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Abstract
In constructing predictive models, investigators frequently assess the incremental value of a
predictive marker by comparing the ROC curve generated from the predictive model including the
new marker with the ROC curve from the model excluding the new marker. Many commentators
have noticed empirically that a test of the two ROC areas [1] often produces a non-significant
result when a corresponding Wald test from the underlying regression model is significant. A
recent article showed using simulations that the widely-used ROC area test produces exceptionally
conservative test size and extremely low power [2]. In this article we demonstrate that both the test
statistic and its estimated variance are seriously biased when predictions from nested regression
models are used as data inputs for the test, and we examine in detail the reasons for these
problems. While it is possible to create a test reference distribution by resampling that removes
these biases, Wald or likelihood ratio tests remain the preferred approach for testing the
incremental contribution of a new marker.
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1. Introduction
Receiver operating characteristic (ROC) curves provide a standard way of evaluating the
ability of a continuous marker to predict a binary outcome. The area under the ROC curve
(AUC) is a frequently used summary measure of diagnostic/predictive accuracy.
Comparison of two or more ROC curves is usually based on a comparison of the area
measures. The standard method comparing AUCs is a non-parametric test [1], hereafter
referred to as the “AUC test,” although a method developed earlier is also used widely [3].
The AUC test uses the fact that the AUC is a U-statistic and incorporates the dependencies
caused by the fact that the markers are usually generated in the same patients, and are thus
“paired.”

Although the AUC test was originally developed in the context of comparing distinct
diagnostic tests or markers, it has increasingly been adopted for use in evaluating the
incremental effect of an additional marker in predicting a binary event via a regression
model. Indeed authors of several methodological articles on predictive modeling have
advocated the use of ROC curves for this purpose though these groups have generally not
advocated statistical testing of the ROC curves specifically [4, 5, 6, 7, 8]. In this setting
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investigators typically use the fitted values from the regression model to construct an ROC
curve and to compare this with the ROC curve derived similarly from the fitted values from
the regression excluding the new marker. However, a recent article provided several
examples of the use of this strategy in the literature, and demonstrated using simulations that
the AUC test has exceptionally conservative test size in this setting, and much lower power
than the Wald test of the new marker in the underlying regression model [2].

We show here that in the context of comparing AUCs from fitted values of two nested
regression models the AUC test is invalid. That is the nominal reference distribution does
not approximate the distribution of the test statistic under the null hypothesis of no
difference between the models. Note that this is a common sense use of the term validity
rather than the narrow use of this term to reflect whether or not the test size is less than
(valid) or greater than (invalid) the nominal significance level. We use the Wald test as a
benchmark in recognition of its wide usage and the well-known result that Wald test is
asymptotically equivalent to the likelihood ratio test and the score test [9, Chapter 9].

2. AUC Test for Nested Binary Regression Models
2.1. A Review of the AUC Test

Consider first the comparison of the predictive accuracy of two independently generated
predictive markers, denoted W1i and W2i for cases i = 1, …, n. We are interested in
predicting a binary outcome Yi, where Yi = 1 or 0. The estimate of the AUC for marker k
can be written as a U-statistic:

(1)

where ,  and I (.) is the indicator function. The AUC is
equivalent to the Mann-Whitney estimate of the probability that a randomly selected marker
with a positive outcome is greater than a randomly selected marker with a negative outcome.

It is important to note that (1) assumes that high marker values are more indicative of
positive outcomes, Yi = 1, than low marker values. This assumption, often relegated to small
print or overlooked, is highly consequential for our purposes. We will call it known
directionality. Known directionality accompanies most single-marker analyses but this is not
the case for markers derived as predictions from multivariable regression models.

An estimate of the difference between A2 and A1 is given by δ̂ = Â2 − Â1. DeLong et. al. [1]
derived a consistent estimate for the variance V̂ = Var(δ̂) and proposed the test statistic

 which has an asymptotic standard normal distribution under the null hypothesis
that δ = 0. We heretofore refer to this as the AUC test.

