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Background: In Canadian hospitals, which are typically financed by global annual
budgets, overuse of operating rooms is a financial risk that is frequently managed by
cancelling elective surgical procedures. It is uncertain how different scheduling rules
affect the rate of elective surgery cancellations.

Methods: We used discrete event simulation modelling to represent perioperative
processes at a hospital in Toronto, Canada. We tested the effects of the following
3 scenarios on the number of surgical cancellations: scheduling surgeons’ operating
days based on their patients’ average length of stay in hospital, sequencing surgical
procedures by average duration and variance, and increasing the number of post-
surgical ward beds.

Results: The number of elective cancellations was reduced by scheduling surgeons
whose patients had shorter average lengths of stay in hospital earlier in the week,
sequencing shorter surgeries and those with less variance in duration earlier in the
day, and by adding up to 2 additional beds to the postsurgical ward.

Conclusion: Discrete event simulation modelling can be used to develop strategies
for improving efficiency in operating rooms.

Contexte : Dans les hopitaux canadiens, qui sont généralement financés par des bud-
gets annuels globaux, la surutilisation des blocs opératoires comporte un risque
financier qui est souvent géré par I'annulation des interventions chirurgicales non
urgentes. On ignore comment les différentes regles de préparation des calendriers
affectent le taux d’annulation des chirurgies non urgentes.

Meéthodes : Nous avons utilisé un modele de simulation d’événements discrets pour
représenter les marches a suivre périopératoires dans un hopital de Toronto, au
Canada. Nous avons vérifié les effets des 3 scénarios suivants sur le nombre de chirur-
gies annulées : préparation du calendrier des chirurgiens selon la durée moyenne de
I’hospitalisation de leurs patients, enchainement des interventions chirurgicales selon
leur durée moyenne et la variabilité de leur durée et augmentation du nombre de lits
dans les unités postopératoires.

Résultats : Le nombre de chirurgies non urgentes annulées a diminué lorsqu’on a
planifié les interventions des chirurgiens dont les patients séjournaient moins
longtemps a ’hopital plus tot au cours de la semaine, lorsqu’on a programmé les
chirurgies plus breves et les chirurgies a durée moins variable plus tot au cours de la
journée et lorsqu’on a ajouté 2 lits supplémentaires a I'unité postopératoire.

Conclusion : Les modeles de simulation d’événements discrets peuvent servir a
développer des stratégies pour améliorer I’efficience des blocs opératoires.

perating rooms (ORs) are a hospital’s largest cost centre and greatest

source of revenue.' Consequently, there is substantial incentive to rec-

ognize greater efficiencies within OR management.” Operating room
efficiency may be improved by shorter surgical durations, rational scheduling
of various types of surgeries and minimization of the nonoperative time by
reorganizing OR activities.” However, managing ORs is a complex task owing
to conflicting priorities and preferences of its stakeholders and to scarcity of
costly resources.” In Canadian hospitals, which are funded by global budgets,
OR inefficiency may result in elective surgery cancellations. Many factors im-
pact OR efficiency, such as the operating surgeon, type of surgical procedure,
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emergency cases, delays at the start of surgery and the
number of beds in postsurgical units.

The dynamics governing a hospital system demand
capacity models that reflect the complexity, uncertainty,
variability and limited resources.” Operating room plan-
ning and scheduling may be addressed by simulation mod-
elling. Simulation modelling is a virtual representation of a
system or process that mimics, or simulates, a real system.
By analyzing simulation results, opportunities for system
improvement can be identified without expending substan-
tial resources in the examination process.® Simulation mod-
els conform to the direct representation of the system’s
structure, logic and the available data.” The main advantage
of simulation over other modelling techniques is its ability
to perform “what-if” scenarios by changing the model’s
rules and assumptions. The model not only provides infor-
mation to managers, but also engages them in the develop-
ment process so as to allow them to use the model independ-
ently as a decision support tool.® Computer simulation is
shown to support process engineering in perioperative
processes and identify potential process improvements.

The present study uses discrete event simulation (DES)
to analyze planning and scheduling problems encompass-
ing the OR. Our objective was to identify potential im-
provements in the flow of patients through the surgical
process, to reduce the number of surgical case cancellations
and to use hospital resources more efficiently. Specifically,
we sought to observe the effects of applying scheduling
rules on the weekly schedule of surgeons and on the sur-
geons’ daily cases and the effects of adding beds to postsur-
gical units on the number of surgical cancellations. The
purpose of this research was to develop novel, general-
izable knowledge regarding the impact of different elective
surgical scheduling rules on elective surgery cancellation
rates.

