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Abstract

Comparative oncology is a developing research discipline that is being used to assist our understanding of human
neoplastic diseases. Companion canines are a preferred animal oncology model due to spontaneous tumor development
and similarity to human disease at the pathophysiological level. We use a paired RNA sequencing (RNA-Seq)/microarray
analysis of a set of four normal canine lymph nodes and ten canine lymphoma fine needle aspirates to identify technical
biases and variation between the technologies and convergence on biological disease pathways. Surrogate Variable
Analysis (SVA) provides a formal multivariate analysis of the combined RNA-Seq/microarray data set. Applying SVA to the
data allows us to decompose variation into contributions associated with transcript abundance, differences between the
technology, and latent variation within each technology. A substantial and highly statistically significant component of the
variation reflects transcript abundance, and RNA-Seq appeared more sensitive for detection of transcripts expressed at low
levels. Latent random variation among RNA-Seq samples is also distinct in character from that impacting microarray
samples. In particular, we observed variation between RNA-Seq samples that reflects transcript GC content. Platform-
independent variable decomposition without a priori knowledge of the sources of variation using SVA represents a
generalizable method for accomplishing cross-platform data analysis. We identified genes differentially expressed between
normal lymph nodes of disease free dogs and a subset of the diseased dogs diagnosed with B-cell lymphoma using each
technology. There is statistically significant overlap between the RNA-Seq and microarray sets of differentially expressed
genes. Analysis of overlapping genes in the context of biological systems suggests elevated expression and activity of PI3K
signaling in B-cell lymphoma biopsies compared with normal biopsies, consistent with literature describing successful use
of drugs targeting this pathway in lymphomas.
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Introduction

Since domestic dogs, Canis familiaris, form spontaneous tumors

and have a strong breed predilection towards specific types of

cancer, the dog is an excellent model for identifying the genetic

underpinnings associated with cancer (reviewed in Shearin and

Ostrander [1] and Rowell et al [2]). Moreover, the disciplines of

veterinary and human medicine use the same diagnostic and

therapeutic tools, and the canine response to chemotherapies is

more similar to the human response than other model systems [2].

The similarities in cancer treatment and response between species

coupled with a shorter canine lifespan and higher frequencies of

cancer occurrence in specific breeds afford an opportunity to

accelerate the application of advanced diagnostic and interven-

tional strategies for the benefit of both dogs and humans.

The analogous nature between human and canine disease

counterparts is typified by canine lymphoma, which shares many

of the epidemiological, biological, and clinical features of Non-

Hodgkin’s Lymphoma (NHL) in humans [2–4]. NHL is the fifth

most common cancer in the United States and a cancer that has

nearly doubled in worldwide incidence in the past 35 years to a

lifetime incidence of 1 in 47 people [5,6]. In the canine population,
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lymphoma represents approximately 24% of all canine cancer

diagnoses and has a similar lifetime incidence to humans [2].

However, breeds such as the golden retriever and boxer have an

even stronger predilection for B- and T- cell lymphomas, with

lifetime incidences of 1 in 4 and 1 in 8 dogs, respectively [2].

Canine lymphoma most commonly manifests as multicentric

lymphadenopathy with or without other organ involvement [7].

This multicentric presentation dictates systemic chemotherapy as

the treatment of choice. Treatment is a multi-agent protocol that is

based on the CHOP regime (adriamycin, vincristine, cyclophos-

phamide, and prednisone) used as standard-of-care in human

NHL patients [7,8]. However, many variations on this protocol

exist in both veterinary and human medicine [7,9,10]. A detailed

investigation of the molecular mechanisms of the etiology and

progression of canine lymphomas is warranted for improving

diagnostic and therapeutic strategies that may have direct

translational relevance to human NHL patients.

Next Generation Sequencing (NGS) is the next frontier for

scrutinizing molecular pathology. As sequencing cost decreases

and access to instrumentation increases, NGS will likely replace

microarrays for gene expression analysis due to added benefits

such as quantitation of transcripts, improved dynamic range, and

additional capabilities for detecting expressed single nucleotide

variants (SNVs), translocations, and transcript isoform switches

[11,12]. However, the NGS field is still in flux, the internal

standards for data quality, reliability, and reproducibility are still

being established, and disparities between the technologies are still

being investigated [13–17]. Generally, hybridization and sequenc-

ing technologies are viewed as complementary rather than

competing approaches [14,18], and microarrays continue to be

used frequently for burgeoning model organisms like the dog

[19,20]. Examining methods for comparing expression data

between the two technologies remains a critical task for the

continued and comparative use of microarray data in the NGS

era.

Our data include gene expression profiles for each of ten canine

lymphoma samples and four lymph nodes samples from disease

free subjects using both Illumina NGS and Affymetrix microarray

technology. This design is a member of an important class:

multivariate observations made in batches that exhibit latent

variation with very different covariance. Our objective is to

decompose variation among the gene expression profiles so that

we can directly inspect 1) variation in transcript abundance among

samples 2) differences in sensitivities of the two technologies and 3)

latent variation due to each technology. Many studies have address

the first two issues by gene or tag counts and assessments against

PCR data, respectively [21,22], or even using proteomic shot gun

mass spectroscopy as a metric for sensitivity [23]. It is the latent

variation due to technology that presents the challenge since

numerous sources of technical variation can contribute to differing

extents within and between technologies (as an example, 57% of

the total expression variation between microarray and RNA-Seq

data in [23] was unexplained). Variation among samples with

respect to fragment length, coverage, GC content, amplification

technology, proportions of cell types, proliferation rate, RNA

degradation, preparative processes, or instrumentation may

impact estimates of genome-wide expression profiles [24–29].

Numerous investigators have described methods for capturing

latent variation [30–36]. While typically the goal of capturing

latent variation is to improve inference about experimental factors

impinging on biology, we are also interested in the direction and

magnitude of latent technical variation for the purpose of

comparing RNA-Seq with microarray technology. However, our

design does not include replicated observations on RNA samples

within each technology. Instead, statistical analysis of the combined

RNA-Seq and microarray data provides for capturing latent

variables within each technology. Understanding distinct techno-

logical variation is a prerequisite to examining biologically

pertinent transcriptional pathways.

Methods

Ethics Statement
All studies were approved by the Institutional Animal Care and

Use Committee (IACUC) at Animal Clinical Investigation (ACI)

concomitant with owner consent forms.