2.2. AUC test is invalid with nested binary regression models
The original derivation of the AUC test assumes that the two markers are to be compared
head-to-head [1]. If the goal is to evaluate the incremental value of a marker in the presence
of another marker then the AUC test cannot be used directly. Instead one needs to create a
“composite” marker that captures the combined effect of the two markers, and then compare
this with the first marker. This aggregation of predictive information is usually
accomplished using regression. For example in the setting of logistic regression we would
compare the first marker W1 = {W1i} with a composite marker derived from the risk
predictors from a logistic regression of Y = {Yi} on W1 and W2 = {W2i}. Frequently there
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are other variables (Z) in the regression and so the comparison is between two composite
predictors, derived from the following two models:

(2)

(3)

In this context we are interested in testing the null hypothesis that β2 = 0. One can then form
the linear predictors using the MLEs of the parameters

(4)

(5)

Let  and  denote the AUCs estimated from (1) using  and  in place of W1 and W2.

Also let  and let T* denote the test statistic corresponding to δ̂* calculated in the
manner outlined in Section 2.1. We heretofore refer to T* as the AUC test statistic. As
reasonable and straightforward as it seems, the comparison using the AUC test in this
manner is not valid for two reasons.

The first reason is that the variance estimate V̂* is based on the assumption that the

observations from the patients are mutually independent, i.e.  for all i
≠ j. With  and  defined as in (4-5) this assumption is clearly violated. In fact, typically

 and  are strongly correlated, as we demonstrate by example later in
Section 4.

The second reason concerns the construction of  as defined in (1). From the perspective of
predictive accuracy of an individual marker it should make a difference whether Wki is
ranked from the smallest to the largest or from the largest to the smallest. We know whether
a high value of a diagnostic test should be associated with increased risk of disease. That is,
we know a priori how to order W with respect to Y. If we define , ∀i, and the
AUC for  to be  then it is easily shown that . With known directionality, an
AUC estimate less than 0.5 is admissible, though it would be recognized that the decrement
from 0.5 is likely to be due to random variation. But in the context of a regression model it is
not possible to invoke known directionality. In this context the model typically produces an
ordering that leads to an increase in the area estimate. That is, for M2 for example, if W2 is
observed to be positively associated with Y after adjusting for W1 and Z then the sign of β̃2
will be positive. If, on the other hand W2 is observed to be negatively associated with Y then
the sign of β̃2 will be negative. Either way, the net effect will usually be to increment the
AUC estimate upwards. This phenomenon is especially problematic when testing the null
hypothesis that β2 = 0. The reference distribution for the AUC test is constructed under the
assumption that half the time the results should lead to a decrement in AUC, but in fact this
happens much less frequently. This creates a bias in T* such that it no longer has zero mean
under the null hypothesis. However, as the true value of β2 departs from the null value the
probability of observing a negative residual association of W2 and Y by chance becomes
less likely.
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2.3. Simulations
The extent and magnitude of the problem explained in the preceeding sections has been
investigated by Vickers et. al. [2] who performed simulations to show that the use of the
AUC test in nested regression contexts is problematic under several scenarios. In the
following we have reproduced simulations constructed in the same way as in [2] and we
augment these with graphs that help to explain the problems in the AUC test. Details of the
data generation are provided in [2], but briefly the simulations are constructed as follows.
The outcomes {Yi} are generated as Bernoulli random variables with varying probability
(0.5 and 0.2 are presented). Pairs of marker values {W1i, W2i} are generated as bivariate
standard normal variates with correlation ρ, conditional on {Yi}. The mean is (0, 0) when Yi
= 0 and (μ1, μ2 + ρμ1) when Yi = 1. Two logistic regressions are then performed: logit(Yi)

= β0 + β1W1i and logit(Yi) = β0 + β1W1i + β2W2i, and pairs of predictors 
generated as in Section 2.2. These are analyzed using the Wald test (for testing β2 = 0) and
the AUC test based on the statistic T* [1].

Results are displayed in Table 1 for different combinations of ρ, μ1, μ2, and for two
different sample sizes. Note that μ2 represents the conditional predictive strength of W2,
with the null hypothesis equivalently represented by μ2 = 0 and β2 = 0. The parameter μ1
represents the underlying predictive strength of W1. The actual AUCs represented by these
configurations are also displayed in the Table. These results indicate clearly that the AUC
test is extremely insensitive with exceptionally conservative test size and low power. Under
the null hypothesis, i.e. when μ2 = 0, the AUC test is significant typically only once in 5000
simulations (at the nominal 5% significance level) whereas the Wald test has approximately
the correct size. As μ2 moves away from 0, the AUC test is substantially inferior to the
Wald test in terms of power. We also see that doubling the sample size from 250 to 500 does
not remedy the problem. This is because the bias involved in the estimation of the mean and
the variance of the AUC test statistic does not diminish with increasing sample size. Poor
performance of the AUC test is also largely unaffected by the degree of correlation between
the markers (represented by ρ). Table 1 also makes clear that the performance of the AUC
test under the null remains equally unacceptable when disease prevalence changes from 0.5
to 0.2.

