormal folding patterns in
the human brain are associated with severe mental or emotional disorders (7-11).
Disturbances of cortical folding in humans include complete absence of folds
(lissencephaly), folds that are abundant but small and shallow (polymicrogyria), and folds
that are fewer and coarser (pachygyria). Despite decades of intense study (12-15) and
speculation, the mechanical basis of folding remains controversial.

Van Essen (16) has proposed that axonal tension produces folding by drawing sides of gyri
(outward folds) together. This hypothesis is attractive because it is consistent with efficient
wiring — axons that connect related areas will draw them together, decreasing the total length
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of axonal connections. Heidemann and co-authors (17-19) have shown that axons in vitro
maintain tension. Dissection experiments (20, 21) have confirmed that white matter in
mammalian brains is under tension, including the white matter in the adult mouse brain (20)
and in both mature and developing ferret brains (21). However the hypothesis that the walls
of gyri are drawn together by axonal tension is not consistent with observed patterns of
stress in the ferret brain, which reflect tension along, not across, gyri (21) (Fig. 1).

Other authors (22, 23) have pointed to differential growth, in which outer layers grow
tangentially at faster rates than inner layers of the brain, as the driving mechanism of cortical
folding. Richman and coauthors (23) proposed a model for the formation of cortical folds
based on buckling of elastic surface layers on an elastic foundation. In this scenario,
tangential growth of the outermost layer produces compressive stress that leads to buckling
of this layer, modulated by the stiffness of the foundation. In terms of developmental
neuroanatomy (see (24)) the outer layers in this model comprise the cortical plate, and the
foundation, or core, captures the aggregate mechanical behavior of subplate, intermediate
zone, subventricular zone, ventricular zone, and all deeper internal brain structures. In the
Richman model (23), increasing the material stiffness, or elastic modulus, of the foundation
leads to shorter wavelengths of the buckled layer (cortex). However, this model and other
elastic buckling models (22) rely on a large mismatch in the elastic moduli of the outer layer
(stiffer) and core (softer) to produce buckling patterns that approximate observed folds. In
fact, the elastic modulus of the outer layer of cortex is not significantly different than that of
inner regions of the brain (25-27).

The question we address is: What mechanism can produce folded surfaces with wavelengths
consistent with those observed in nature, and stress patterns consistent with those seen in
dissection experiments, without requiring a difference in elastic modulus between layers?
We propose a model of folding in which tangential growth of the cortex drives the folding
process. Instead of a purely elastic foundation (22, 23), or a hard constraint (28), the core is
allowed to grow in response to the resulting stresses. Axons, which are the major functional
component of white matter, are known to grow in response to imposed tension (19). The
proposed model produces surface folding in which the wavelength depends on the rate of
cortical growth relative to the rate constant of the stress-growth relationship in the core.
Patterns analogous to polymicrogyria and pachygyria can be obtained by adjusting this ratio.
The pattern of folding-induced stress is consistent with observations of stress in the
developing ferret brain, in which tension exists along the radial axis of gyri.

MATHEMATICAL MODEL AND SIMULATION

Our mathematical model of cortical folding uses the theory of volumetric growth developed
by Rodriguez et al. (29) and applied in many studies since (30-33). Using standard
continuum mechanics terminology, we designate the location of a material element in the
reference configuration as X and the corresponding location of the same element in the

ox
deformed configuration as x. The deformation gradient tensor is F:a_X' According to the
theory of Rodriguez et al. (29), F is expressed as the product of a growth tensor, G, and an
elastic tensor, F*:

F=F"-G. (1
Numerous material models have been suggested to describe the mechanical behavior of
brain tissue. Recent studies have proposed isotropic, hyperelastic or hyper-viscoelastic

models for grey matter (26, 34, 35), and anisotropic, hyperelastic or hyper-viscoelastic
models for white matter (36, 37). At relatively short time scales (shorter than those
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associated with growth) cortical brain tissue may be roughly approximated as an isotropic,
hyperelastic material (26), so the Cauchy stress tensor, o, depends directly on the elastic
deformation according to the constitutive relationship

ow
aF*T :

o=J""F*. @)

Here W is the strain energy density function for the material and J* = det F™ is the volume
ratio of the elastic deformation. A standard neo-Hookean material model (38) is used here:

* pk— K %
W:%(IIJ B3z @

The strain energy depends on J* and on the first invariant (trace) of the elastic right Cauchy-

Green strain tensor, I7=tr C*, where C* = F*T . F*. The shear modulus, z, and the bulk
modulus «, , are the parameters of the hyperelastic model. Typically tissue is assumed to be
nearly incompressible: x>> .