Samples
Fine needle aspirates (FNAs) were collected longitudinally from

30 dogs with lymphosarcoma as part of a study conducted by

Pfizer Animal Health for the purpose of finding the maximum

tolerated dose of an investigational phosphatidylinositol 3-kinase

(PI3-K) inhibitor. Inclusion criteria required that at least one

lymph node tumor measure .20 mm in diameter so that FNAs

could be collected at 0 hr, 6 hr, and 24 hr after treatment from a

single node. Samples were collected at three clinical sites under the

coordination of ACI, Washington, DC. These sites were

Friendship Animal Hospital, Washington, DC (sample id FS);

Red Bank Veterinary Hospital, Tinton Falls, NJ (sample id RB);

and New England Veterinary Oncology Group, Waltham, MA

(sample id NE). After FNA collection, the 30 samples were shipped

to the CLIA (Clinical Laboratory Improvement Amendments)

accredited Clinical Reference Laboratory (CRL) for RNA

isolation and genomic profiling using the GeneChip Canine

Genome V2.0 Array (Affymetrix). Seven days after treatment, the

change in lymph node tumor volume was assessed and used to

classify responders and non-responders. Five responder and five

non-responder 0 hr (pre-treatment) RNA samples previously used

for GeneChip analysis were chosen to undergo additional total-

RNA transcriptome sequencing using the Illumina HiSeq 2000

platform at the Translational Genomics Research Institute

(TGen). In addition, a control set of four non-diseased lymph

node FNAs were collected from three dogs in the Pfizer Beagle

animal colony for RNA isolation and genomic profiling on both

the GeneChip and HiSeq 2000. The ten lymphoma and four non-

diseased lymph node samples with both GeneChip and HiSeq

data are the focus of this report. Four of the lymphoma dogs had

been given previous treatment, as summarized in Table S1 that

provides clinical details for each dog.

Sample sets for analysis
Genome-wide expression profiles were obtained from fourteen

RNA samples using both RNA-Seq and microarray. The set of

samples chosen for each analysis depended on the stated goal of

the analysis (Table 1). For comparing RNA-Seq with microarray,

all samples were used. For comparing B-cell lymphoma with

normal biopsies we required that the cytological analysis

confirmed .70% lymphoblasts, that immunophenotyping for

CD79a staining was present among the majority of lymphoblasts,

and that genome-wide expression profiling did not identify a gene

expression signature indicative of a substantial proportion of T-

cells involvement.

Cytology
Cytology slides were prepared and Immunohistochemistry

(IHC) was performed for each FNA through ACI. The cytology

report was used to determine the percentage of lymphoblasts in the

sample, and IHC staining for CD3, CD79a, and MDR was used
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to designate a T-cell, B-cell, and Multi-Drug Resistant immuno-

phenotype, respectively (Table S1).

Microarray
RNA from FNA was extracted and purified with the RNeasy

Micro kit (Qiagen) at Clinical Research Laboratory (CRL) and in

order to proceed to genome profiling a sample had to exceed the

quality control (QC) requirements: RNA yield .20 ng, A260/

280$1.8, and RNA Integrity Number (RIN)$6.0. RNA that

passed QC was amplified using the WT-OvationTM Pico RNA

Amplification System (NuGen Technologies, Inc). CRL carried

out genomic profiling in 8 batches of 12 samples (all three time

points for four subjects in each batch) using the GeneChip Canine

Genome V2.0 Array (Affymetrix). GeneChip data was normalized

to a 95% trimmed mean intensity of 500 using the MAS 5.0

algorithm within the Affymetrix Gene Console. Distributional

analysis was performed using the R Affy package and image plots

were generated with the AffyPLM package. Arrays with greater

than 3-fold change from mean or lower than 30% present probes

compared to the total number of probes on the array failed QC. In

addition, visual inspection of the array images was performed to

identify arrays that passed QC but had clear visual anomalies (e.g.

air bubbles on the array). Re-processing occurred in instances of

failure where sufficient RNA from the sample remained available.

The distributional analysis and visual inspection was done for the

longitudinal samples of all 30 subjects; none of the pre-treatment

samples from the ten subjects used for additional RNA-Seq

profiling or samples from the normal lymph nodes failed QC or

required re-processing.

Microarray files for the 14 samples analyzed in this report are

available on GEO, accession GSE41917.

RNA-Seq
NGS was performed on the same RNA that was isolated at

CRL and used for microarray analysis for ten of the 30 dogs

(individually listed in Table S1) and on RNA from the additional

four non-disease samples. 2 mg total RNA from each of these 14

samples was shipped from VARI to TGen for transcriptome

sequencing using the Illumina HiSeq 2000. Upon receipt at TGen,

the RNA QC was repeated. A more stringent QC was applied to

the selection of these samples, which needed to exceed a minimum

RIN of 9. All samples passed QC. Then, 10 ng of total RNA from

each sample was processed with the Ovation RNA-Seq System

(Nugen) for transcriptome amplification. Amplified samples were

fragmented using Adaptive Focused Acoustic (AFA) Technology

(Covaris - Model E210) to an approximate base pair target of

400 bp. Samples were end repaired using New England Biolab’s

NebNext DNA Sample Prep Master Mix Set with the addition of

NebNext End Repair Reaction buffer and 5 mL NebNext End

Repair Enzyme Mix (New England Biolabs) and purified using

Ampure XP beads (Beckman Coulter). ‘A’ bases were added using

NebNext’s dA-tailing Reaction Buffer and Klenow enzyme (New

England Biolabs). Samples were purified again using Ampure XP

beads. Resulting samples were quantitated using Picogreen DNA

quantification assay system (Invitrogen). A 10:1 adaptor to DNA

molar ratio was used to determine the appropriate amount of

sample for ligation to Illumina’s paired end annealed adaptors.

Ligation was performed with the NebNext Quick Ligation buffer

and NebNext DNA ligase (New England Biolabs). Ligation

products were run on a 3% TAE gel for 2.5 hours at 120V to

separate products. Cuts were made in the gel at 350 bp and

400 bp to extract the products with the appropriate insert size.

USA Scientific’s x-tractaTM gel extractors (USA Scientific) were

used for making cuts. Cuts were inserted into Bio-Rad’s Freeze ‘N

Squeeze DNA Gel Extraction spin columns (Bio-Rad). Samples

were purified using Ampure XP beads and enriched using PCR

with Finnzymes 2X PhusionH High Fidelity PCR 2x Master Mix

(Thermo Scientific). PCR products were run on a 2% TAE gel for

2 hours at 120 V and final products were punched using x-tracta

gel extractors. DNA was extracted from the cuts using Freeze ‘N

Squeeze columns, cleaned using Ampure XP beads, and run on an

Agilent High Sensitivity Bioanalyzer chip DNA Kit (Agilent

Technologies) to verify libraries. Average final library size was

260 bp.