METHODS
Perioperative process

The research ethics board of the University Health Net-
work (UHN) approved our study protocol.

We used information from the Toronto General Hospi-
tal ('GH), which is part of the UHN and is a major teach-
ing hospital in downtown Toronto. There are 19 ORs and
406 in-patient beds, of which 2-3 ORs and 30 in-patient
beds are used by the general surgery department each day.
The hospital handles about 9000 surgical cases per year,
and the emergency department serves 30 000 patients
annually.

The perioperative process for general surgery patients at
TGH includes various services, including the preadmit
clinic, preoperative care unit (POCU), postanesthesia care
unit (PACU), medical surgical intensive care unit (MSICU),
step down unit (SDU), medical day unit (MDU), ward, and
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alternate level of care (ALC) facilities.

Depending on the type of surgery and the level of care
required, patients are taken to a combination of these units.
The route taken through the perioperative process
depends on the type of patient (same-day patients, elective
in-patients or emergency patients). Emergency general
surgery patients are categorized into 3 groups: emergency
type A patients, type B patients and type C patients. Emer-
gency type A patients require surgery within 2 hours of
their arrival to the hospital, whereas emergency type B
patients require surgery within 2-8 hours of their arrival to
the hospital. Emergency type C patients require surgery
during hospitalization.

Patient flow on surgical day

The longest surgical cases must be scheduled as the first
cases of the day, according to the existing hospital schedul-
ing rules. On the arrival of an emergency type A patient,
the first available OR is assigned to that patient, and all
other patients whose procedures are scheduled for that OR
are held in the holding area. Emergency type B patients do
not usually disrupt the daily elective schedule. These cases
are held untl all elective patients of an OR are finished
(i.e., either undergo surgery or are cancelled) for the day.
After the regular hours, ORs are kept open for certain
hours for emergency type B patients. If an emergency type
B patient cannot undergo surgery during these hours and
waits for more than 48 hours, his or her case is given prior-
ity over daily elective patients and must be performed as
the first case of the next day.

Scheduling

First, available ORs are assigned to different clinical ser-
vices in a hospital. Second, the master surgical schedule
(MSS) is developed. The MSS is a cyclic time table that
defines the number and type of ORs available, the hours
the rooms will be open and the surgical unit associated
with each OR time block.” Third, the OR time available in
each service is distributed among its surgeons. Elective
cases are scheduled in each allocated time block and the
sequence of surgical cases is determined.

The general surgery service at TGH is assigned 2 or
3 ORs per day during weekdays. The regular OR hours are
from 8:00 am to 3:30 pm or from 8:00 am to 5:30 pm.
After regular hours, ORs are kept open untl 11:00 pm for
emergency type B patients. One OR is kept open for
24 hours with on-call staff to accommodate emergency
type A patients.

One OR is assigned to 1 surgeon per day, and surgeons
rarely switch ORs in a day. Therefore, in the model we
assigned 1 surgeon to 1 OR in a day. To reasonably repre-
sent the surgeons’ daily schedules, we acquired a sampling
from real schedules of particular surgeons.



Simulation model

"To capture the complexity of TGH’s perioperative process
and develop a flexible and reliable representation, we con-
structed a DES model using the Simul8 software package
(Visual8 Corp.). The model used visual logic codes to cre-
ate modules that mimic the real, complex tasks of the peri-
operative process. Various decision-making points con-
cerning patient status were modelled, including the type
of patients, their priority, expected duration of the opera-
tion, bed requirements and patients’ lengths of stay (LOS)
in the MSICU, SDU and the surgical ward.

Flow of patients through the surgical process

Before the start of every day, the model created the sched-
ule for the coming day. First, the model determined the
day of the week. Second, using the MSS, it determined
how many ORs ran for that day and which surgeons were
assigned to the ORs. Third, for every surgeon, a random
day from the hospital’s historical data was selected; these
data included the surgeon’s actual caseload and showed
the number, type and sequence of procedures of that day.

Using the daily schedule, the model determined the
patient path. For instance, if the PACU field was zero, the
patient was not intended to go to the PACU; therefore,
the LOS in the PACU was also zero. The model also
indicated the status of patients during the simulation time
(e.g., cancelled).