Radial and tangential normal growth are included in the current model. Simulations are
performed in (i) a two-dimensional (2D) rectangular domain in plane strain, approximating a
section of tissue near the cortical surface, (ii) a 2D semi-elliptical domain in plain strain
(approximating a section of an elliptical cylinder), and (iii) an axisymmetric ellipsoidal
domain. In the 2D rectangular and elliptical domains, growth is modeled using:

G=G,e,e,+Gee;, (4)

where €, e;denotes the tensor product of unit vectors e;and €;. In the rectangular domain the
“radial” direction (normal to the free surface) is vertical and the tangential direction is
horizontal.

In the axisymmetric ellipsoid, growth is modeled using:

G=G,e e +Gee+Gieye,, (5)

where azimuthal (p) growth is assumed equal to the in-plane tangential growth. In Egs. 4-5
the radial and tangential directions are defined in a standard elliptical or ellipsoidal
coordinate system. In both models, the thin upper layer (the cortex) grows tangentially only
at a constant rate, Gy. In deeper layers (the foundation, or core) growth ensues in response to
stress.

Cortex:  G=1+Gpt, G,=1. ()

G
tr =a(orr—010)Gr, 6_;:a(0'tt_0-10)Gt‘ (7

Core:

The parameters o,9 and o are “target” stresses for the core; growth will continue until these
stress values are reached. The parameter a (units: 1/Pa-s or 1/Pa-hr) determines how rapidly
variations in growth occur in response to variations in radial or tangential normal stress (o,
or o). For simplicity we assume 4 is the same in both directions. A very rough estimate of
&-3x1073/Pa-hr may be obtained for white matter from the experiments of Chada et al. (19)
who determined neurite elongation rates of 200 wm/hr under tension of 2 pN (200 pdyne).
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The stiffness of the material in the core will also affect how quickly it responds to cortical
growth. For an incompressible material undergoing small, uniaxial, plane-strain
deformations, the stress-strain relationship is o= 4, where e is the strain and gfis the
shear modulus of the core (the subscript £denoting “foundation” is used to distinguish core
from cortex). Defining dimensionless stress o= o/4u5 We can rewrite Egs. 7 as

0G, _ oG, _
7=4ﬂfa(rf,~r—rfro)Gr E=4ﬂfa(0'tt_0'zO)Gt ®)

It is apparent that the rate constant governing the response of the core to imposed
deformation is R¢= 44ur(units: 1/s). Fully dimensionless versions of Egs. 6—7 can be
obtained using = Gyt

Cortex: Gi=1+1 G,=1 (9)

0G, R _ _ 0G;, Ry _ _
Tl :G_j(:(o'rr_a'rO)Gr 6_‘;:6_};(0-”_0-!0)(;1 (10)

Core:

Finite element simulations of the rectangular, elliptical and ellipsoidal models were
performed using COMSOL Multiphysics software (V.4.3, COMSOL Inc., Burlington, MA).
Routine simulations in the rectangular domain were performed with 2412 rectangular
elements; in the 2D ellipse and axisymmetric ellipsoid the domain was discretized into 2498
triangular elements. Quasi-static, time-dependent simulations were performed with the
COMSOL backward differentiation formula (BDF) algorithm with maximum absolute error
tolerance < 1077 and relative error tolerance < 107%. Since the locations of spatial
instabilities are extremely sensitive to imperfections in numerical models, small
imperfections were deliberately introduced by simulating low levels of radial growth in the
core in the early stages of the simulation. Folding was typically initiated by these
imperfections but the folding pattern was not solely determined by the imperfection field.
The robustness of solutions with respect to discretization (mesh size and time step) was
confirmed by reproducing results with finer mesh resolution and smaller error tolerances.