To better illustrate the biases in using the AUC test we display in Figure 1 results from a
specific run of simulations (μ1 = 0.3, μ2 = 0 and ρ= 0 with n = 500). The horizontal axis is
the standardized AUC test statistic T* which should have zero mean and unit variance. The
solid line is the kernel density estimate of the observed test statistic over 5000 simulations; it
has mean 0.353 and variance 0.232. The dotted line is a standard normal density which is the
reference distribution of the AUC test statistic calculated in the conventional way [1].
Clearly, the difference between the two densities is substantial, both with respect to mean
and variance. The graph shows the paradoxical effects of the two major sources of bias. The
mean of the test statistic has a positive bias. However this is more than offset by the fact that
the variance is greatly reduced relative to the asymptotic variance of the estimator with the
result that very few realizations of this process achieve a significant test result.

The occasional negative values of the AUC test statistic in Figure 1 reveal another source of
discrepancy between the AUC and Wald tests. This is due to dissonance between the
maximum likelihood and AUC estimates. Parameters that maximize the likelihood do not
necessarily maximize the AUC, so there will be some data sets where the residual

association between  and Y is positive yet the corresponding increment in AUCs is less
than zero. In other words, the parameter values that maximize the likelihood result in a
positive Wald test statistic but a decrement in the AUC. In our simulations under the null we
observed a negative AUC test statistic approximately 20% of the time. This phenomenon
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becomes less common when W2 has incremental information, since the estimated coefficient
is not only positive but also distant from 0 in most circumstances.

It is instructive to examine graphically the way the bias in the mean of the AUC test statistic
operates. Figure 2 plots the standardized Wald test statistic against the AUC test statistic for
two scenarios: no incremental information in W2 (left panel) and strong incremental
information in W2 (right panel). In both cases the statistics should exhibit strong positive
correlation. For the left panel, since there is no incremental information, data sets that lead
to strongly negative Wald tests produce strongly positive AUC tests due to known
directionality. For the right panel, as indicated in Section 2.2, these discrepancies are
unlikely to occur. Hence the V-shaped pattern on the left and this V-shape is the source of
the bias described in Section 2.2. The magnitude of the problem becomes smaller as the
signal increases; the figure on the right exhibits the positive correlation between the two
tests that we would expect. This is because it is increasingly unlikely, as β2 increases, that
the residual association between W2 and Y is negative.

Figure 2 explains the source of the discrepancy with respect to the location of the two
densities in Figure 1. An explanation of the scale discrepancy is elusive graphically but is
suggested by examining the following between subject correlations:

 and  all of which are induced by the
derived nature of W*s. The variance of the asymptotic reference distribution in Figure 1 is

computed under the assumption that . Estimates of these correlations obtained
from our simulations indicate that these are consistently, and frequently strongly, positive.
For example for the configurations used in Figures 1 and 2 with μ1 = 0.3, μ2 = 0 and ρ = 0,

we obtained  and . These correlations were estimated empiricially
from the predictors generated from multiple simulations.

We note that it is not self-evident that introduction of correlated data and known
directionality will undermine the asymptotic properties of the U-statistics that comprise the
AUC test. In fact, the AUC test statistic does not appear to converge to a limiting
distribution with zero mean and unit variance. To illustrate this, using the same parametric
configurations as in Figure 1, we computed the empirical mean and standard deviation of the
AUC test statistic over 1000 simulated data sets for sample sizes ranging from 200 to 10000
(Figure 3). The mean of the AUC test statistic (circles) should converge to zero while the
standard deviation (triangles) should converge to 1. Clearly neither convergence is apparent
within reasonable sample sizes.

3. Performance of the Area Test in Non-Nested Models and Validation
Samples
3.1. Non-Nested Models

Our primary objective has been to evaluate the incremental value of a new marker which
inherently gives rise to the nested regression model. It is, however, logical to ask if the AUC
test is valid if the comparison is between the distinct incremental contributions of two
different markers. That is we wish to compare non-nested models specifically in the
following way. Replace models M1 and M2 (2-3) with

and the linear predictors (4-5) now become
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As before, the AUC test is used to compare  and , in this case representing the
hypothesis that β2 = β3.