Patients flowed through the surgical process according
to their path. Their LOS in the PACU, MSICU, SDU and
ward beds were specified from the historical data. Since no
data were available with regard to the same-day patients’
LOS in the MDU, and since patients were scheduled to
stay in the MDU for 1 hour, patients’ LOS in MDU beds
were considered to be 1 hour in the model. The model also
considered that some patients had to be discharged from
the PACU when the MDU stopped accepting patients
after 4:00 pm.

Once a patient was chosen, the model determined
whether the OR time available was adequate to finish the
surgery. If the surgery could be finished before the cut-off
time plus the allowed overtime, and if postsurgical re-
sources were available at the expected end time of the pro-
cedure, the patient could be checked into the OR. Other-
wise the procedure was cancelled.

Assumptions and limitations

Owing to the lack of available data and to simplify some

aspects of the model, we made the following assumptions.

® Surgeons and nurses in ORs and postsurgical units were
available at all times.

® 'The surgeon’s weekly schedule was fixed over the period of
1 year (in reality, the schedule may change periodically).
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* All inpatients were sent home from the surgical ward (in
reality, some inpatients may be transferred to ALC facil-
ities from the surgical ward, and the unavailability of
resources in those institutes may cause delays in dis-
charging patients from the ward).

® The number of PACU, MSICU and SDU beds assigned
to the general surgery service was chosen based on the
average number of bed occupancies by this service.

* The model only considered 1 department of 1 hospital
for a period of 1 year.

* The model did not take into account transplant cases or
the emergency case interruptions from services other
than general surgery at TGH.

* The model did not take into account patients who died
in the OR or in any of the postsurgical units.

* The model did not include emergency type C patients,
who are uncommon in the general surgery service.

* When there was more than 1 emergency patient who
required surgery, the model did not take into account
priority owing to the severity of the case.

Model validation

Historical data for the number of surgery cancellations at
TGH by month for a period of 1 year were used to vali-
date the simulation model. The number of surgery cancel-
lations per month was counted as the simulation pro-
gressed over a 1-year period.

Since the 95% confidence interval (CI) around the dif-
ference between the number of cancellations was —1.191 to
2.008, the difference between the actual data and simula-
tion output was not significant, and we concluded the
simulation model was valid.

“What-if” scenarios

We examined the effects of the following 3 scenarios’ on

the number of surgery cancellations:

1. ranking surgeons according to the average LOS of their
patients, such that surgeons whose patients had shorter
lengths of stay were ranked lower and thus were sched-
uled earlier in the week (in order of increasing rank);

2. changing the sequence of surgical procedures based on
increasing and decreasing booked surgery time (TimeT
and Timel, respectively) and increasing and decreasing
expected surgical time variation (VarT and Varl, re-
spectively); and

3. adding 2 beds to the surgical ward.

The interactions among these scenarios were also
explored. Simulations were run for the base model with all
possible combinations of the preferred schedules and
sequences, and then the same scenarios were run in a
model with 2 extra ward beds. Each scenario was compared
with every other scenario to detect and quantify significant
pairwise differences.
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For uncorrelated data, we used a modified 2-sample
(Welch) 95% CI; we constructed 95% ClIs for correlated
data using a paired 7 test approach.

REsuLTs

"Two rules for the surgeons’ weekly schedule were consid-
ered according to their patients’ average LOS on the
ward, calculated from historical data. The surgeons were
ranked such that those whose patients had longer average
LOS on the ward received a higher rank. The first rule
orders surgeons from lowest rank to highest throughout
the week (LOST), and the second rule orders surgeons in
the reverse order (LOSY).

Four rules for scheduling patients within each surgeon’s
day were considered: surgery duration from short to long
(TimeT); surgery duration from long to short (Timel);
surgery variance from low to high (VarT); and surgery vari-
ance from high to low (Varl). The surgical times and vari-
ances were calculated from historical data.

Table 1 shows the change in the number of cancella-
tions using these scheduling rules. For example, the TimeT
surgery schedule in combination with the LOST surgeon
schedule resulted in a change of —=19.7 cancellations (that is,
a reduction of 19.7 cancellations) compared with the his-
torical schedule (95% CI -30.9 to -8.5).

We further considered the possibility of adding beds to
the ward. Table 2 shows the change in the number of can-
cellations with 2 beds added to the ward with the base sur-
geon schedule and the LOST surgeon schedule, as well as
the 4 patient scheduling rules.