Analytical prediction of critical stress and wavelength

The time scale of folding is long enough for the brain to grow significantly in response to
stress; such growth in the core would lead to relaxation of the stresses induced by cortical
growth. The behavior of the core thus approximates the response of a viscoelastic material,
specifically a Maxwell fluid. Biot (39) developed a theory for the folding instability of a
thin, laterally compressed, viscoelastic plate embedded in a viscoelastic continuum. The
theory of Biot (39) may be extended to the situation in which compressive stress is due to
tangential growth of a thin elastic plate with thickness /4 (the cortex) and the embedding
medium grows according to the laws in Eq. 7. According to this analysis (shown in the
Appendix) we predict that the wavelength of folds, A, will depend on the ratio 7'z = Gy/R¢
the ratio of cortical growth to the rate constant of stress induced growth, and 8= u/u 5 the
ratio of the short-term elastic moduli of cortex (x) and core (w7). Specifically we predict
that,

p) r+1)\3
L),
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where I"is the largest positive real root of the polynomial equation,

64
r5—3ﬁ2r(;3(r2+2r+1)=0. 12)

In this analysis, existence of at least one positive real root of Eq. 12 indicates that folding

will occur at the given values of growth rate and material parameters. In the present study,
for each parameter combination only one real root of Eq. 12 was found and thus only one

wavelength is predicted.

Growth was simulated using the mathematical description given by Egs. (1-10). The
material models for both cortex and subcortical foundation were hyperelastic (neo-
Hookean). In the cortex, the constant growth rate in the direction tangent to the surface was
specified to be Gy, and there was no growth in the radial direction (normal to the cortical
surface). In the foundation, tangential and radial growth were stimulated by corresponding
stress components, as described by the first-order relationships in Egs. 7.

In all simulations the modulus ratio g between cortex and core was set to 1 unless noted
otherwise. Using the rough estimates &~3x10~3/Pa-hr and shear modulus z~300 Pa leads to
an estimate of the growth rate constant R#1/hr for axons in vitro, which is probably an
upper bound for heterogeneous tissue in vivo. In the ferret the surface area doubles roughly
every four days during the period of folding; this corresponds to a circumferential growth
rate Go~0.01/hr — 0.04/hr. Results are described at specific values of scaled time: == Gyt

Effect of growth rate on folding wavelength

Simulations of a growing cortical plate of thickness /7= 0.05 on a rectangular foundation of
length L =2 and A = 1 were performed while varying the ratio (/g) of the cortical growth
rate, Gy, to the rate constant, Rg governing the stress-induced growth of subcortical layers.
To ensure that folding was initiated in the center of the domain, a small initial imperfection
was introduced by specifying small, positive radial growth in a narrow central band of width
&in the core, using the following modified version of Eq. 104. The final pattern was
insensitive to §for 6 0.1, so § = 0.05 was used.

G, 1

=17, for|x|<¢ and 7<0.01.
—(@—0,0)G+F(x,7);  F(x,T)=q "¢

or T, (13)

0, otherwise
The results of these simulations are shown in Fig. 2, which depicts the growth ratios G,and
G, and the growth-induced stresses oy, and oy for I'g= Gy/ Re= 2.5x1072, 2.5x1073,
2.5x1074, and 2.5x107°. The wavelength clearly /ncreases as the cortical growth ratio I'g
decreases. Also, as expected, the wavelength in simulations scales with the thickness of the
cortical layer (Fig. 3). The wavelengths observed in simulations are close to the wavelengths
predicted using Egs. 11-12 (Fig. 4) and clearly follow the analytically-predicted trend.