Total RNA was sequenced on two flow cells (A and C) on the

Illumina HiSeq 2000. The final sample concentrations were 11.0

pM on flow cell A and 12.0 pM on flow cell C. Standard paired-

end sequencing using Illumina SBS sequencing Kit reagents

(Illumina, Inc.) occurred over 9 days with turnaround chemistry at

four days post-initiation. Binary data from the sequencer was

converted into plain text format using BCL Converter software

(version 1.7.1 - Illumina, Inc.) software using the default quality

thresholds to discard low quality reads. This data was preprocessed

and converted to standard FASTQ format containing 100-mer

paired-end reads. These FASTQ files were used as inputs for the

data analysis. The workflow is presented in Figure S1. Sequencing

coverage statistics are listed in Table 2.

For differential expression analysis, sequencing data from each

of the 14 lanes was analyzed in parallel, using 8 processing cores

per lane and 112 processing cores simultaneously on the Saguaro2

high performance computing cluster resource (jointly provided by

TGen and Arizona State University). The data was aligned to the

canFam2 reference genome using Bowtie [37] both with and

without an Ensembl annotation file (Canis_familiaris.-

BROADD2.63.gtf). Alignments were processed within Tophat

[38] (version 1.2.0) to identify loci and splice junctions. Next,

Cufflinks [39](version 1.0.2) was run with the Ensembl annotation

file to estimate the relative abundance of the transcripts in the

data. The fragments per million mapped read (fpkm) metrics at the

gene and transcript level were used for subsequent statistical

analysis of differential expression and sample variation.

Compressed raw sequencing files are provided in the Short

Read Archive, accession SRA059558.

Statistical Analysis
Calculations were performed using the R language and

environment for statistical computing and graphics [40]. Extensive

use was made of Bioconductor packages [41]. Surrogate Variable

Table 1. Sample Sets for Comparative Analyses.

Id Sample set Goal of analysis

All 10 cancer, 4 normal Comparison of RNA-Seq with microarray. All samples.

BvN 4 B-cell lymphoma, 3 normal Comparison of B-cell lymphoma with normal biopsies. Samples NE42, FS21, RB03, RB16.

doi:10.1371/journal.pone.0061088.t001
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Analysis [33,34] was performed using the sva package [42].

Sequences associated with Ensembl gene identifiers (by Ensembl

version 63) were obtained using Biomart [43]. GC content was

calculated using the seqinR package [44]. Distance-based multi-

variate analysis was performed using the vegan package [45].

Microarray expression statistics. Probe intensities were

summarized for each probe set in each sample, and a detection call

was made, using MAS5. Probe sets, Ensembl genes, and (Probe

Set, Ensembl gene) pairs obtained from Biomart [43] define a

bipartite graph. Connected subgraphs containing one Ensembl

gene and at least one probe set define the set of Ensembl genes

queried using microarray. An Ensembl gene was called present in

a sample if at least one of the associated probe sets was called

present. Genes that were not called present in at least three of

thirteen samples were removed. Summary expression intensities

for a gene were the average of the associated probe set intensities.

RNA-Seq expression statistics. Genes that were not called

present in at least three of thirteen samples were removed. The

value three was chosen because the smaller, non-disease group has

three samples from different dogs. We do not require presence in

four samples because we consider that the two samples taken from

the same dog artificially reduce the variance and we do not want

to discard genes that may be present in only normal but not

disease dogs. Log-transformed expression statistics,, were obtained

from FPKM using

x~log2 FPKMð Þz0:25

The addition of 0.25 eliminates the singularity at FPKM = 0.

We chose 0.25 because it is approximately the 5% quantile of the

non-zero FPKM and because in practice it does not substantially

impact the results.

Univariate analysis. Genes differentially expressed between

two sample groups (Table 1: B-cell vs Normal (BvN); All) were

identified using the Welch two sample t-test. Normality was

assessed for each technology and sample group by inspecting the

distribution of gene p-values obtained using the Shapiro-Wilk test.

We found no evidence for rejecting the normality assumption for

oligonucleotide arrays or for normal RNA-Seq samples, that is, the

gene p-value distributions are flat. A stronger statement about the

normality would require additional samples. For RNA-Seq cancer

profiles, there was some evidence for rejecting the normality

assumption but it impacted fewer than 20% of the genes. The false

discovery rate was limited using the method of Benjamini and

Hochberg [25]. Permutation analysis based on the t-statistic

provided clear evidence for differential expression: for 17% (RNA-

Seq) or 22% (oligonucleotide arrays) of the 7,296 genes the

maximum absolute value of the t-statistic was associated with the

natural assignment to sample groups, compared with 1/35 under

the null hypothesis.

Multivariate analysis on combined data. We used Surro-

gate Variable Analysis (SVA) [33,42] to model expression data. As

described above, multivariate observations were made in batches

defined by the genomic technology; therefore batches may exhibit

latent variation having different covariance. This suggests mod-

eling genome-wide expression using

xG
ij ~mizdjzajbijzeij ð1Þ

where xG
ij is the expression profile (that is, a vector of G expression

levels) associated with RNA sample i and measurement type j, is

the expression profile for sample i, is the difference in location of

measurement type j from due to the technology (that is, a technical

batch effect), is a G6Lj matrix describing latent variation

associated with measurement type j, is the Lj- vector of coefficients

that combine the columns of , and is error for which the

covariance matrix is diagonal. Use of Eq. 1 requires choice of Lj.

Additional constraints would be required for identifiability.

Surrogate Variable Analysis (SVA) [33,42] provides for

decomposition based on a similar bilinear model,

xij~mizdjz bijzeij ð2Þ

where is a G6L matrix of surrogate variable loadings that must

describe latent variation among all samples. Like Eq 1, Eq 2

accommodates both batch and latent variation. The rows of {} are

not constrained as by Eq 1 and SVA chooses rows of {} to be

orthogonal. We found, however, that SVA provided surrogate

variables that satisfactorily capture the important features of the

latent variables described in Eq 1 (see RESULTS). Therefore we

used the results of SVA rather than develop and solve a probability

model associated with Eq 1.