Table 1. Cancellations using scheduling rules

Sequence Surgeon schedule, mean (95% Cl)

of surgical

operations Base LOST Losl

TimeT -10.5 (-14.8t0 -6.1) -19.7(-30.9to -8.5) -3.5 (-19.1 t0 12.1)
Timel 4.2 (-3.2t011.6) -10.9(-26.3 to 4.5) 18.4 (-2.7 t0 39.4)
VarT -14.0 (-19.5 t0 -3.7) -28.3 (-42.6 to -14.0) -15.0 (-23.1 t0 21.3)
Varl 6.7 (341099 -43(-16.4t07.9) 14.9 (-0.3 t0 30.0)
Cl = confidence interval; LOS = length of stay; Time = length of booked surgery time;
Var = expected surgical variation.

Table 2. Change in the number of cancellations with 2 beds
added to the ward*

Surgeon schedule, mean (95% Cl)

Sequence of

surgical operations Base + 2 beds LOST + 2 beds

Base sequence -27.5 (-34.3t0-21.4) -38.1 (-49.6 to —26.6)
TimeT -34.7 (-42.6 t0-26.7) -40.7 (-562.5t0 -28.9)
Timed -27.9 (-33.7 t0 -22.2) -36.7 (-44.5 t0 —26.9)
VarT —-44.4 (-50.5 to -38.3) -47.9 (-68.9 t0 -26.8)
Vard -19.7 (-33.9t0-5.5) —24.8 (-36.7 to —-12.9)

ClI = confidence interval; LOS = length of stay.
*We took into account the base surgeon schedule and the LOST surgeon schedule, as
well as the 4 patient scheduling rules.
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Modifying the surgeons’ weekly schedule

The difference between the number of surgical cancella-
tions in the base and LOST schedules were compared.
Against the base schedule, LOST resulted in —17.6 (95%
CI -29.0 to —6.1) fewer surgical cancellations. Assigning
surgeons with patients who had short ward LOS and
same-day discharge at the start of the week and surgeons
with patients who had long ward LOS to the end of the
week reduced the chance of surgery cancellations. This
schedule allowed patients with long ward LOS to take
advantage of ward beds during weekends. The LOS!
schedule did not significantly affect the number of cancel-
lations (mean 0.5, 95% CI —-14.3 to 15.2).

Sequence of operations

Sequencing the surgeries in order of increasing length and
variance reduced the number of surgical cancellations.
Sequencing by variance had the greatest effect on the
number of cancellations. The number of cancellations was
further reduced by applying the sequencing rules to the
LOST schedule. However, when the rules were applied to
the LOS! schedule, the observed change was not signifi-
cant (Table 1).

Increasing the number of ward beds

When 1-6 beds were added to the surgical ward, the number
of surgical cancellations was reduced. As seen in Figure 1,
adding more than 2 beds did not have a large benefit and
caused the average bed utilization to fall below 80%.

As seen in Table 2, adding 2 beds to the ward without
even changing the schedule reduced the number of cancel-
lations. Ordering the surgeons by increasing LOS and
adding 2 beds to the ward further reduced the number of
surgical cancellations, as did sequencing the surgical pro-
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Fig. 1. Number of additional ward beds.



cedures in increasing order of length and variance. How-
ever, adding 2 beds with the LOS{ schedule did not reduce
the number of cancellations. Sequencing surgeries in order
of decreasing length and variance in the base and LOST
schedules reduced the number of cancellations, although
this reduction was caused by increasing the number of
ward beds rather than the sequencing rule. Applying
sequencing rules to the LOS{ schedule did not reduce the
number of cancellations.

Discussion

We used a DES to model the perioperative process in a
general surgery service. The objective was to reduce the
number of surgical cancellations and thereby improve the
overall process. The model considered emergency case
interruptions with different levels of urgency, as well as
the availability of 3 types of postsurgical beds (MSICU,
SDU and surgical ward) at the decision-making level.

In our DES, patients are modelled as entities with spe-
cific attributes. These entities pass through a series of
queues and discrete event activities that influence their
journey through the system. The activities that patients
undergo provide a basis for estimating the use of resources,
while the time they spend in queues provided the basis for
estimating wait times."” Computer simulation has previ-
ously been shown to support process engineering in peri-
operative processes and identify potential improvements.
Yang and colleagues' provide several successful studies that
use simulation modelling in emergency, pharmacy and out-
patient departments as well as ORs and conclude that tra-
ditional approaches to scheduling, such as mathematical
programming, are of limited use in medical scheduling
owing to the complexity and involvement of human fac-
tors. Testi and colleagues” applied a simulation model to
identify the best admission rule for selecting patients to be
scheduled in each OR session. However, other resources
involved in the process, such as recovery and ICU beds and
staff, do not define bottlenecks. Dexter and colleagues”
used a computer simulation to model OR scheduling to
maximize the OR time utilization. This study made use of
waiting lists: the longer the patients waited for surgery, the
greater the percentage of OR time used. Since most critical
surgeries cannot be delayed, this approach is not feasible in
all circumstances. There is also no clear strategy for han-
dling emergency cases.