Patterns of differential growth and stress

Some features of the patterns of growth-induced stress observed in Fig. 2 are consistent with
previous experimental observations of tissue stress (21) summarized in Fig. 1. Radial
tension is evident within the core of gyri, and tangential tension in the core is highest below
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fundi. However, in the model tangential tension is also seen within the core of gyri. We
hypothesized that the tangential tension in the outermost layer of the core arises because in
the basic model growth is imposed only in the cortex, which is modeled as a completely
separate outer layer. Tangential growth thus occurs in the outer core only in response to
stress, leading to a sharp discontinuity in tangential growth at the interface. In reality, there
is a fairly smooth gradient in tangential growth (6) from the outer cortical layer. We model
this by having the target tangential stress in the outer core track the imposed compressive
tangential stress in the cortex and decay smoothly and rapidly with distance from the
interface (r= H).

oo=—4ut 20U

(14)

With this modification the dependence of wavelength on cortical growth rate is maintained,
but the tangential stress within gyri becomes compressive (Fig. 5), consistent with
observations (Fig. 1, (21)).

Effects of shape, initial conditions, and cortical growth rate

To consider the effects of the geometry of the entire brain while retaining computational
simplicity, we simulated cortical growth in (i) a cylinder with elliptical cross section, and (ii)
an axisymmetric ellipsoid. A 2D elliptical region undergoing plane strain was used to model
the cylindrical case. In both cases the major and minor semi-axes of the elliptical cross-
section were A= 1.2 and B= 1.0 and the thickness of the cortical layer was /= 0.05. In the

X2 )2
2D ellipse, the radial coordinate 7= E+E and in the axisymmetric ellipsoid
2 2
Ve s
R= F-'-ﬁ

As in the rectangular domain, folding was facilitated by specifying initial radial growth in
the core, either in a small band (as in Eq. 13, but for |4 < 6), or as a harmonic or random
field (Eq. 15, below).

G, 1 { F(r,0,7)=Fgtcosk®; 1<0.1 or s)

ot :FH(U”_U’O)G”F(“ %7\ F(.0.1)=Fyr random(r, 6); 7<0.1

Here Fy defines the magnitude of the initial shape perturbation. Both the elliptical geometry
and the initial conditions influenced folding patterns. At similar parameter values, longer
wavelengths were seen in the ellipse and ellipsoid than in the rectangular domain (Fig. 6),
but the general dependence of wavelength on cortical growth rate remained. Converged
folded solutions were found in a smaller range of 7'; at small 75 the growth of the core
prevented critical compressive stress from being reached and at large /5 the core seemed
too stiff to allow significant deflection.

Cortical growth rate affects wavelength in the 2D elliptical domain and axisymmetric
ellipsoid, as in the rectangular domain. In the ellipse and ellipsoid, simulations typically
show that the instability occurs later, allowing the domain to expand significantly (Fig. 6).
We observe that, as in the rectangular domain, the wavelength increases as 7z decreases;
however the number of waves per angular increment remains fairly constant. For a given
value of 7'g the wavelength A recrangle < Aetipse < Aellipsoic Which is consistent with the
structural stiffening effect of curvature.
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Folding patterns exhibited by the elliptical cylinder in response to cortical growth (Egs. 1-
10, 15) are shown in Fig. 7 for three sets of harmonic and random initial conditions. Note
that the final shape appears to be affected by even slight variations in the initial shape.
However, fine-grained random initial conditions lead to a relatively coarse folding pattern,
confirming that material and structural properties play an important role in determining
wavelength.

Heterogeneous initial conditions do not completely determine the final shape; the cortical
growth rate remains important. In Fig. 9 (Row 1) we see that the initial field with spatial
frequency four time less than the initial field in Fig. 8 leads to a final field with the same
short wavelength; the growth rate (/g = 0.50) appears to be the critical factor. For the
identical initial conditions but slower cortical growth (/' = 0.20) almost no folding occurs
(Fig. 9, Row 2). Amplifying the initial radial growth of the core to the point that initial shape
is clearly deformed (Fig. 10) leads to hybrid shapes with both wavelengths represented. One
interpretation of Fig. 10 is that the initial shape determines the locations of primary folds,
and the cortical growth rate mediates the formation of secondary gyri and sulci.