Table 2 reports the results of simulations conducted under this scenario. Here μ2 = E(W2),
μ3 = E(W3) and ρ = Cor(W2,W3). The “AUC” column in the table represents the common
expected AUCs that are being compared. The table shows that the test is conservative when
the common increment from the markers (μ2, μ3) is small but approaches the nominal level
when this increment becomes larger. However, the negative bias in the test appears to be
unrelated to the overall AUC. For example the common AUC is 0.584 when μ1 = 0, μ2 = μ3
= 0.3 but is also 0.584 when μ1 = 0.3, μ2 = μ3 = 0. The test is strongly biased in the latter
case but approaches nominal test size in the former case. The empirical distributions of the
AUC Test in these two scenarios are plotted in Figure 4 in red and black, respectively,
versus the theoretical reference distribution (dashed line). The Figure shows that the
distribution of the test statistic closely matches the reference distribution when the common
signal in the two markers being compared is large (μ2 = μ3 = 0.3) but the reference
distribution substantially overestimates the variance when the common signal is small or
zero.

3.2. Validation Samples
The scenarios we have considered so far have been limited to the case where estimation of
regression parameters and comparison of the ROC curves were performed on the same data
set. It is not uncommon for marker studies to employ validation samples where coefficients
are estimated in a training set and derived predictors are constructed and compared only on a
test set. Use of independent validation samples is considered to be the gold standard method
for marker studies since it can eliminate optimistic bias. Is this appropriate when the data
being used are calculated predictors from a nested regression model?

We conducted a set of simulations in which the data are generated in exactly the same way
as in Section 2.3. Each simulated data set is then randomly split into training and test sets of
equal size. Two logistic regressions are estimated using only the training set: logit(Yi) = β̂0

+ β̂1W1i and logit(Yi) = β̃0 + β̃1W1i + β̃2W2i. Following this, pairs of predictors 
are calculated using solely the test data but with the β̂s and β̃s obtained from the training set.

In using validation data investigators are usually interested primarily in generating valid
estimates of the AUCs, since these are known to be biased upwards in training data, rather
than repeating tests of significance. Thus in Table 3 we present the difference in the non-
parametric AUC estimates from the test data set, denoted “estimated ΔAUC”. These can be
compared with the “true ΔAUC”s in the table to infer bias. We observe a modest negative
bias in the estimated ΔAUC across all configurations in the table. To understand this we
observe that empirical AUCs are based on ranks and and that the ranks are invariant under a
location and scale shift (provided the scale factor is positive). Consequently a comparison of

 versus  is equivalent to a comparison of  versus  where  and

. Thus we are in effect comparing a single marker {W1i} with the same
marker with additional noise. The expectation of the difference in AUCs is negative unless
β̃2 is exactly zero in the training set. However, this decrement is zero when μ1 = μ2 = 0
since both AUCs are 0.5 in this scenario.
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4. Correcting the Reference Distribution for the AUC Test
The insensitivity of comparing AUCs in the nested setting in relation to the results of the
Wald or likelihood ratio tests has been noticed by several commentators in recent years, and
this has led to a perception that change in AUC is insensitive as a metric for comparison
[10]. However, our results from Section 2.3 show that use of the AUC test is fundamentally
biased in this context. This raises the question of whether adaptations to the reference
distribution of the AUC test statistic can correct the problem. In the following we outline a
modification to the derivation of the reference distribution for the AUC test to demonstrate
that it is possible to construct a valid AUC test in this context. We construct an orthogonal
decomposition of W2 from Section 2.2:

where P = (X′X)−1 X and X = (1 W1 Z). That is,  is the projection of W2 on to the vector

space spanned by (1 W1 Z) and  is the orthogonal complement of . By definition  is

uncorrelated with  and hence all the information in W2 that is incremental to (W1Z)
must be contained in . Under the null hypothesis  forms an exchangeable sequence.
This suggests that permuting  and fitting the same logistic regression models as in Section
2.2 will generate a realization of the data generating mechanism under the null hypothesis.
We have examined this conjecture using a reference distribution for T* in which the test
statistic is calculated after repeated permutations of .