Pathway Analysis
The set of canine genes (Ensembl identifiers) called present in at

least three BvN samples by RNA-Seq and microarray (as per the

RNA expression statistics section) was converted to a human gene

space (Entrez identifiers) via BioMart and the R package

Homovert for use with Gene Set Enrichment Analysis (GSEA)

and GeneGO pathway analysis. This set is directly input into

GSEA (v2.07) and run by setting the ‘collapse to gene symbol’

option to false, using ‘on-the-fly’ phenotypes corresponding to the

labels for lymphoma samples versus normal samples, and

permuting 1000 times on the gene set rather than the phenotype

due to the small sample sizes. This is done separately for the

microarray and RNA-Seq data since the intensity values are not

equivalently derived. The gene set database versions 2.5 and 3.0

for all curated sets was used to show results in the expanded gene

set space and persistent lymphoma hits.

Additionally, the positively expressed set of these genes was used

to generate a topology map of ‘transcriptional activators’ by the

Hidden Nodes Algorithm [46]. Then the positive expression data

from the gene list and the topology map were overlaid on the

pathway maps in GeneGo using the ‘Compare Experiments’

workflow.

Each individual canine sample was also processed within an

internal personalized medicine engine, which required that the

canine Affymetrix IDs be converted to human Affymetrix IDs for

microarray data and that RNA-Seq canine Ensembl IDs be

converted to human Affymetrix IDs, since the system was designed

for use with human U133 2.0 Plus Affymetrix GeneChip

microarray technology.

The canine microarray conversion occurs through the use of an

in-house canine conversion tool that we routinely use. In this tool,

each probeset’s intensity value is converted to a Z-Score depicting

its expression in terms of the number of standard-deviations from

the mean expression of a normal canine reference set based on the

39 samples in GEO data set GSE20113. In cases where multiple

probesets represent the same gene, they are aggregated to a single

mean value for the appropriate Entrez gene identifier. The canine

Entrez gene identifiers are then converted to human Entrez IDs

using the homolog data from the NCI HomoloGene database 11/

15/2010. Any ambiguously mapped canine IDs are removed.

Finally, human Entrez gene identifiers are converted to human

Gene Expression Changes in Canine B-Cell Lymphoma
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Affymetrix U133 2.0 Plus probesets based on the Affymetrix

version 31 annotation file. The canine RNA-Seq conversion relies

on a mean-based aggregation process using the Biomart mapping

between canine Ensembl gene IDs and canine Affymetrix probeset

IDs prior to the use of the canine conversion tool with a normal

canine reference derived from the mean expression of the four

normal RNA-Seq samples.

Results

Overview of RNA Sequencing Data
We sequenced 14 lymph node samples from 13 dogs, with each

sample occupying one lane on an Illumina Hi-Seq 2000 flowcell.

This produced between 55 and 175 million 100 bp paired-end

reads per sample (Table 2). For comparative analysis with

microarrays, we focused only on those reads which aligned to

annotated regions of the canine genome, as microarray probes are

designed primarily against annotated regions. We did not restrict

the sequencing data to uniquely or exactly mapped reads, which is

too stringent for the expected base-calling error of the sequencer

[47] and similar to microarrays that allow for some measure of

cross-hybridization. Instead, we allow for three mismatches

(inclusive) within a read and a maximum read depth of 500 per bp.

RNA-Seq appears more sensitive for detecting gene
expression

Both RNA-Seq and microarray observations provide present

detection calls for 15,092 genes in each of the 14 samples. The

percent present detection calls provided by the two technologies

agreed with high frequency (73%) and were statistically associated

(Table 3; p,10215, odds ratio .40). Among genes probed by both

methods, percent present detection frequencies of 69% and 44%

were obtained by RNA-Seq and microarray, respectively. Among

genes called present using microarray over 97% were detected

using RNA-Seq.

Decomposition of variation in all samples
One of our objectives is to compare the covariance of the latent

variation associated with each technology. The dispersion of the

RNA-Seq profiles is larger than that of the microarray profiles

(p,561025; Figure 1) based on a permutation test for heteroge-

neity of multivariate dispersions [48]. This larger dispersion for

RNA-Seq transcripts might be due to either a larger dispersion

associated with latent variation or to a larger dynamic range.

Surrogate Variable Analysis (SVA) [33,34] provided for

decomposition of the variation in a form very similar to that

suggested by Eq 1 (see above). We found that the variation

associated with transcript levels is substantial and highly statisti-

cally significant (Table 4), which justifies extracting the shared

variation as we have done.

SVA identified two surrogate variables. The variation associated

with the surrogate variables is much larger for the RNA-Seq

samples than for the GeneChip samples (Table 5). The greater

variation for RNA-Seq is captured by the first surrogate variable

(SV1; Table 5), which allows us to evaluate the origin of the larger

dispersion. The loadings of SV1 are strongly associated with GC-

content (Figure 2), suggesting that the well-known impact of GC

content on the number of observed reads within samples [26–28]

is reflected in the variation in the number of instances of the same

read between samples. The second surrogate variable appears to

be dominated by one GeneChip sample.

It is reasonable to expect that the larger dynamic range of RNA-

Seq will result in larger variation. SV1 loadings are also associated

with expression level and it is possible to identify genes for which

RNA-Seq exhibits, with high statistical significance, an enhanced

dynamic range. However, we found no clear evidence of an

association of SV1 loadings with nonlinear response in the

microarrays. Thus, the general impression is that this enhanced

dynamic range makes a smaller contribution to the enhanced

dispersion.

Filtration based on the first surrogate variable allowed us to

analyze the RNA-Seq and microarray expression profiles simul-

Table 3. Detection calls by Technology.

RNA-Seq

Absent Present

Microarray Absent 30% 26%

Present 1% 43%

Observations (15092 genes X 14 samples) were partitioned based on detection
calls obtained from microarray and RNA-Seq.
doi:10.1371/journal.pone.0061088.t003

Figure 1. SVA Loadings by Technology.Scores from the first
surrogate variable obtained from analysis of the combined RNA-Seq
and microarray expression profiles reflect variation among RNA-Seq
samples. Unexplained variation in the combined data set was captured
using Surrogate Variable Analysis [42], which returns scores and
loadings. The distribution of scores from the first surrogate variable is
represented in box-and-whisker plots.
doi:10.1371/journal.pone.0061088.g001

Table 4. SVA ANOVA.

DF SSE x 10-3 MSE x 10-3 F Cum p

Transcript 7 92 13.0 5.8 0.70 0.001

SV 1 24 24.0 11.0 0.18 0.001

Residuals 7 16 2.3 0.12

Total 15 130 1.00

Analysis of variance based on distance matrices [48].
doi:10.1371/journal.pone.0061088.t004
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taneously. More precisely, by row-centering the expression

matrices obtained from RNA-Seq and microarray for each sample

and by removing variation associated with the first surrogate

variable from RNA-Seq data only, the variation associated with

the difference between technologies is substantially less than the

variation associated with the differences between samples. For

example, both principal component analysis (Figure 3a) and

hierarchical clustering (Figure 3b) identify three sets of expression

profiles, each of which contains both RNA-Seq and microarray

profiles for a disjoint set of samples: A–D (normal), E–J, and K–N.