Effects of spatial variations in tangential cortical growth

The consistent locations of primary cortical folds might, alternatively, be due to intrinsic
spatial variations in cortical growth rate. The qualitative effects of such variations can be
captured by replacing the dimensionless equation for uniform cortical growth (Eq. 9;) with

Cortex:  G=1+7(1+0.1cos86) (16)

No initial imperfection or growth in the core was imposed. These spatial variations in
tangential growth appear to drive the ellipsoid toward a final shape with the same number of
lobes as the growth pattern, with gyri at regions of greatest expansion and sulci at regions of
least expansion (Fig. 11). However, short wavelength instabilities may be superimposed on
this pattern (Fig. 11, row 1) if the cortical growth rate is high enough. If intrinsic variations
in tangential growth rate do indeed lead to consistently located primary folds, growth-
induced instability remains the likely cause of secondary gyri.

DISCUSSION

Evaluation of cortical folding hypotheses

The analysis and simulations presented here support the hypothesis that differential
tangential growth of the cortex, rather than axonal tension, drives the folding process. The
current model is distinct from previous models of differential growth that treat the brain as a
layered elastic body (22, 23). The essential feature of the current model is that deeper layers
grow in response to stresses developed by cortical expansion. While axonal tension-driven
models (16) and models in which the cortex is pushed outward by growth (40) may produce
realistic shapes similar to the folded brain, geometric similarity is not strong evidence of the
underlying hypotheses. The stress states predicted by such models are not consistent with
experimental observations described in (21). The predictions of the current model, using
reasonable estimates of parameters from experimental studies (5, 19) are consistent with
both observed folding patterns and observed stress distributions (21).

We previously introduced a model of cortical folding (21) which also included stress-
dependent growth in deeper layers. The prior model included more layers with different
specified growth rates in each layer, but relied on limiting cortical growth to a specific
region to induce a single local fold in that region. In contrast, the current model relies on
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instability to produce folding patterns in which wavelength depends on the relative rates of
growth.

While growth-induced instability is suggested to underlie the more random, shorter-
wavelength secondary folds, two candidate mechanisms are identified for the formation of
primary gyri. (i) Heterogeneous radial growth before the period of folding may set up small
variations in initial conditions (shape, stiffness, or stress) that are amplified by tangential
expansion of the cortex. We note that axonal tension, while not actively producing folds,
may be an important feature of such an initial state. (ii) Tangential cortical expansion itself
may be heterogeneous, as in (21). Current experimental data do not disprove either of these
possibilities. It is clear that the shape of the brain before folding is not perfectly smooth (1-
4); we have also observed that on a coarse scale, cortical expansion is nonuniform (5). More
precise and better resolved measurements are needed to determine the relative importance of
these mechanisms in determining gyral location.

Some investigators have made important predictions regarding cortical folding without
directly addressing the causal mechanism. Todd (41) suggested that initial curvature
determines the folding pattern, with sulci evolving from lines of minimal curvature. This is
consistent with the effects of initial shape exhibited by the current model. Prothero and
Sundstren (42) use scaling arguments to arrive at plausible shapes, but do not address
mechanical forces.

Elastic and hyperelastic models of wrinkling and creasing of soft tissue

Limitations

A number of recent theoretical studies (28, 43—-47) have demonstrated that instabilities of
surfaces or layers in elastic and hyperelastic materials arise in response to compression or
constrained growth. These models of soft hyperelastic materials can produce folds or creases
like those seen in the brain. The current model shares many of the features of these elastic
models, but emphasizes the role of stress-induced growth, rather than elastic deformation, in
predicting the geometry, wavelengths and stress fields associated with folding. The current
model not only produces reasonable predictions of folding patterns and stress distributions,
but more accurately reflects the behavior of the living brain tissue on these time scales.

Both analytical predictions of gyral wavelength and numerical simulations were performed.
There is a consistent discrepancy of approximately 25% between the wavelengths observed
in simulations and the predictions of the stability analysis (Fig. 4, Egs. 11-12, and the
Appendix). The analysis is based on the simplest theoretical model developed by Biot (39)
for folding of a viscoelastic layer embedded in a viscoelastic medium. In this model, the
adhesion (tangential traction) between core and cortex was neglected, and the dimensions of
the foundation (L,H) were assumed to be infinite. Furthermore, the replacement of the

1
operator R by the inverse of the time to reach critical stress, RZT_P=4“G0/ 9 isan ad hoc
assumption that is physically reasonable but not mathematically precise. Despite the
relatively small quantitative discrepancy between Eqgs. 11-12 and simulations, the correct
prediction of the inverse relationship between growth rate and wavelength is a valuable
insight from the analysis.