This “Projection-Permutation” reference distribution is constructed as follows:

1. Compute the projection matrix P = (X′X)−1 X where X = (1 W1 Z).

2. Compute  and 

3.
Obtain a permutation of the vector , call it 

4. Construct 

5. Fit models M1 and M2 replacing W2 with W2,perm from Step 4, and compute the
area test statistic T*

6. Repeat 3-5 B times

7. Construct the reference distribution from the B values of the test statistic computed
in step 6.

Figure 5 illustrates the validity of the Projection-Permutation reference distribution
graphically for n = 250, ρ = 0.5 and μ = 0.3. The empirical density of the difference in areas
(δ̂*) under the null hypothesis (i.e., when μ2 = 0) is given by the black curve and the density
of the Projection-Permutation reference distribution is given by the red curve. The two are
almost exactly the same, demonstrating by example that the reference distribution generated
by projection-permutation closely matches the simulated distribution of the AUC test
statistic. Further, the blue curve depicting the reference distribution under the alternative
hypothesis, i.e. when μ2 = 0.3 is virtually identical to the black and red curves, showing that
the null distribution is computed correctly when the data are generated under the alternative
hypothesis. The green curve represents the distribution of δ̂* under this alternative.
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Construction of Figure 5 deserves some explanation. For each simulated data set δ̂* is
computed and the values over 10000 simulations are used to construct the density estimates
depicted by the black (null) and the green (alternative) curves. Each simulated data set is
also used to construct the Projection-Permutation reference distribution. To obtain a single
reference distribution from these 10000 reference distributions we randomly sampled one
permutation for each data set and then used those samples to construct the reference
distributions shown in the figure.

The operating characteristics of this approach have been examined in the same
configurations as we used to evaluate the Wald test and the AUC test, and the results are
presented in Table 1 in the rows marked “Projection-Permutation Ref.” The results
demonstrate that this reference distribution leads to a test of AUCs that has the correct size
and comparable, though slightly lower, power to the Wald test.

5. Discussion
In this article we have provided an explanation to the baffling observation that use of the
AUC test to compare nested binary regression models is invalid [2]. We found that the
validity problems of the AUC test in this context are due to two principal reasons. The first
reason is that the test is based on the assumption that the data from individual subjects (W1i,
W2i) and (W1j, W2j) are mutually independent. This is grossly violated when using
predictors from a regression model. This leads to an incorrect variance estimate of the test
statistic as described in Section 2.3 and illustrated in Figure 1. The second major problem is
that in its proper construction the AUC test is fundamentally one-sided in that we know in
advance the anticipated directionality of the relationship between predictor and outcome,
allowing the possibility of negative effects by chance. In the regression context the
methodology does not distinguish any such “known directionality” of the markers and
instead constructs predictors to maximize the likelihood. In most cases this results in an
optimized ROC curve. Consequently both ROC curves being compared are optimized in the
same direction. Both of these phenomena lead to bias in the test statistic. The effect of these
two factors is to greatly reduce the sensitivity of the AUC test. Using analogous simulations
we have also established that the AUC test is also biased in some configurations when the
comparison is between two predictors drawn from non-nested regression models.

Since ROC curves are widely used for assessing the discriminatory ability of predictive
models, comparing the ROC curves derived from predictive models is commonplace. In the
first four months of 2011 alone, we easily identified seven articles in clinical journals that
used the AUC test to compare nested logistic regression models [11, 12, 13, 14, 15, 16, 17]
which speaks to the prevalence of the problem in applications of biostatistics. Specific
instructions on comparing AUCs from logistic regression models using STATA are already
published [18]. A recent feature in PROC LOGISTIC of SAS (ROCCONTRAST statement
in version 9.2) enables users to specify nested logistic regression models, estimate their
ROC curves and compare them using the AUC test. Availability of this feature in some of
the most commonly used statistical packages is likely to increase the use of this invalid
procedure.

We have shown that it is possible to construct a valid reference distribution for the AUC test
using permutation. In so doing we have shown that the problem is not due to the AUC test
statistic but is instead a consequence of the fact that the standard asymptotic reference
distribution is inappropriate in the context of modelled predictors. Nevertheless comparison
of two nested models using the AUC test statistic and its valid reference distribution (from
Section 4) is unncessary since its operating characteristics are inferior to those of the Wald
test, which is widely available in standard statistical software.
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In all of our simulations we generated marker values and other covariates from the
multivariate normal distribution. This represents a framework in which the logistic
regression model is fully valid. Given that the derived AUC test is grossly invalid in these
circumstances in which the data generation is a perfect fit for the assumed model, we
consider it unnecessary to investigate alternative sampling models for which observed biases
may be caused either by inappropriate modeling assumptions or the phenomena we have
described.