RNA-Seq and microarray identified similar sets of
differentially expressed genes in canine B-cell lymphoma

RNA-Seq and microarray observations were each used to

compare samples that reflect B-cell lymphoma with normal

samples (BvN). Genes (7,296) detected in at least three samples

using both methods were used to evaluate differential expression.

Both methods detected differences between normal and B-cell

lymphoma samples at the limit of the permutation test (p = 1/35)

[48]. The F-statistic for the comparison obtained using microarray

(5.9) was larger than that obtained using RNA-Seq (3.2) and the q-

value method [49] suggests differential expression of 55% and

63% of the genome for RNA-Seq and microarray, respectively.

The magnitude of differential expression was highly correlated

(Figure 4; r= 0.6, p,10215). Identification of differentially

expressed genes based on a false discovery rate threshold (0.2)

by the two methods were highly associated (Table 6; p,10215,

odds ratio = 4.6). The univariate analyses were repeated after

filtering latent variation associated with the first surrogate variable,

which impacts RNA-Seq variation. The results (not shown) are

qualitatively consistent but the p-values obtained after filtering are

in general more significant.

Pathway Analysis
Pathway analysis was limited to the B-cell lymphoma sample set

and requires a lossy conversion of canine Ensembl gene IDs to

human Entrez gene IDs that results in a set of 5,733 input genes

(Data File S1). This gene set was used as input into GeneGo and

GSEA for each technology. GSEA was performed against two

gene set database versions producing four result sets (Data File S2).

Enrichment in the RNA-Seq lymphoma phenotype was seen in 21

gene sets at nominal p-value,1% in version 2.5 and 55 gene sets

were significantly enriched at nominal p-value,1% in version 3.0.

The top 20 gene sets are provided in Table S2. Enrichment in the

Microarray lymphoma phenotype was seen in 37 gene sets at

nominal p-value,1% in version 2.5 and 128 gene sets at nominal

p-value,1% in version 3.0. GeneGo reports were generated for

Figure 2. RNA-Seq SVA Loading Reflects GC Content in Transcripts.Loadings from the first surrogate variable, obtained from analysis of the
combined RNA-Seq and microarray expression profiles, reflect transcript GC content. Unexplained variation in the combined data set was captured
using Surrogate Variable Analysis [42], which returns scores and loadings. Each point represents a gene, located based on its first surrogate variable
(SV 1) loading and GC content. Spearman correlation (R) is–0.79.
doi:10.1371/journal.pone.0061088.g002

Table 5. Surrogate Variable Analysis.

SV 1 SV 2

Microarray 1.3 7.0

RNA-Seq 56.0 2.1

Surrogate Variable[42] loadings by technology.
doi:10.1371/journal.pone.0061088.t005
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each technology and for the combined analysis using the gene set

values from the SVA model producing three result sets (Data File

S3).

GeneGo disease sets support the lymphoma diagnosis and

identify immune response activation congruent with B-cell

function (Figure 5). Additionally, PI3K, NFkB, MYC, and CBP

are pathway elements with maintained expression and high

topological significance in the GeneGo pathway maps that appear

alongside broader cell cycle and DNA damage repair responses

including p53 (Figure 6, Data File S3). Within these pathway

maps, the expression of pan B-cell markers appears as expected

and is connected topologically to PI3K activity (Figure 7a). GSEA

was used as a second method to verify the enriched pathway maps

(Figure 7b) and pan B-cell marker enrichment (Figure 7c). GSEA

also identifies a Doxorubicin resistance signature in this cohort of

samples (Figure 7b). Each of the samples in our study has also been

processed through an internal prediction engine that generates a

drug treatment report for individuals, and in 3 of 4 individual cases

in the B-cell lymphoma cohort a ‘Doxorubicin insensitive’

determination was predicted as well. The basis of this prediction

is a curated rules-based determination in medical literature that

states the effects of over- or under- expression of a biomarker on

drug resistance or sensitivity. The relevant rule in this case states

that IF ABCC1.2-fold, THEN Doxorubicin RESISTANT,

where ABCC1 is a well-known multi-drug resistance marker [50].

Discussion

The data model presented here represents both technical and

biological sources of variation. Variation shared between RNA-

Seq and microarray expression profiles reflects variation present in

the RNA samples, while the remaining variation is associated with

the technologies. The statistical treatment of the data allowed us to

Figure 3. Expression Profiles Cluster by Sample Post-SVA Correction of RNA-Seq.Variation among expression profiles obtained using RNA-
Seq is similar to that obtained using microarray after removing contributions of the first surrogate variable [42]. Each letter denotes a sample from a
dog having a normal (N), B-cell (B), or T-cell (T) diagnosis as in the legend, with subscript ‘m’ run on the microarray platform and subscript ‘r’ run on
the NGS platform. a) Principal component scores b) Hierarchical clustering
doi:10.1371/journal.pone.0061088.g003

Figure 4. Differential Expression is Concordant Between
Technologies.Estimates of differential expression obtained using
RNA-Seq and Microarray are correlated. Points represent genes, located
based on estimates of differential expression using RNA-Seq and
Microarray. Red points represent genes for which FDR,0.2. The line
corresponds to perfect agreement between the technologies.
doi:10.1371/journal.pone.0061088.g004

Table 6. Differentially Expressed Genes by Technology.

RNA-Seq

FALSE TRUE

Microarray FALSE 4342 269

TRUE 2087 598

Gene counts (out of 7296) were partitioned based on detection of differential
expression using RNA-Seq and microarray on sample set BvN.
doi:10.1371/journal.pone.0061088.t006
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distinguish variation arising from these different sources. Indeed,

applying SVA to our data revealed a strong correlation with

known technical biases associated with RNA-Seq [26–28,51] and

removing the associated variation from the RNA-Seq samples

resulted in the two technologies pairing by individual sample.

We used two strategies for evaluating the extent to which RNA-

Seq and microarray expression profiles share variation. Perhaps

the most common approach to comparing differential expression

profiles across platforms is to compare the results of a collection of

univariate statistical analyses, one analysis for each gene. Figure 4

gives the general impression that variation is shared genome-wide,

that is, the agreement between the two technologies is not limited

to a small proportion of highly differentially expression genes.