Although cortical folding is truly a 3D process, simulations were performed in 2D, assuming
either plane strain conditions or axisymmetric deformation. While 2D mechanical models
have proven useful for understanding 3D behavior, it is clear that ultimately 3D models will
be required to study characteristic folding patterns. Similarly, the boundary conditions in the
current model, particularly the assumption of zero force on the cortical surface, are
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idealized. Our results show that boundary forces are not necessary to produce folding, but do
not exclude the possibility that boundary conditions play an important role. Also, other
mechanisms (such as axonal connectivity) could modulate shapes produced by differential
cortical expansion and stress-induced growth.

The current study is focused on the generic mechanisms that govern the initial formation and
wavelengths of gyri. Further numerical studies should explore the large-deformation, “post-
buckled” behavior of these models. Such studies will need to exploit more advanced
simulation techniques to achieve convergence and accuracy under these conditions. The
domains of the current simulations are extremely simple; the extension of modeling and
simulation to the full 3D case with realistic initial shapes (as in (43)) is clearly warranted.

A model of cortical folding based on differential growth, in which the stiffnesses of the
cortex and interior regions of the brain are similar, can explain both (i) variations in
wavelength of folds and (ii) the stress fields observed in the developing brain. Cortical
growth rate, relative to how quickly the core grows in response to stress, affects the
wavelength of cortical folds; more rapid cortical expansion generally leads to shorter
wavelengths. Wavelengths also scale directly with cortical thickness. Finally, the initial
shape before tangential cortical expansion, and spatial variations in tangential expansion
itself, also affect the final shape.
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APPENDIX

A closed-form prediction for cortical wavelength is derived, in terms of the cortical growth
rate and the mechanical properties of the cortical and subcortical regions. We follow the
analysis by Biot (39) of folding of a viscoelastic plate on a viscoelastic foundation. We
begin by modeling the cortex as a thin elastic plate (thickness A, width 6, length L, Young’s
modulus £, Poisson’s ratio 1) on a continuous elastic foundation, or core (thickness A, width
b, length L, Young’s modulus £z Poisson’s ratio vy undergoing plane strain deformation
while under a compressive axial load, P (Fig. A.1). The equation for quasi-static deflections
of the plate, neglecting tangential traction forces between the plate and foundation, is:

E bW 64w+ 8w
1-2 12 9x* ~ 922

The vertical force per unit length g is related to the deflection wby the stiffness of the
foundation. If wis sinusoidal, then g is also sinusoidal with amplitude dependent on the
amplitude, wp, and spatial frequency, y, of w(39).
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The wavelength of the sinusoidal solution is A = 27z/y. (As an aside, we note that in the
classic Winkler foundation model, represented by an array of linear springs, the foundation
stiffness kA= gy/ g is independent of spatial frequency.) The compressive load, 7, on the thin
plate can be expressed in terms of the compressive stress, oz

P=c,bh. A5

Substituting the expressions for w; g, and Pabove into the equation of equilibrium, and
limiting our discussion to the case where both plate and foundation are incompressible

E
E fo_
( 152 =441 and 1-v,2 _4“f) the solution becomes unstable when:
3
uh
774—O'Ph72=—2u_fy, A6
or

Hoo oo, 2y
0'P=§h Y +W. AT

The critical stress op.-at which a specific harmonic solution becomes unstable depends on
the scaled wavenumber /1y = 2//A. The solution with minimal critical stress is found by

do,
setting a(hy)zo, leading to the following expressions for critical stress and wavelength:

u 1/3
”PcF*(%)

u 1/3
/l=27rh(—) A9
3ur

Because stress induces growth over time scale of interest (19) the core does not act like a
purely elastic system. Rather it relaxes after the application of stress, like the spring-dashpot
foundation in Fig. A.2. This behavior is approximated by the classic Maxwell model of a
viscoelastic fluid. For a Maxwell fluid, the force-displacement relation (Eq. A.4) for the
foundation is replaced by
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Defining the operator R=E as in (39), we rewrite the equation above as:

qo=—2usyb Wo A1l

R+Rf

1
where szT_ is the rate constant of the foundation. When R K Rrthe foundation behaves
like a fluid; when R>> R¥it acts like a solid.