The performance of the AUC test has perplexed other investigators, including Demler et. al.
[19] who assumed multivariate normality of the markers and employed linear discriminant
analysis to construct the risk prediction tool. While these authors also seem to be motivated
with the underperformance of the AUC test, they show that the AUCs of M1 and M2 are the
same if and only if α2 = 0, where α2 is the coefficient of the second marker from a linear
discriminant analysis. They show that the F-test for testing α2 = 0 has the correct size for
comparing the AUCs. These authors did not use the empirical estimate of the AUC nor did
they consider the AUC test of DeLong et. al. [1], the most commonly used method of
comparing the AUCs. Our results specifically explain the poor performance observed in
Vickers et. al. [2] by showing that the AUC test is biased and its variance is incorrect in this
specific setting.

Finally, we clarify that the tests we have investigated are designed to test whether or not a
new marker has any incremental value in predicting the outcome. Even if the marker is
found to have significant incremental value, it is important to gauge the magnitude of the
incremental information to determine if the marker has pratical clinical utility. ROC curves
and the change in ROC area in particular have often been used for this purpose, although
various other measures and approaches have been proposed[20, 21].
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Figure 1.
Distribution of the AUC test statistic under the null hypothesis. The solid curve depicts the
density of the observed test statistic from 5000 simulations and the dashed curve is a
standard normal, the presumed asymptotic distriution of the test statistic under the null
hypothesis. Data are generated using μ1 = 0.3, μ2 = 0, ρ = 0 and n = 500.
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Figure 2.
Wald statistic and the AUC test statistic under the null (left panel) and alternative (right
panel) hypotheses. Both graphics are generated using 5000 draws from M2 with μ1 = 0.3
and n = 500 for both panels, μ2 = 0 for the left panel and 0:2 for the right panel (ρ = 0 for
both panels).
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Figure 3.
The mean (circles) and standard deviation (triangles) of the AUC test statistic from
simulations at sample sizes ranging from 200 to 1000 in steps of 200. Each point is
calculated from 1000 simulated data sets using the configuration μ1 = 0.3, μ2 = 0 and ρ = 0.
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Figure 4.
The empirical distributions of the AUC Test in two specific instances of a non-nested
model: red curve for μ1 = 0, μ2 = μ3 = 0.3 and black for μ1 = 0.3, μ2 = μ3 = 0. In both cases
the common AUC is 0.584 and the theoretical reference distribution is given by the dashed
line.
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Figure 5.
Distribution of δ̂ for ρ = 0.5. The black (μ2 = 0) and green (μ2 = 0.3) curves are estimated
from the data over 10000 simulations. The red (μ2 = 0) and blue (μ2 = 0.3) curves are
estimated from the reference distribution obtained by Projection-Permutation.

Seshan et al. Page 15

Stat Med. Author manuscript; available in PMC 2014 April 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Seshan et al. Page 16

Ta
bl

e 
1

R
ej

ec
tio

n 
pr

ob
ab

ili
tie

s 
of

 th
e 

te
st

s.

E
(Y

)
μ 2

T
es

t

A
U

C
1a  

= 
0.

50
A

U
C

1a  
= 

0.
58

μ 1
 =

 0
, ρ

 =
 0

μ 1
 =

 0
, ρ

 =
 0

.5
μ 1

 =
 0

.3
, ρ

 =
 0

μ 1
 =

 0
.3

, ρ
 =

 0
.5

n
n

n
n

25
0

50
0

25
0

50
0

25
0

50
0

25
0

50
0

A
U

C
2b

P
(R

ej
ec

t)
c

A
U

C
2b

P
(R

ej
ec

t)
c

A
U

C
2b

P
(R

ej
ec

t)
c

A
U

C
2b

P
(R

ej
ec

t)
c

0.
5

0

W
al

d

0.
50

0.
04

0.
05

0.
50

0.
05

0.
05

0.
58

0.
06

0.
06

0.
58

0.
05

0.
05

A
U

C
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

PP
R

d
0.

04
0.

05
0.

05
0.

05
0.

06
0.

06
0.

04
0.

05

0.
1

W
al

d

0.
53

0.
12

0.
19

0.
53

0.
14

0.
24

0.
59

0.
12

0.
18

0.
59

0.
16

0.
25

A
U

C
0.