Evaluating the shared variation using univariate analysis is limited

in that it does not provide for capturing latent variation associated

with each technology. Multivariate analysis attributes 70% of the

variation to that present in the RNA samples (Table 4) and rejects

(p,0.001) the null hypothesis that variation is shared only by

chance.

While SVA provides the basis for a satisfactory interpretation of

the combined data set, it is important to address three limitations

of our use of SVA. First, we have not attempted to capture

differences in dynamic range between RNA-Seq and microarray.

It is reasonable to expect that the larger dynamic range of RNA-

Seq will result in larger variation. We found latent variation to be

highly associated with GC content but, in contrast, found no clear

evidence of an association pointing to nonlinear response in the

microarrays. Second, the model underlying SVA does not

explicitly capture different latent variables for the different

technologies. However, Figure 1 and Table 5 give the general

impression that we have, in effect, attained such a separation.

Third, SVA may capture latent variables that confound design

variables [42]. While removing confounding variation is desirable

and an important stated goal of SVA, the possibility remains that

estimates of differential expression associated with design and

latent variables co-vary. We note, however, that pairs of

coefficients of surrogate variables associated with the same RNA

are uncorrelated so that, in our case, SVA captures latent but not

confounding variation. Also, while removing true biological

Figure 5. GeneGo Disease Categories.GeneGo Disease categories expression (orange) and topology overlay (blue) show broad support for
lymphoma and infectious disease. Similar genes are in grey and common genes (in all samples) are in stripes. a) Disease categories called by
microarray dataset b) Disease categories called by RNA-Seq dataset c) Disease categories called by combining the microarray data and RNA-Seq data
using SVA.
doi:10.1371/journal.pone.0061088.g005

Figure 6. GeneGo Pathway Maps.GeneGO Pathway Maps by expression (orange) and topology overlay (blue). Similar genes are in grey and
common genes (in all samples) are in stripes. A) Top ten maps based on microarray platform B) Top ten maps based on RNA-Seq platform C) Top ten
maps based on combining the microarray data and RNA-Seq data using SVA.
doi:10.1371/journal.pone.0061088.g006
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variation is a concern when using an inter-sample correlation

matrix-based method to correct confounding variation [52], our

approach for applying this procedure only to RNA-Seq data but

not microarray data and the resulting concordance between the

technologies suggests that we have targeted technical rather than

biological variation. This approach should prove valuable for

enhancing comparative cross-platform data analysis with NGS

and chip-based platforms.

Our statistical procedure produced three latent sample classes.

The normal samples are readily identifiable along with two distinct

cancer classes. These latter two classes do not correspond to an

obvious distinction in breed, age, prior chemotherapy, drug

response to the PI3K inhibitor, treatment center, flow cell, lane

effects, % tumor cellularity, or B- vs. T- cell lymphoma. An

interesting possibility, at least in dogs, is that we have identified a

therapeutically relevant lymphoma subtype that is more robust

than a B- or T-cell lymphoma diagnosis. The differentially

expressed gene list between the latent classes represented a general

shift in the importance of cell cycle regulation. Although it is

unclear what other characteristics might separate these latent

groups, we note that the candidate doxorubicin resistance

phenotype is only found within the E-J latent class. A larger

sample set would be needed to explore the robustness of these

classes and possible distinguishing features.

Additionally, the sequencing depth of these genomes is sufficient

to detect genomic features such as differential splicing and

Figure 7. Canine B-Cell Lymphoma Pathway Analysis.a) ‘Immune Response BCR Pathway’ map generated from the combined SVA GeneGo
dataset shows pan B-cell markers (CD19, CD22, CD79). The level of indicator 1 at each node denotes upregulated transcriptional expression BvN. The
level of indicator 2 at each node denotes topologically discovered transcriptional activators based of the Hidden Nodes Algorithm. b) Supporting
gene set enrichments for B cell biology from the top 20 sets by GSEA using the version 2.5 and 3.0 gene set databases (highlighted). The three B-cell
maps shown in version 2.5 but not version 3.0 are still represented in the 3.0 enrichment list, but at a lower rank. Namely, BIOCARTA_BCR_PATHWAY
is rank 22, ST_B_CELL_ANTIGEN_RECEPTOR is rank 27, and SIG_PIP3_SIGNALING_IN_B_LYMPHOCYTES is rank 33. c) Pan B-cell markers (Gene
identifiers boxed in red) enriched in lymphoma in GSEA set ‘KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY’, which was chosen because it
represents a similar signaling space to the GeneGo map in part a.
doi:10.1371/journal.pone.0061088.g007
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alternative transcripts. In general, there are two ways to approach

this for an organism with a reference genome and genome

annotation: either genome-reference based transcript assembly or

reference-annotation based transcript assembly (summarized in

[39]). While we have used both methods to generate transcript sets

for our data, there are a few issues that complicate the

interpretation of the results. First, the canine genome annotation

is not very advanced and suffers from numerous challenges

(summarized in [53]). Thus, reference-annotation based transcript

assembly is currently a less reliable method for novel transcript

discovery. Genome-reference based transcript assembly is derived

from earlier methods based on Expressed Sequence Tag (EST)

libraries that may be more preferable for canines. Transcripts

mapped in intergenic or intronic regions can evaluated against

existing EST libraries (as in [54]), but here too the canine

resources exist but remain sparse [55]. Since we have few samples,

from mixed breeds, that are not only mixed (B-cells and T-cells),

but also cancerous (which alters the proportion of cell types in the

tissue), a proper treatment of how these issues impinge on novel

transcript detection and isoform switching is still under investiga-

tion.

The two technologies agreed frequently by both detection and

differential expression, with slight advantages for both. Detection

calls for either RNA-Seq or microarray may reflect Type I or Type

II errors so definitive conclusions might be based, for example, on

a gold standard and ROC analysis as was done for simulated data

in [56]. Instead, we used established methods for calling the

presence of expression and found that the results are consistent

with published observations that RNA-Seq may provide for more

sensitive detection of transcripts than microarrays [54]. This

sensitive transcript detection may contribute to the better

resolution of cell type specific distinctions observed with RNA-

Seq data during GSEA and GeneGo analysis. On the other hand,

the higher percentage of differentially expressed genes identified

by microarray raises the possibility that the microarray observa-

tions have greater statistical power for identifying genome-wide

differential expression. We note that this high percentage is not

based on filtration with respect to the magnitude of the differential

expression, nor does it reflect an effort to limit the false discovery

rate. It is reported simply as one summery measure of sensitivity.