The present research considered the inevitability of
emergency cases, which disrupt the daily OR schedule and
cause surgical delays and cancellations. We did not reserve
ORs exclusively for emergency cases. Whereas Lovett and
Katchburian" stressed that assigning dedicated ORs to
urgent cases can decrease overtime and the number of
urgent surgeries performed after working hours, Barlow
and colleagues,” Brasel and colleagues'® and Waullink and
colleagues' concluded that setting ORs aside for emer-
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gency cases is costly owing to low utilization rates of ORs.
Instead, Davenport and colleagues” Herroelen and Leus"
and Wullink and colleagues™ stated that a buffer of extra time
and/or resources can be used to deal with the disruptions
caused by emergency cases on the daily elective schedule.

We found that sequencing shorter surgical cases with
minimal variance earlier in the day reduced the number
of surgical cancellations. Testi and colleagues'? and Marcon
and Dexter” drew similar conclusions. Using a simulation
model, they selected patients from the surgical list based
on different priority rules: longest wait time, longest pro-
cessing time and shortest processing time. They exam-
ined different sequencings of surgical cases to improve
the OR time usage and showed that the shortest process-
ing time is the best admission rule. Alternatively, Denton
and colleagues™ applied a 2-stage stochastic programming
model to determine the optimal surgery schedule. Based
on numerical experiments using real-life surgery duration
data, they compared optimal schedules with actual sched-
ules and showed that the common practice of scheduling
longer and more complex cases earlier in the day may
have a significant negative impact on OR performance
measures. We found that scheduling surgeons whose
patients had shorter LOS to operate earlier in the week
resulted in fewer cancellations. Presumably, this result is
because patients with longer LOS use the weekend as
part of their recovery time, during which there are no
elective surgical admissions.

We also found that adding 2 extra beds to the surgical
ward reduced the number of surgical cancellations. While
adding more than 2 beds further reduced the number of
cancellations, bed utilization rates decreased below 80%.
After reviewing hospital bed use statistics and scheduled
surgical procedures, Calichman® reported that the efficient
OR schedule should result in a balance between the supply
and demand of ward beds during the week. Van Berkel and
Blake™ also used a DES model for capacity planning and
management of patient wait times for general surgery.
They concluded that the availability of beds — not OR
time — is the bottleneck of the system. However, owing to
the type of surgical procedures performed in their particu-
lar system, ICU beds were excluded from their study.

Limitations

Our research provides a basis for further model development
and system investigation. This model can be used to better
understand the effects of new scheduling scenarios on other
measures of OR efficiency and cost. Our model, though, has
limitations. We only analyzed the effect of scheduling
changes on surgical cancellations. In reality, other outcomes,
such as cost, must be considered in addition to minimizing
surgical cancellation rates. Expansion of the model can
provide TGH with an integrated perioperative decision
tool to reduce the number of surgical cancellations for all
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services. Another area for future work would be to investi-
gate surgery durations in greater detail to identify the root
causes of surgical variances. This investigation would entail
gathering data on the duration of anesthesia administra-
tion, surgical duration, turnover time and unnecessary
LOS in the OR.

In addition to the limitations discussed previously, it is
important to remember that each hospital has its own
unique patient population, case mix and other local cir-
cumstances that influence cancellation rates and scheduling
rules. Our study looked at only 1 hospital; a different hos-
pital with a different set of cancellation and emergency
case management rules would look different. The purpose
of this study was not to uncover a universal set of schedul-
ing rules, but rather to demonstrate the use of simulation
to guide local interventions.

CONCLUSION

Scheduling surgeons whose patients have shorter average
LOS on the ward earlier in the week (in increasing order),
sequencing surgeries in order of increasing length and vari-
ance, and adding beds to the surgical ward are expected to
reduce the number of elective surgical cancellations at the
hospital we studied. Depending on the hospital’s budget and
managers’ preferences, this study can guide decision-makers
in realizing which alternatives are preferable.
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