01
0.

02
0.

02
0.

04
0.

00
0.

01
0.

02
0.

01

PP
R

d
0.

11
0.

17
0.

15
0.

23
0.

11
0.

18
0.

15
0.

22

0.
2

W
al

d

0.
56

0.
36

0.
59

0.
57

0.
44

0.
75

0.
60

0.
36

0.
60

0.
61

0.
43

0.
70

A
U

C
0.

08
0.

18
0.

11
0.

29
0.

04
0.

11
0.

06
0.

17

PP
R

d
0.

36
0.

57
0.

42
0.

72
0.

32
0.

53
0.

41
0.

68

0.
3

W
al

d

0.
58

0.
66

0.
93

0.
60

0.
76

0.
96

0.
62

0.
67

0.
91

0.
63

0.
75

0.
96

A
U

C
0.

22
0.

56
0.

33
0.

73
0.

13
0.

39
0.

22
0.

54

PP
R

d
0.

63
0.

91
0.

75
0.

95
0.

65
0.

88
0.

72
0.

95

0.
2

0

W
al

d

0.
50

0.
04

0.
05

0.
50

0.
06

0.
05

0.
58

0.
05

0.
06

0.
58

0.
05

0.
05

A
U

C
0.

01
0.

00
0.

01
0.

00
0.

00
0.

00
0.

00
0.

00

PP
R

d
0.

04
0.

05
0.

06
0.

05
0.

05
0.

06
0.

04
0.

05

0.
1

W
al

d

0.
53

0.
10

0.
16

0.
53

0.
11

0.
17

0.
59

0.
10

0.
14

0.
59

0.
10

0.
17

A
U

C
0.

01
0.

03
0.

02
0.

03
0.

01
0.

01
0.

01
0.

01

PP
R

d
0.

11
0.

14
0.

10
0.

17
0.

09
0.

13
0.

10
0.

16

0.
2

W
al

d
0.

56
0.

24
0.

43
0.

57
0.

32
0.

55
0.

60
0.

25
0.

40
0.

61
0.

30
0.

53

A
U

C
0.

05
0.

12
0.

07
0.

19
0.

03
0.

05
0.

04
0.

08

Stat Med. Author manuscript; available in PMC 2014 April 30.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Seshan et al. Page 17

E
(Y

)
μ 2

T
es

t

A
U

C
1a  

= 
0.

50
A

U
C

1a  
= 

0.
58

μ 1
 =

 0
, ρ

 =
 0

μ 1
 =

 0
, ρ

 =
 0

.5
μ 1

 =
 0

.3
, ρ

 =
 0

μ 1
 =

 0
.3

, ρ
 =

 0
.5

n
n

n
n

25
0

50
0

25
0

50
0

25
0

50
0

25
0

50
0

A
U

C
2b

P
(R

ej
ec

t)
c

A
U

C
2b

P
(R

ej
ec

t)
c

A
U

C
2b

P
(R

ej
ec

t)
c

A
U

C
2b

P
(R

ej
ec

t)
c

PP
R

d
0.

22
0.

41
0.

29
0.

52
0.

23
0.

38
0.

27
0.

50

0.
3

W
al

d

0.
58

0.
46

0.
76

0.
60

0.
59

0.
87

0.
62

0.
45

0.
74

0.
63

0.
57

0.
86

A
U

C
0.

12
0.

34
0.

17
0.

46
0.

08
0.

20
0.

12
0.

35

PP
R

d
0.

44
0.

74
0.

57
0.

85
0.

43
0.

70
0.

54
0.

84

a A
U

C
 o

f 
m

od
el

 M
1

b A
U

C
 o

f 
m

od
el

 M
2

c Pr
ob

ab
ili

ty
 o

f 
re

je
ct

io
n.

 E
qu

al
 to

 s
iz

e 
fo

r 
μ 2

 =
 0

 a
nd

 p
ow

er
 f

or
 μ

2 
>

 0
.

d U
si

ng
 th

e 
pr

oj
ec

tio
n 

pe
rm

ut
at

io
n 

re
fe

re
nc

e 
di

st
ri

bu
tio

n 
(S

ec
tio

n 
4)

Stat Med. Author manuscript; available in PMC 2014 April 30.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Seshan et al. Page 18

Ta
bl

e 
2

Si
ze

 o
f 

th
e 

A
U

C
 te

st
 in

 n
on

-n
es

te
d 

m
od

el
s 

fo
r 

n=
25

0 
an

d 
50

0.