This might be reflected in GSEA, where microarray data enriches

more gene sets at higher NES scores than RNA-Seq. Alternatively,

the RNA-Seq platform may capture a wider range of biological

variation, thus limiting global differential expression calls. The use

of read count data may be more appropriate for assessing

differential expression calls unlikely to be contributed due to

biological variation [57]. However, normalization methods for

read counts (such as in [58]) operate under the assumption that the

majority of genes will not be differentially expressed. That

assumption does not necessarily hold for our samples, given that

even for normal lymphoid samples ‘‘at least 65% of transcripts are

subtly but significantly different in B and T cells. [59]’’ The impact

of alternative normalization schemes that could impact differential

expression calls were not explored in this analysis. Original FPKM

values are provided in Data File S4.

All of the downstream analysis tools (GSEA, GeneGo, and our

prediction engine) require human information and were designed

to operate from microarray platforms. While GeneGo does

provide some functionality for canine IDs directly, the topology

tool does not and thus we experienced the same lossy conversion

between canine and human gene spaces when using GeneGo as

with the other tools. However, it is promising that the converted

canine data align with many human pathways known to be

involved in human lymphoma, discussed briefly below. Although

we are limited to seeing transcriptional changes in the current

study, the GSEA and GeneGo expression analysis make the most

of identifying context for transcriptional expression changes, while

the addition of the topology tool helps identify additional areas of

activity that likely direct transcriptional changes without neces-

sarily being modified at the transcriptional level.

Numerous signaling pathways implicated in human lymphoma

were identified in canine lymphoma by GSEA and GeneGo

pathway analysis with topologic discovery. We observed PI3K

pathway activity, which was particularly relevant since the origin

of these samples was a phase I trial of a novel PI3-K inhibitor in

dogs with B and T-cell lymphomas. During the originating dose

escalation study, the anti-tumor effects of the drug were found to

be largely dose dependent, and thus statistical association between

drug response and predicted levels of pathway activation at

analytical baseline (prior to onset of therapy) could not be assessed.

However, there is anecdotal evidence for effect in subject NE42

with B-cell lymphoma and a high score for inferred PI3K pathway

activation (via topological analysis), who achieved a partial

response per RECIST criteria (data not shown). The PI3K/

Akt/mTOR pathway is known to be deregulated especially in

NHL (a primarily B-cell lymphoma in humans) [60,61], and the

response of both this dog and two of our T-cell lymphoma dogs (a

much more rare condition in humans) to the high dose of the

inhibitor is promising. While we observed little to no topological

enrichment at the Akt and mTOR hubs in the canine samples, this

could possibly be due to the known loss in data conversion

between species or a slightly different biology in the canine disease.

However, a larger signaling system has recently been implicated in

B-lymphomagenesis that ties together many of the active pathways

observed in our canine samples [62]. This includes CD19, PI3K,

MYC, and GSK3b. In addition, we observed indications of

pathway activity through LYN and SYK, tyrosine kinases known

to be involved in B-cell signaling and cross-talk with the PI3K/Akt

signaling pathway [61,63]. We also observed indications of

hematopoietic inflammatory response by the immunoproteasome

(including the 20S core, 11S regulatory subunit, and PSME1/2

proteasome activators) and NFkB activity. This observation has

been made in human lymphoma before, leading to rationale trials

of the protease inhibitor Bortezomib with the expectation that it

would prevent the degradation of IKBa and thereby block NFkB

activity [64]. Altogether, our approach for reducing sample

variability and applying human-compatible systems biology tools

to canine data supports a thorough sampling of the disease space

for B-cell lymphoma.

The identification of a viral disease state in the lymphoma

samples (Figure 6) could signal either an infectious component to

lymphoma pathogenesis or a more general mobilization of B-cell

immune signaling pathways in disease. Numerous infectious

organisms have been associated with human lymphoma, including

Epstein-Barr virus (EBV), hepatitis B/C (HBV, HCV), HIV, and

Heliobactor pylori [65,66], although the role of these infections in

making individuals susceptible to or outright causing lymphoma

has not been established. Likewise, some correlative evidence for

EBV infections in canine lymphoma cases has been surfacing by

serologic, PCR, and ISH detection methods [67,68]. Given the

suggestion of viral etiology in our pathway analysis, we aligned our

sequencing reads against a series of viral genomes (EBV, HBV,

CHV, CAV1, CAV2) with Bowtie and BLAST looking for

evidence of viral transcripts within our lymph node aspirates, but

were unable to detect any. This is not especially surprising

considering that while 64% of U.S. dog’s sera samples responded

to EBV antibody, no signs of viral transcripts were detected by

PCR analysis on blood samples from these dogs [68]. Although
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persistent infection does not seem to play a role in maintaining

lymphoma, the outcomes of the initial infection on lymphoma risk

and development remain open for investigation.

GSEA analysis of BvN dogs picks up a highly ranked and robust

signature for doxorubicin resistance. We were also able to predict

this resistance on an individual level for each dog using an internal

prediction engine operating a rules-based method for assigning

drug resistance phenotypes. In all but one case (RB03), this engine

predicts that the dogs are insensitive to doxorubicin based on

extreme expression of the ABCC1 multi-drug resistance trans-

porter (data not shown). The engine also predicts 5-fluorouracil

insensitivity (data not shown) in all but one case (NE42), though at

a lower confidence than for doxorubicin. Although this study

could not address the predictive power of each method,

distinguishing the value of expression signature versus biomarker

methods on either a cohort or individual level is an important

long-term goal for the research in our lab. For human patients,

identifying these resistant phenotypes offers a way to avoid

undesirable side-effects by reducing the number of agents used in

combination regimens for lymphoma treatment. Doxorubicin and

5-fluorouracil had been used together in the F-MACHOP regimen

until the late 90s, and doxorubicin continues to be used today in

standard therapies for B-cell lymphoma (either CHOP or R-

CHOP) [9,69]. Using data-driven approaches to eliminate agents

from therapy when the tumor is insensitive would further reduce

treatment risk, such as the cardio-toxicity that can accompany

doxorubicin therapy [70].

In summary, we have identified genes differentially expressed

between the normal lymph nodes of disease free dogs and dogs

diagnosed with B-cell lymphoma using two methods: RNA

microarray and RNA-Seq. We report statistical methods for

treating the combined data from these technologies as a means for

collaboratively supporting biological discovery from the different

platforms. Together, the data suggest the elevated expression of

genes in the PI3K signaling pathway in B-cell lymphoma, a finding

that has also been noted in human lymphoma. Since dogs form

tumors spontaneously and have a strong breed predilection

towards specific types of cancer, the dog is an excellent

translational model for identifying the genetic basis associated

with lymphoma.