Applying the correspondence principle (48), we substitute the new expression into the
equation of motion and evaluate the conditions for stability. The critical load and
wavelength now depend on Rand R¢(39):

R R+R;)\!/3
o =3y (PERN T
R+Rf 3/1fR

R+R)\'/3
u) Ala

/l=27rh(
3/JfR

In these expressions it is clear that choosing /R to be small (slow deformations) leads to
small critical load and long wavelength — the foundation appears soft. When Ris large
(relatively rapid, but still quasi-static deformation), the critical load increases and the
wavelength decreases, approximating the response of a beam on a stiff foundation.

Extension to growth: an elastic layer growing on a viscoelastic foundation

The “viscoelastic rate constant” of the growing foundation is Rr= 4au¢(Eq. 8). To choose
the value of the operator R, we consider how long it will take to achieve the critical stress in
the growing cortex. If the growth rate in the cortex is Gy, the critical compressive stress oy,
~ 4Gy Tp, Where Tpis the “critical time” when buckling occurs. If we set the value of £=
1/7p, and thus set o, = 4. Go/ R in the equation for the critical stress (A.12) we obtain a
polynomial in R.

641Gy’
2
f

R - (R*+2R;R+R*)=0 14

This equation can be rewritten in terms of the scaled operator "= R/Rrand the
dimensionless parameters /' = Go/Rrand B = u/r We obtain:

64
1"5—?,6’21"(;3(1"2+2F+1)=0 A5

The existence of at least one positive real root of Eq. A.15 (Eq. 12 in the main text) indicates
that the critical load (Eq. A.12) will be reached at the given ratios of growth rate and
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material parameters. The corresponding wavelength is given by Eq. A.17 (Eg. 11 in the

main text).

7, 30 (ﬁ<r+1>)5‘ s
u  BIr+hH\ 3T '

r+1)\?
%:M(ﬁ(; )) A7

Egs. A.15 - A.17 show that the wavelength and critical stress depend on these two
dimensionless parameters: g, the ratio of the short-term elastic moduli of cortex and core,
and 7, the ratio of cortical expansion rate to the rate constant of stress-induced growth.
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Figure 1.

Summary of cortical folding studies in the ferret (4, 5, 21, 49). (a) Sequence of cortical
surfaces generated from longitudinal MR imaging studies in the neonatal ferret. PXX = XX
days after birth. (b) Coronal slice of P18 ferret brain near the conclusion of the folding
process. The illustration on the right summarizes the results of dissection studies of tissue
stress (21). Initial cuts (dotted lines) open when tension is hormal to the cut. 1: radial cuts
through gyri stay closed (showing lack of tension between gyral walls) except at outer
surface, where circumferential tension exists. 2: radial cuts through the bases (fundi) of sulci
open in subcortical layers, showing circumferential tension in these locations. 3:
circumferential cuts through gyri open, showing radial tension along the axes of gyri.
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Figure2.

Effects of cortical growth rate on wavelength, subcortical growth, and stress in the basic

model of cortical folding. Target stresses g, = o = 0. Columns: Radial growth G

tangential growth G;; radial stress o;; tangential stress oy (Row 1) I'g = 2.5x1072, scaled
time 7= 0.060; (Row 2) /5= 2.5x1073, £=0.035; (Row 3) /5= 2.5x1074, = 0.014; (Row

4) I'c=2.5%x107°, £=0.08. The modulus ratio =1 in all cases.
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Figure 3.

Folding wavelength is proportional to cortical thickness for a given value of cortical
tangential growth rate. (a) Cortical thickness /= 0.03. (b) /7= 0.07. Parameters: /=
2.5x1073%; g=1.