μ 2
 =

 μ
3

μ 1
 =

 0
, ρ

 =
 0

μ 1
 =

 0
, ρ

 =
 0

.5
μ 1

 =
 0

.3
, ρ

 =
 0

μ 1
 =

 0
.3

, ρ
 =

 0
.5

n
n

n
n

25
0

50
0

25
0

50
0

25
0

50
0

25
0

50
0

A
U

C
Si

ze
A

U
C

Si
ze

A
U

C
Si

ze
A

U
C

Si
ze

0
0.

50
0.

00
0.

00
0.

50
0.

00
0.

00
0.

58
0.

00
0.

00
0.

58
0.

00
0.

00

0.
1

0.
53

0.
01

0.
01

0.
53

0.
00

0.
01

0.
59

0.
02

0.
01

0.
59

0.
01

0.
00

0.
2

0.
56

0.
03

0.
02

0.
57

0.
01

0.
02

0.
60

0.
05

0.
04

0.
61

0.
03

0.
04

0.
3

0.
58

0.
04

0.
04

0.
60

0.
03

0.
04

0.
62

0.
06

0.
06

0.
63

0.
04

0.
03

0.
4

0.
61

0.
04

0.
05

0.
63

0.
05

0.
06

0.
64

0.
05

0.
05

0.
65

0.
05

0.
05

0.
5

0.
64

0.
07

0.
06

0.
66

0.
04

0.
04

0.
66

0.
04

0.
06

0.
68

0.
05

0.
05

0.
6

0.
66

0.
05

0.
06

0.
69

0.
04

0.
04

0.
68

0.
06

0.
05

0.
70

0.
06

0.
06

0.
7

0.
69

0.
05

0.
05

0.
72

0.
05

0.
05

0.
71

0.
06

0.
04

0.
73

0.
05

0.
04

Stat Med. Author manuscript; available in PMC 2014 April 30.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Seshan et al. Page 19

Ta
bl

e 
3

Pe
rf

or
m

an
ce

 o
f 

th
e 

ne
st

ed
 m

od
el

 w
ith

 v
al

id
at

io
n 

sa
m

pl
es

ρ
E

(Y
) 
μ 2

μ 1
 =

 0
μ 1

 =
 0

.3

n 
= 

25
0

n 
= 

50
0

n 
= 

25
0

n 
= 

50
0

0.
2

0.
5

0.
2

0.
5

0.
2

0.
5

0.
2

0.
5

T
ru

e 
Δ

A
U

C
E

st
im

at
ed

 Δ
A

U
C

T
ru

e 
Δ

A
U

C
E

st
im

at
ed

 Δ
A

U
C

0

0
0

-0
.0

01
0.

00
0

0.
00

0
0.

00
0

0
-0

.0
10

-0
.0

08
-0

.0
06

-0
.0

04

0.
1

0.
02

8
0.

00
9

0.
01

4
0.

01
4

0.
01

6
0.

00
5

-0
.0

04
-0

.0
03

-0
.0

01
0.

00
1

0.
2

0.
05

6
0.

03
6

0.
04

1
0.

04
6

0.
05

0
0.

01
7

0.
01

1
0.

01
1

0.
01

1
0.

01
3

0.
3

0.
08

4
0.

07
0

0.
07

5
0.

07
8

0.
08

0
0.

03
4

0.
02

7
0.

02
9

0.
03

0
0.

03
1

0.
5

0
0

-0
.0

02
0.

00
0

0.
00

0
-0

.0
01

0
-0

.0
10

-0
.0

09
-0

.0
07

-0
.0

04

0.
1

0.
03

2
0.

01
6

0.
01

9
0.

01
9

0.
02

2
0.

00
6

-0
.0

03
-0

.0
02

0.
00

0
0.

00
2

0.
2

0.
06

5
0.

04
8

0.
05

3
0.

05
3

0.
05

9
0.

02
2

0.
01

6
0.

01
7

0.
01

8
0.

01
8

0.
3

0.
09

7
0.

08
5

0.
08

9
0.

09
2

0.
09

2
0.

04
3

0.
03

8
0.

03
8

0.
04

1
0.

04
2

Stat Med. Author manuscript; available in PMC 2014 April 30.