Supporting Information

Figure S1 Sequencing Workflow. A sequencing workflow

based on the Formalwear Suite of Bowtie-Tophat-Cufflinks was

employed to examine differential expression from the sequencing

data.

(PNG)

Table S1 Summary of canine subjects. Age is given in

years. Gender is provided as male (M), male-castrated (M/C),

female (F), female-spade (F/S). Relapsed dogs received chemo-

therapy treatment prior to FNA collection for this study. The

immunophenotype includes the multi-drug resistant (MDR) status

as positive (pos) or negative (neg). Best RESICT (Response

Evaluation Criteria in Solid Tumors) score is given of: complete

response (CR), partial response (PR), stable disease (SD), or

progressive disease (PD).

(PDF)

Table S2 Top 20 GSEA gene sets. Supporting gene set

enrichments from the top 20 sets by GSEA using the version 2.5

and 3.0 gene set databases (Sets referring to B-cell biology

highlighted). The three B-cell maps shown in version 2.5 but not

version 3.0 are still represented in the 3.0 enrichment list, but at a

lower rank. Namely, BIOCARTA_BCR_PATHWAY is rank 22,

ST_B_CELL_ANTIGEN_RECEPTOR is rank 27, and SIG_-

PIP3_SIGNALING_IN_B_LYMPHOCYTES is rank 33.

(PDF)

Data File S1 Overlapping Gene Set Used for Pathway
Analysis.

(XLSX)

Data File S2 GSEA Results Files.

(ZIP)

Data File S3 GeneGo Reports.

(ZIP)

Data File S4 Pivot Table of Original FPKM Values.

(ZIP)
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53. Derrien T, Vaysse A, André C, Hitte C (2012) Annotation of the domestic dog

genome sequence: finding the missing genes. Mamm Genome 23: 124–131.

doi:10.1007/s00335-011-9372-0.

54. Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, et al. (2008) A

global view of gene activity and alternative splicing by deep sequencing of the

human transcriptome. Science 321: 956–960. doi:10.1126/science.1160342.

55. Kim JY, Park HS, Lim D, Jang HC, Park HS, et al. (2011) Functional analysis of

expressed sequence tags from the liver and brain of Korean Jindo dogs. BMB

Rep 44: 238–243. doi:10.5483/BMBRep.2011.44.4.238.

56. Chen C, Grennan K, Badner J, Zhang D, Gershon E, et al. (2011) Removing

Batch Effects in Analysis of Expression Microarray Data: An Evaluation of Six

Batch Adjustment Methods. PLoS ONE 6: e17238. doi:10.1371/journal.-

pone.0017238.

57. Anders S, Huber W (2010) Differential expression analysis for sequence count

data. Genome Biology 11: R106. doi:10.1186/gb-2010-11-10-r106.

58. Robinson MD, Oshlack A (2010) A scaling normalization method for differential

expression analysis of RNA-seq data. Genome Biology 11: R25. doi:10.1186/gb-

2010-11-3-r25.

59. Painter MW, Davis S, Hardy RR, Mathis D, Benoist C (2011) Transcriptomes

of the B and T lineages compared by multiplatform microarray profiling.

J Immunol 186: 3047–3057. doi:10.4049/jimmunol.1002695.

60. Schatz JH (2011) Targeting the PI3K/AKT/mTOR pathway in non-Hodgkin’s

lymphoma: results, biology, and development strategies. Curr Oncol Rep 13:

398–406. doi:10.1007/s11912-011-0187-7.

61. Witzig TE, Gupta M (2010) Signal transduction inhibitor therapy for

lymphoma. Hematology Am Soc Hematol Educ Program 2010: 265–270.

doi:10.1182/asheducation-2010.1.265.

62. Chung EY, Psathas JN, Yu D, Li Y, Weiss MJ, et al. (2012) CD19 is a major B

cell receptor-independent activator of MYC-driven B-lymphomagenesis. The

Journal of clinical investigation.Available:http://www.ncbi.nlm.nih.gov/

pubmed/22546857. Accessed 7 May 2012.

63. Pogue SL, Kurosaki T, Bolen J, Herbst R (2000) B Cell Antigen Receptor-

Induced Activation of Akt Promotes B Cell Survival and Is Dependent on Syk

Kinase. J Immunol 165: 1300–1306.

64. Dunleavy K, Pittaluga S, Czuczman MS, Dave SS, Wright G, et al. (2009)

Differential efficacy of bortezomib plus chemotherapy within molecular subtypes

of diffuse large B-cell lymphoma. Blood 113: 6069–6076. doi:10.1182/blood-

2009-01-199679.

Gene Expression Changes in Canine B-Cell Lymphoma

PLOS ONE | www.plosone.org 13 April 2013 | Volume 8 | Issue 4 | e61088



65. Flowers CR, Sinha R, Vose JM (2010) Improving outcomes for patients with

diffuse large B-cell lymphoma. CA Cancer J Clin 60: 393–408. doi:10.3322/
caac.20087.

66. Dunleavy K, Wilson WH (2012) How I treat HIV-associated lymphoma. Blood

119: 3245–3255. doi:10.1182/blood-2011-08-373738.
67. Huang S-H, Kozak PJ, Kim J, Habineza-Ndikuyeze G, Meade C, et al. (n.d.)

Evidence of an oncogenic gammaherpesvirus in domestic dogs. Virology.
Ava i l ab le : h t tp ://www.sc i enced i rec t . com/sc i ence/ar t i c l e/p i i/

S0042682212001183. Accessed 2012 Mar 12.

68. Milman G, Smith KC, Erles K (2011) Serological detection of Epstein-Barr virus

infection in dogs and cats. Vet Microbiol 150: 15–20. doi:10.1016/
j.vetmic.2010.12.013.

69. Infanti L, Silvestri F, Fanin R, Salmaso F, Zaja F, et al. (1996) The F-MACHOP

regimen in the treatment of aggressive non-Hodgkin’s lymphomas: a single
center experience in 72 patients. Haematologica 81: 521–528.

70. Amadori D (2011) Moving forward with new data and approaches: a fresh look
at anthracyclines in non-Hodgkin’s lymphoma. Hematol Rep 3: e1.

doi:10.4081/hr.2011.s3.e1.

Gene Expression Changes in Canine B-Cell Lymphoma

PLOS ONE | www.plosone.org 14 April 2013 | Volume 8 | Issue 4 | e61088