Phys Biol. Author manuscript; available in PMC 2014 February 01.

Page 17



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bayly et al. Page 18

40 40

°
o

[ LII

30 30

10

Figure4.

(a) Effect of cortical growth rate on the gyral wavelength predicted by Eqgs. 11-12 for three
values of the stiffness ratio 8. (b) Solid line: wavelengths predicted from Eqgs. 11-12 for g =
1; Dotted line and open circles: wavelengths observed in simulations.
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Figureb.

Effects of cortical growth rate on wavelength, subcortical growth, and stress in the cortical
folding model with a compressive target stress in the outer core. Columns: Radial growth
G, tangential growth G;; radial stress oy; tangential stress o (Row 1) I'g=2.5x1072, t,
=0.059; (Row 2) 75 = 2.5x1073, £=0.034; (Row 3) I' 5= 2.5x1074, £=0.013; (Row 4) [ 5=
2.5x1075, £=0.048.
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Figure®6.
Folding in (a)the elliptical cylinder (plane strain) model and (b) the axisymmetric ellipsoid
model. Color encodes tangential growth G;
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Figure7.

Effects of initial shape perturbation on wavelength, subcortical growth, and stress in the 2D
elliptical (cylinder) model with a compressive target stress in the outer core. Initial radial
growth in the core was attained with Eq. 15 with AR, 6, 7) = Ryt cos k@ for t<0.1.
Columns: Initial radial growth G,at £=0.10; radial growth G,; tangential growth Gj, radial
stress oy, tangential stress o Row 1: A, 6, ) = 10z cos 326 for < 0.10, shown at z=0.90.
Row 2: Ar, 6, ) = 10z cos 88 for < 0.10, shown at £=0.60; Row 3: Ar, 6, ) =50t
random (r, ) for < 0.1, shown at z=1.2. In all rows 7'z = 0.20.
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Figure8.

Effects of cortical growth on wavelength, subcortical growth, and stress in the axisymmetric
ellipsoid model. Initial radial growth in the core was attained with Eq. 15 with AR, 6, 7) =
10z cos 326 for £< 0.1. Columns: Initial radial growth Gpat £=0.10; radial growth Gg;
tangential growth Gy radial stress oy; tangential stress o7 3D view of radial stress o, Row 1:
I5=0.50, £=0.90; Row 2: I'=10.20, z=1.25.
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I,=0.50

Figure9.
The effects of cortical growth rate and small variations in initial conditions. Initial radial

growth in the core was imposed according to Eq. 15 with AR, 6, t) = 10z cos 88 for t<
0.10. Columns: Initial radial growth Ggat £ =0.10; radial growth Gg; tangential growth G,
3D view of radial stress o Row 1: 5= 0.50, £=0.90; Row 2: /' 5=0.20, £=1.25.
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Figure 10.

The effects of cortical growth rate and larger initial perturbations. Initial radial growth in the
core was imposed according to Eq. 15 with AR, 6, ) =50z cos 868 for < 0.10. Columns:
Initial radial growth Gpat =0.10; radial growth Gg; tangential growth G; 3D view of
radial stress o. Row 1: I'g=0.50, 7=0.90; Row 2: /5= 0.20, £=1.25.
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Figure 11.

The effect of spatial variation of cortical growth rate. Spatial variations of tangential growth
in the cortex were imposed according to Eq. 16 with G;=1 + (1 + 0.1 cos 86). Columns:
Tangential growth G;at £=0.10; radial growth Gg; tangential growth G; 3D view of radial
stress o, Row 1: I'g=0.50, £=1.00; Row 2: [ =0.20, 7=1.25.
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FigureA.l.

A thin elastic beam on an elastic foundation, under compressive loading.
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FigureA.2.

(@) If no subcortical growth occurs in response to stress, the cortex is like the beam on an
elastic foundation. (b) If growth occurs in response to stress, the core acts like a viscoelastic
(Maxwell) foundation, responding like a solid for fast deformations and like a fluid at slow
strain rates.
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